Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msrval Structured version   Visualization version   GIF version

Theorem msrval 35506
Description: Value of the reduct of a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
msrfval.v 𝑉 = (mVars‘𝑇)
msrfval.p 𝑃 = (mPreSt‘𝑇)
msrfval.r 𝑅 = (mStRed‘𝑇)
msrval.z 𝑍 = (𝑉 “ (𝐻 ∪ {𝐴}))
Assertion
Ref Expression
msrval (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → (𝑅‘⟨𝐷, 𝐻, 𝐴⟩) = ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)

Proof of Theorem msrval
Dummy variables 𝑎 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 msrfval.v . . . 4 𝑉 = (mVars‘𝑇)
2 msrfval.p . . . 4 𝑃 = (mPreSt‘𝑇)
3 msrfval.r . . . 4 𝑅 = (mStRed‘𝑇)
41, 2, 3msrfval 35505 . . 3 𝑅 = (𝑠𝑃(2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩)
54a1i 11 . 2 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑅 = (𝑠𝑃(2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩))
6 fvexd 6935 . . 3 ((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) → (2nd ‘(1st𝑠)) ∈ V)
7 fvexd 6935 . . . 4 (((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) → (2nd𝑠) ∈ V)
8 simpllr 775 . . . . . . . . 9 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → 𝑠 = ⟨𝐷, 𝐻, 𝐴⟩)
98fveq2d 6924 . . . . . . . 8 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (1st𝑠) = (1st ‘⟨𝐷, 𝐻, 𝐴⟩))
109fveq2d 6924 . . . . . . 7 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (1st ‘(1st𝑠)) = (1st ‘(1st ‘⟨𝐷, 𝐻, 𝐴⟩)))
11 eqid 2740 . . . . . . . . . . . . 13 (mDV‘𝑇) = (mDV‘𝑇)
12 eqid 2740 . . . . . . . . . . . . 13 (mEx‘𝑇) = (mEx‘𝑇)
1311, 12, 2elmpst 35504 . . . . . . . . . . . 12 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 ↔ ((𝐷 ⊆ (mDV‘𝑇) ∧ 𝐷 = 𝐷) ∧ (𝐻 ⊆ (mEx‘𝑇) ∧ 𝐻 ∈ Fin) ∧ 𝐴 ∈ (mEx‘𝑇)))
1413simp1bi 1145 . . . . . . . . . . 11 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → (𝐷 ⊆ (mDV‘𝑇) ∧ 𝐷 = 𝐷))
1514simpld 494 . . . . . . . . . 10 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (mDV‘𝑇))
1615ad3antrrr 729 . . . . . . . . 9 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → 𝐷 ⊆ (mDV‘𝑇))
17 fvex 6933 . . . . . . . . . 10 (mDV‘𝑇) ∈ V
1817ssex 5339 . . . . . . . . 9 (𝐷 ⊆ (mDV‘𝑇) → 𝐷 ∈ V)
1916, 18syl 17 . . . . . . . 8 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → 𝐷 ∈ V)
2013simp2bi 1146 . . . . . . . . . 10 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → (𝐻 ⊆ (mEx‘𝑇) ∧ 𝐻 ∈ Fin))
2120simprd 495 . . . . . . . . 9 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐻 ∈ Fin)
2221ad3antrrr 729 . . . . . . . 8 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → 𝐻 ∈ Fin)
2313simp3bi 1147 . . . . . . . . 9 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐴 ∈ (mEx‘𝑇))
2423ad3antrrr 729 . . . . . . . 8 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → 𝐴 ∈ (mEx‘𝑇))
25 ot1stg 8044 . . . . . . . 8 ((𝐷 ∈ V ∧ 𝐻 ∈ Fin ∧ 𝐴 ∈ (mEx‘𝑇)) → (1st ‘(1st ‘⟨𝐷, 𝐻, 𝐴⟩)) = 𝐷)
2619, 22, 24, 25syl3anc 1371 . . . . . . 7 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (1st ‘(1st ‘⟨𝐷, 𝐻, 𝐴⟩)) = 𝐷)
2710, 26eqtrd 2780 . . . . . 6 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (1st ‘(1st𝑠)) = 𝐷)
281fvexi 6934 . . . . . . . . . 10 𝑉 ∈ V
29 imaexg 7953 . . . . . . . . . 10 (𝑉 ∈ V → (𝑉 “ ( ∪ {𝑎})) ∈ V)
3028, 29ax-mp 5 . . . . . . . . 9 (𝑉 “ ( ∪ {𝑎})) ∈ V
3130uniex 7776 . . . . . . . 8 (𝑉 “ ( ∪ {𝑎})) ∈ V
3231a1i 11 . . . . . . 7 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (𝑉 “ ( ∪ {𝑎})) ∈ V)
33 id 22 . . . . . . . . 9 (𝑧 = (𝑉 “ ( ∪ {𝑎})) → 𝑧 = (𝑉 “ ( ∪ {𝑎})))
34 simplr 768 . . . . . . . . . . . . . 14 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → = (2nd ‘(1st𝑠)))
359fveq2d 6924 . . . . . . . . . . . . . 14 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (2nd ‘(1st𝑠)) = (2nd ‘(1st ‘⟨𝐷, 𝐻, 𝐴⟩)))
36 ot2ndg 8045 . . . . . . . . . . . . . . 15 ((𝐷 ∈ V ∧ 𝐻 ∈ Fin ∧ 𝐴 ∈ (mEx‘𝑇)) → (2nd ‘(1st ‘⟨𝐷, 𝐻, 𝐴⟩)) = 𝐻)
3719, 22, 24, 36syl3anc 1371 . . . . . . . . . . . . . 14 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (2nd ‘(1st ‘⟨𝐷, 𝐻, 𝐴⟩)) = 𝐻)
3834, 35, 373eqtrd 2784 . . . . . . . . . . . . 13 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → = 𝐻)
39 simpr 484 . . . . . . . . . . . . . . 15 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → 𝑎 = (2nd𝑠))
408fveq2d 6924 . . . . . . . . . . . . . . 15 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (2nd𝑠) = (2nd ‘⟨𝐷, 𝐻, 𝐴⟩))
41 ot3rdg 8046 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (mEx‘𝑇) → (2nd ‘⟨𝐷, 𝐻, 𝐴⟩) = 𝐴)
4224, 41syl 17 . . . . . . . . . . . . . . 15 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (2nd ‘⟨𝐷, 𝐻, 𝐴⟩) = 𝐴)
4339, 40, 423eqtrd 2784 . . . . . . . . . . . . . 14 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → 𝑎 = 𝐴)
4443sneqd 4660 . . . . . . . . . . . . 13 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → {𝑎} = {𝐴})
4538, 44uneq12d 4192 . . . . . . . . . . . 12 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → ( ∪ {𝑎}) = (𝐻 ∪ {𝐴}))
4645imaeq2d 6089 . . . . . . . . . . 11 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (𝑉 “ ( ∪ {𝑎})) = (𝑉 “ (𝐻 ∪ {𝐴})))
4746unieqd 4944 . . . . . . . . . 10 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (𝑉 “ ( ∪ {𝑎})) = (𝑉 “ (𝐻 ∪ {𝐴})))
48 msrval.z . . . . . . . . . 10 𝑍 = (𝑉 “ (𝐻 ∪ {𝐴}))
4947, 48eqtr4di 2798 . . . . . . . . 9 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (𝑉 “ ( ∪ {𝑎})) = 𝑍)
5033, 49sylan9eqr 2802 . . . . . . . 8 (((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) ∧ 𝑧 = (𝑉 “ ( ∪ {𝑎}))) → 𝑧 = 𝑍)
5150sqxpeqd 5732 . . . . . . 7 (((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) ∧ 𝑧 = (𝑉 “ ( ∪ {𝑎}))) → (𝑧 × 𝑧) = (𝑍 × 𝑍))
5232, 51csbied 3959 . . . . . 6 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧) = (𝑍 × 𝑍))
5327, 52ineq12d 4242 . . . . 5 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → ((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)) = (𝐷 ∩ (𝑍 × 𝑍)))
5453, 38, 43oteq123d 4912 . . . 4 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → ⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩ = ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
557, 54csbied 3959 . . 3 (((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) → (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩ = ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
566, 55csbied 3959 . 2 ((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) → (2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩ = ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
57 id 22 . 2 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → ⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃)
58 otex 5485 . . 3 ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩ ∈ V
5958a1i 11 . 2 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩ ∈ V)
605, 56, 57, 59fvmptd 7036 1 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → (𝑅‘⟨𝐷, 𝐻, 𝐴⟩) = ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  csb 3921  cun 3974  cin 3975  wss 3976  {csn 4648  cotp 4656   cuni 4931  cmpt 5249   × cxp 5698  ccnv 5699  cima 5703  cfv 6573  1st c1st 8028  2nd c2nd 8029  Fincfn 9003  mExcmex 35435  mDVcmdv 35436  mVarscmvrs 35437  mPreStcmpst 35441  mStRedcmsr 35442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-ot 4657  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-1st 8030  df-2nd 8031  df-mpst 35461  df-msr 35462
This theorem is referenced by:  msrf  35510  msrid  35513  elmsta  35516  mthmpps  35550
  Copyright terms: Public domain W3C validator