Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msrval Structured version   Visualization version   GIF version

Theorem msrval 35498
Description: Value of the reduct of a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
msrfval.v 𝑉 = (mVars‘𝑇)
msrfval.p 𝑃 = (mPreSt‘𝑇)
msrfval.r 𝑅 = (mStRed‘𝑇)
msrval.z 𝑍 = (𝑉 “ (𝐻 ∪ {𝐴}))
Assertion
Ref Expression
msrval (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → (𝑅‘⟨𝐷, 𝐻, 𝐴⟩) = ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)

Proof of Theorem msrval
Dummy variables 𝑎 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 msrfval.v . . . 4 𝑉 = (mVars‘𝑇)
2 msrfval.p . . . 4 𝑃 = (mPreSt‘𝑇)
3 msrfval.r . . . 4 𝑅 = (mStRed‘𝑇)
41, 2, 3msrfval 35497 . . 3 𝑅 = (𝑠𝑃(2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩)
54a1i 11 . 2 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑅 = (𝑠𝑃(2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩))
6 fvexd 6855 . . 3 ((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) → (2nd ‘(1st𝑠)) ∈ V)
7 fvexd 6855 . . . 4 (((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) → (2nd𝑠) ∈ V)
8 simpllr 775 . . . . . . . . 9 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → 𝑠 = ⟨𝐷, 𝐻, 𝐴⟩)
98fveq2d 6844 . . . . . . . 8 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (1st𝑠) = (1st ‘⟨𝐷, 𝐻, 𝐴⟩))
109fveq2d 6844 . . . . . . 7 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (1st ‘(1st𝑠)) = (1st ‘(1st ‘⟨𝐷, 𝐻, 𝐴⟩)))
11 eqid 2729 . . . . . . . . . . . . 13 (mDV‘𝑇) = (mDV‘𝑇)
12 eqid 2729 . . . . . . . . . . . . 13 (mEx‘𝑇) = (mEx‘𝑇)
1311, 12, 2elmpst 35496 . . . . . . . . . . . 12 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 ↔ ((𝐷 ⊆ (mDV‘𝑇) ∧ 𝐷 = 𝐷) ∧ (𝐻 ⊆ (mEx‘𝑇) ∧ 𝐻 ∈ Fin) ∧ 𝐴 ∈ (mEx‘𝑇)))
1413simp1bi 1145 . . . . . . . . . . 11 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → (𝐷 ⊆ (mDV‘𝑇) ∧ 𝐷 = 𝐷))
1514simpld 494 . . . . . . . . . 10 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (mDV‘𝑇))
1615ad3antrrr 730 . . . . . . . . 9 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → 𝐷 ⊆ (mDV‘𝑇))
17 fvex 6853 . . . . . . . . . 10 (mDV‘𝑇) ∈ V
1817ssex 5271 . . . . . . . . 9 (𝐷 ⊆ (mDV‘𝑇) → 𝐷 ∈ V)
1916, 18syl 17 . . . . . . . 8 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → 𝐷 ∈ V)
2013simp2bi 1146 . . . . . . . . . 10 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → (𝐻 ⊆ (mEx‘𝑇) ∧ 𝐻 ∈ Fin))
2120simprd 495 . . . . . . . . 9 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐻 ∈ Fin)
2221ad3antrrr 730 . . . . . . . 8 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → 𝐻 ∈ Fin)
2313simp3bi 1147 . . . . . . . . 9 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐴 ∈ (mEx‘𝑇))
2423ad3antrrr 730 . . . . . . . 8 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → 𝐴 ∈ (mEx‘𝑇))
25 ot1stg 7961 . . . . . . . 8 ((𝐷 ∈ V ∧ 𝐻 ∈ Fin ∧ 𝐴 ∈ (mEx‘𝑇)) → (1st ‘(1st ‘⟨𝐷, 𝐻, 𝐴⟩)) = 𝐷)
2619, 22, 24, 25syl3anc 1373 . . . . . . 7 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (1st ‘(1st ‘⟨𝐷, 𝐻, 𝐴⟩)) = 𝐷)
2710, 26eqtrd 2764 . . . . . 6 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (1st ‘(1st𝑠)) = 𝐷)
281fvexi 6854 . . . . . . . . . 10 𝑉 ∈ V
29 imaexg 7869 . . . . . . . . . 10 (𝑉 ∈ V → (𝑉 “ ( ∪ {𝑎})) ∈ V)
3028, 29ax-mp 5 . . . . . . . . 9 (𝑉 “ ( ∪ {𝑎})) ∈ V
3130uniex 7697 . . . . . . . 8 (𝑉 “ ( ∪ {𝑎})) ∈ V
3231a1i 11 . . . . . . 7 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (𝑉 “ ( ∪ {𝑎})) ∈ V)
33 id 22 . . . . . . . . 9 (𝑧 = (𝑉 “ ( ∪ {𝑎})) → 𝑧 = (𝑉 “ ( ∪ {𝑎})))
34 simplr 768 . . . . . . . . . . . . . 14 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → = (2nd ‘(1st𝑠)))
359fveq2d 6844 . . . . . . . . . . . . . 14 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (2nd ‘(1st𝑠)) = (2nd ‘(1st ‘⟨𝐷, 𝐻, 𝐴⟩)))
36 ot2ndg 7962 . . . . . . . . . . . . . . 15 ((𝐷 ∈ V ∧ 𝐻 ∈ Fin ∧ 𝐴 ∈ (mEx‘𝑇)) → (2nd ‘(1st ‘⟨𝐷, 𝐻, 𝐴⟩)) = 𝐻)
3719, 22, 24, 36syl3anc 1373 . . . . . . . . . . . . . 14 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (2nd ‘(1st ‘⟨𝐷, 𝐻, 𝐴⟩)) = 𝐻)
3834, 35, 373eqtrd 2768 . . . . . . . . . . . . 13 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → = 𝐻)
39 simpr 484 . . . . . . . . . . . . . . 15 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → 𝑎 = (2nd𝑠))
408fveq2d 6844 . . . . . . . . . . . . . . 15 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (2nd𝑠) = (2nd ‘⟨𝐷, 𝐻, 𝐴⟩))
41 ot3rdg 7963 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (mEx‘𝑇) → (2nd ‘⟨𝐷, 𝐻, 𝐴⟩) = 𝐴)
4224, 41syl 17 . . . . . . . . . . . . . . 15 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (2nd ‘⟨𝐷, 𝐻, 𝐴⟩) = 𝐴)
4339, 40, 423eqtrd 2768 . . . . . . . . . . . . . 14 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → 𝑎 = 𝐴)
4443sneqd 4597 . . . . . . . . . . . . 13 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → {𝑎} = {𝐴})
4538, 44uneq12d 4128 . . . . . . . . . . . 12 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → ( ∪ {𝑎}) = (𝐻 ∪ {𝐴}))
4645imaeq2d 6020 . . . . . . . . . . 11 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (𝑉 “ ( ∪ {𝑎})) = (𝑉 “ (𝐻 ∪ {𝐴})))
4746unieqd 4880 . . . . . . . . . 10 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (𝑉 “ ( ∪ {𝑎})) = (𝑉 “ (𝐻 ∪ {𝐴})))
48 msrval.z . . . . . . . . . 10 𝑍 = (𝑉 “ (𝐻 ∪ {𝐴}))
4947, 48eqtr4di 2782 . . . . . . . . 9 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (𝑉 “ ( ∪ {𝑎})) = 𝑍)
5033, 49sylan9eqr 2786 . . . . . . . 8 (((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) ∧ 𝑧 = (𝑉 “ ( ∪ {𝑎}))) → 𝑧 = 𝑍)
5150sqxpeqd 5663 . . . . . . 7 (((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) ∧ 𝑧 = (𝑉 “ ( ∪ {𝑎}))) → (𝑧 × 𝑧) = (𝑍 × 𝑍))
5232, 51csbied 3895 . . . . . 6 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧) = (𝑍 × 𝑍))
5327, 52ineq12d 4180 . . . . 5 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → ((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)) = (𝐷 ∩ (𝑍 × 𝑍)))
5453, 38, 43oteq123d 4848 . . . 4 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → ⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩ = ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
557, 54csbied 3895 . . 3 (((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) → (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩ = ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
566, 55csbied 3895 . 2 ((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) → (2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩ = ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
57 id 22 . 2 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → ⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃)
58 otex 5420 . . 3 ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩ ∈ V
5958a1i 11 . 2 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩ ∈ V)
605, 56, 57, 59fvmptd 6957 1 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → (𝑅‘⟨𝐷, 𝐻, 𝐴⟩) = ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  csb 3859  cun 3909  cin 3910  wss 3911  {csn 4585  cotp 4593   cuni 4867  cmpt 5183   × cxp 5629  ccnv 5630  cima 5634  cfv 6499  1st c1st 7945  2nd c2nd 7946  Fincfn 8895  mExcmex 35427  mDVcmdv 35428  mVarscmvrs 35429  mPreStcmpst 35433  mStRedcmsr 35434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-ot 4594  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-1st 7947  df-2nd 7948  df-mpst 35453  df-msr 35454
This theorem is referenced by:  msrf  35502  msrid  35505  elmsta  35508  mthmpps  35542
  Copyright terms: Public domain W3C validator