Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ackval1012 Structured version   Visualization version   GIF version

Theorem ackval1012 47763
Description: The Ackermann function at (1,0), (1,1), (1,2). (Contributed by AV, 4-May-2024.)
Assertion
Ref Expression
ackval1012 ⟨((Ack‘1)‘0), ((Ack‘1)‘1), ((Ack‘1)‘2)⟩ = ⟨2, 3, 4⟩

Proof of Theorem ackval1012
StepHypRef Expression
1 ackval1 47754 . 2 (Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2))
2 oveq1 7427 . . . . 5 (𝑛 = 0 → (𝑛 + 2) = (0 + 2))
3 2cn 12318 . . . . . 6 2 ∈ ℂ
43addlidi 11433 . . . . 5 (0 + 2) = 2
52, 4eqtrdi 2784 . . . 4 (𝑛 = 0 → (𝑛 + 2) = 2)
6 0nn0 12518 . . . . 5 0 ∈ ℕ0
76a1i 11 . . . 4 ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → 0 ∈ ℕ0)
8 2nn0 12520 . . . . 5 2 ∈ ℕ0
98a1i 11 . . . 4 ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → 2 ∈ ℕ0)
101, 5, 7, 9fvmptd3 7028 . . 3 ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → ((Ack‘1)‘0) = 2)
11 oveq1 7427 . . . . 5 (𝑛 = 1 → (𝑛 + 2) = (1 + 2))
12 1p2e3 12386 . . . . 5 (1 + 2) = 3
1311, 12eqtrdi 2784 . . . 4 (𝑛 = 1 → (𝑛 + 2) = 3)
14 1nn0 12519 . . . . 5 1 ∈ ℕ0
1514a1i 11 . . . 4 ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → 1 ∈ ℕ0)
16 3nn0 12521 . . . . 5 3 ∈ ℕ0
1716a1i 11 . . . 4 ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → 3 ∈ ℕ0)
181, 13, 15, 17fvmptd3 7028 . . 3 ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → ((Ack‘1)‘1) = 3)
19 oveq1 7427 . . . . 5 (𝑛 = 2 → (𝑛 + 2) = (2 + 2))
20 2p2e4 12378 . . . . 5 (2 + 2) = 4
2119, 20eqtrdi 2784 . . . 4 (𝑛 = 2 → (𝑛 + 2) = 4)
22 4nn0 12522 . . . . 5 4 ∈ ℕ0
2322a1i 11 . . . 4 ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → 4 ∈ ℕ0)
241, 21, 9, 23fvmptd3 7028 . . 3 ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → ((Ack‘1)‘2) = 4)
2510, 18, 24oteq123d 4889 . 2 ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → ⟨((Ack‘1)‘0), ((Ack‘1)‘1), ((Ack‘1)‘2)⟩ = ⟨2, 3, 4⟩)
261, 25ax-mp 5 1 ⟨((Ack‘1)‘0), ((Ack‘1)‘1), ((Ack‘1)‘2)⟩ = ⟨2, 3, 4⟩
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wcel 2099  cotp 4637  cmpt 5231  cfv 6548  (class class class)co 7420  0cc0 11139  1c1 11140   + caddc 11142  2c2 12298  3c3 12299  4c4 12300  0cn0 12503  Ackcack 47731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-inf2 9665  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-ot 4638  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-nn 12244  df-2 12306  df-3 12307  df-4 12308  df-n0 12504  df-z 12590  df-uz 12854  df-seq 14000  df-itco 47732  df-ack 47733
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator