Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ackval1012 | Structured version Visualization version GIF version |
Description: The Ackermann function at (1,0), (1,1), (1,2). (Contributed by AV, 4-May-2024.) |
Ref | Expression |
---|---|
ackval1012 | ⊢ 〈((Ack‘1)‘0), ((Ack‘1)‘1), ((Ack‘1)‘2)〉 = 〈2, 3, 4〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ackval1 45915 | . 2 ⊢ (Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) | |
2 | oveq1 7262 | . . . . 5 ⊢ (𝑛 = 0 → (𝑛 + 2) = (0 + 2)) | |
3 | 2cn 11978 | . . . . . 6 ⊢ 2 ∈ ℂ | |
4 | 3 | addid2i 11093 | . . . . 5 ⊢ (0 + 2) = 2 |
5 | 2, 4 | eqtrdi 2795 | . . . 4 ⊢ (𝑛 = 0 → (𝑛 + 2) = 2) |
6 | 0nn0 12178 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
7 | 6 | a1i 11 | . . . 4 ⊢ ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → 0 ∈ ℕ0) |
8 | 2nn0 12180 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
9 | 8 | a1i 11 | . . . 4 ⊢ ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → 2 ∈ ℕ0) |
10 | 1, 5, 7, 9 | fvmptd3 6880 | . . 3 ⊢ ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → ((Ack‘1)‘0) = 2) |
11 | oveq1 7262 | . . . . 5 ⊢ (𝑛 = 1 → (𝑛 + 2) = (1 + 2)) | |
12 | 1p2e3 12046 | . . . . 5 ⊢ (1 + 2) = 3 | |
13 | 11, 12 | eqtrdi 2795 | . . . 4 ⊢ (𝑛 = 1 → (𝑛 + 2) = 3) |
14 | 1nn0 12179 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
15 | 14 | a1i 11 | . . . 4 ⊢ ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → 1 ∈ ℕ0) |
16 | 3nn0 12181 | . . . . 5 ⊢ 3 ∈ ℕ0 | |
17 | 16 | a1i 11 | . . . 4 ⊢ ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → 3 ∈ ℕ0) |
18 | 1, 13, 15, 17 | fvmptd3 6880 | . . 3 ⊢ ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → ((Ack‘1)‘1) = 3) |
19 | oveq1 7262 | . . . . 5 ⊢ (𝑛 = 2 → (𝑛 + 2) = (2 + 2)) | |
20 | 2p2e4 12038 | . . . . 5 ⊢ (2 + 2) = 4 | |
21 | 19, 20 | eqtrdi 2795 | . . . 4 ⊢ (𝑛 = 2 → (𝑛 + 2) = 4) |
22 | 4nn0 12182 | . . . . 5 ⊢ 4 ∈ ℕ0 | |
23 | 22 | a1i 11 | . . . 4 ⊢ ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → 4 ∈ ℕ0) |
24 | 1, 21, 9, 23 | fvmptd3 6880 | . . 3 ⊢ ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → ((Ack‘1)‘2) = 4) |
25 | 10, 18, 24 | oteq123d 4816 | . 2 ⊢ ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → 〈((Ack‘1)‘0), ((Ack‘1)‘1), ((Ack‘1)‘2)〉 = 〈2, 3, 4〉) |
26 | 1, 25 | ax-mp 5 | 1 ⊢ 〈((Ack‘1)‘0), ((Ack‘1)‘1), ((Ack‘1)‘2)〉 = 〈2, 3, 4〉 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 〈cotp 4566 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 0cc0 10802 1c1 10803 + caddc 10805 2c2 11958 3c3 11959 4c4 11960 ℕ0cn0 12163 Ackcack 45892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-ot 4567 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-n0 12164 df-z 12250 df-uz 12512 df-seq 13650 df-itco 45893 df-ack 45894 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |