Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msrval Structured version   Visualization version   GIF version

Theorem msrval 34132
Description: Value of the reduct of a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
msrfval.v 𝑉 = (mVars‘𝑇)
msrfval.p 𝑃 = (mPreSt‘𝑇)
msrfval.r 𝑅 = (mStRed‘𝑇)
msrval.z 𝑍 = (𝑉 “ (𝐻 ∪ {𝐴}))
Assertion
Ref Expression
msrval (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → (𝑅‘⟨𝐷, 𝐻, 𝐴⟩) = ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)

Proof of Theorem msrval
Dummy variables 𝑎 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 msrfval.v . . . 4 𝑉 = (mVars‘𝑇)
2 msrfval.p . . . 4 𝑃 = (mPreSt‘𝑇)
3 msrfval.r . . . 4 𝑅 = (mStRed‘𝑇)
41, 2, 3msrfval 34131 . . 3 𝑅 = (𝑠𝑃(2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩)
54a1i 11 . 2 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑅 = (𝑠𝑃(2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩))
6 fvexd 6857 . . 3 ((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) → (2nd ‘(1st𝑠)) ∈ V)
7 fvexd 6857 . . . 4 (((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) → (2nd𝑠) ∈ V)
8 simpllr 774 . . . . . . . . 9 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → 𝑠 = ⟨𝐷, 𝐻, 𝐴⟩)
98fveq2d 6846 . . . . . . . 8 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (1st𝑠) = (1st ‘⟨𝐷, 𝐻, 𝐴⟩))
109fveq2d 6846 . . . . . . 7 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (1st ‘(1st𝑠)) = (1st ‘(1st ‘⟨𝐷, 𝐻, 𝐴⟩)))
11 eqid 2736 . . . . . . . . . . . . 13 (mDV‘𝑇) = (mDV‘𝑇)
12 eqid 2736 . . . . . . . . . . . . 13 (mEx‘𝑇) = (mEx‘𝑇)
1311, 12, 2elmpst 34130 . . . . . . . . . . . 12 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 ↔ ((𝐷 ⊆ (mDV‘𝑇) ∧ 𝐷 = 𝐷) ∧ (𝐻 ⊆ (mEx‘𝑇) ∧ 𝐻 ∈ Fin) ∧ 𝐴 ∈ (mEx‘𝑇)))
1413simp1bi 1145 . . . . . . . . . . 11 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → (𝐷 ⊆ (mDV‘𝑇) ∧ 𝐷 = 𝐷))
1514simpld 495 . . . . . . . . . 10 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (mDV‘𝑇))
1615ad3antrrr 728 . . . . . . . . 9 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → 𝐷 ⊆ (mDV‘𝑇))
17 fvex 6855 . . . . . . . . . 10 (mDV‘𝑇) ∈ V
1817ssex 5278 . . . . . . . . 9 (𝐷 ⊆ (mDV‘𝑇) → 𝐷 ∈ V)
1916, 18syl 17 . . . . . . . 8 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → 𝐷 ∈ V)
2013simp2bi 1146 . . . . . . . . . 10 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → (𝐻 ⊆ (mEx‘𝑇) ∧ 𝐻 ∈ Fin))
2120simprd 496 . . . . . . . . 9 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐻 ∈ Fin)
2221ad3antrrr 728 . . . . . . . 8 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → 𝐻 ∈ Fin)
2313simp3bi 1147 . . . . . . . . 9 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐴 ∈ (mEx‘𝑇))
2423ad3antrrr 728 . . . . . . . 8 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → 𝐴 ∈ (mEx‘𝑇))
25 ot1stg 7935 . . . . . . . 8 ((𝐷 ∈ V ∧ 𝐻 ∈ Fin ∧ 𝐴 ∈ (mEx‘𝑇)) → (1st ‘(1st ‘⟨𝐷, 𝐻, 𝐴⟩)) = 𝐷)
2619, 22, 24, 25syl3anc 1371 . . . . . . 7 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (1st ‘(1st ‘⟨𝐷, 𝐻, 𝐴⟩)) = 𝐷)
2710, 26eqtrd 2776 . . . . . 6 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (1st ‘(1st𝑠)) = 𝐷)
281fvexi 6856 . . . . . . . . . 10 𝑉 ∈ V
29 imaexg 7852 . . . . . . . . . 10 (𝑉 ∈ V → (𝑉 “ ( ∪ {𝑎})) ∈ V)
3028, 29ax-mp 5 . . . . . . . . 9 (𝑉 “ ( ∪ {𝑎})) ∈ V
3130uniex 7678 . . . . . . . 8 (𝑉 “ ( ∪ {𝑎})) ∈ V
3231a1i 11 . . . . . . 7 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (𝑉 “ ( ∪ {𝑎})) ∈ V)
33 id 22 . . . . . . . . 9 (𝑧 = (𝑉 “ ( ∪ {𝑎})) → 𝑧 = (𝑉 “ ( ∪ {𝑎})))
34 simplr 767 . . . . . . . . . . . . . 14 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → = (2nd ‘(1st𝑠)))
359fveq2d 6846 . . . . . . . . . . . . . 14 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (2nd ‘(1st𝑠)) = (2nd ‘(1st ‘⟨𝐷, 𝐻, 𝐴⟩)))
36 ot2ndg 7936 . . . . . . . . . . . . . . 15 ((𝐷 ∈ V ∧ 𝐻 ∈ Fin ∧ 𝐴 ∈ (mEx‘𝑇)) → (2nd ‘(1st ‘⟨𝐷, 𝐻, 𝐴⟩)) = 𝐻)
3719, 22, 24, 36syl3anc 1371 . . . . . . . . . . . . . 14 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (2nd ‘(1st ‘⟨𝐷, 𝐻, 𝐴⟩)) = 𝐻)
3834, 35, 373eqtrd 2780 . . . . . . . . . . . . 13 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → = 𝐻)
39 simpr 485 . . . . . . . . . . . . . . 15 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → 𝑎 = (2nd𝑠))
408fveq2d 6846 . . . . . . . . . . . . . . 15 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (2nd𝑠) = (2nd ‘⟨𝐷, 𝐻, 𝐴⟩))
41 ot3rdg 7937 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (mEx‘𝑇) → (2nd ‘⟨𝐷, 𝐻, 𝐴⟩) = 𝐴)
4224, 41syl 17 . . . . . . . . . . . . . . 15 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (2nd ‘⟨𝐷, 𝐻, 𝐴⟩) = 𝐴)
4339, 40, 423eqtrd 2780 . . . . . . . . . . . . . 14 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → 𝑎 = 𝐴)
4443sneqd 4598 . . . . . . . . . . . . 13 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → {𝑎} = {𝐴})
4538, 44uneq12d 4124 . . . . . . . . . . . 12 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → ( ∪ {𝑎}) = (𝐻 ∪ {𝐴}))
4645imaeq2d 6013 . . . . . . . . . . 11 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (𝑉 “ ( ∪ {𝑎})) = (𝑉 “ (𝐻 ∪ {𝐴})))
4746unieqd 4879 . . . . . . . . . 10 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (𝑉 “ ( ∪ {𝑎})) = (𝑉 “ (𝐻 ∪ {𝐴})))
48 msrval.z . . . . . . . . . 10 𝑍 = (𝑉 “ (𝐻 ∪ {𝐴}))
4947, 48eqtr4di 2794 . . . . . . . . 9 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (𝑉 “ ( ∪ {𝑎})) = 𝑍)
5033, 49sylan9eqr 2798 . . . . . . . 8 (((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) ∧ 𝑧 = (𝑉 “ ( ∪ {𝑎}))) → 𝑧 = 𝑍)
5150sqxpeqd 5665 . . . . . . 7 (((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) ∧ 𝑧 = (𝑉 “ ( ∪ {𝑎}))) → (𝑧 × 𝑧) = (𝑍 × 𝑍))
5232, 51csbied 3893 . . . . . 6 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧) = (𝑍 × 𝑍))
5327, 52ineq12d 4173 . . . . 5 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → ((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)) = (𝐷 ∩ (𝑍 × 𝑍)))
5453, 38, 43oteq123d 4845 . . . 4 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → ⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩ = ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
557, 54csbied 3893 . . 3 (((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) → (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩ = ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
566, 55csbied 3893 . 2 ((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) → (2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩ = ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
57 id 22 . 2 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → ⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃)
58 otex 5422 . . 3 ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩ ∈ V
5958a1i 11 . 2 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩ ∈ V)
605, 56, 57, 59fvmptd 6955 1 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → (𝑅‘⟨𝐷, 𝐻, 𝐴⟩) = ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3445  csb 3855  cun 3908  cin 3909  wss 3910  {csn 4586  cotp 4594   cuni 4865  cmpt 5188   × cxp 5631  ccnv 5632  cima 5636  cfv 6496  1st c1st 7919  2nd c2nd 7920  Fincfn 8883  mExcmex 34061  mDVcmdv 34062  mVarscmvrs 34063  mPreStcmpst 34067  mStRedcmsr 34068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-ot 4595  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-1st 7921  df-2nd 7922  df-mpst 34087  df-msr 34088
This theorem is referenced by:  msrf  34136  msrid  34139  elmsta  34142  mthmpps  34176
  Copyright terms: Public domain W3C validator