| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ackval1012 | Structured version Visualization version GIF version | ||
| Description: The Ackermann function at (1,0), (1,1), (1,2). (Contributed by AV, 4-May-2024.) |
| Ref | Expression |
|---|---|
| ackval1012 | ⊢ 〈((Ack‘1)‘0), ((Ack‘1)‘1), ((Ack‘1)‘2)〉 = 〈2, 3, 4〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackval1 48548 | . 2 ⊢ (Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) | |
| 2 | oveq1 7421 | . . . . 5 ⊢ (𝑛 = 0 → (𝑛 + 2) = (0 + 2)) | |
| 3 | 2cn 12324 | . . . . . 6 ⊢ 2 ∈ ℂ | |
| 4 | 3 | addlidi 11432 | . . . . 5 ⊢ (0 + 2) = 2 |
| 5 | 2, 4 | eqtrdi 2785 | . . . 4 ⊢ (𝑛 = 0 → (𝑛 + 2) = 2) |
| 6 | 0nn0 12525 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 7 | 6 | a1i 11 | . . . 4 ⊢ ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → 0 ∈ ℕ0) |
| 8 | 2nn0 12527 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
| 9 | 8 | a1i 11 | . . . 4 ⊢ ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → 2 ∈ ℕ0) |
| 10 | 1, 5, 7, 9 | fvmptd3 7020 | . . 3 ⊢ ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → ((Ack‘1)‘0) = 2) |
| 11 | oveq1 7421 | . . . . 5 ⊢ (𝑛 = 1 → (𝑛 + 2) = (1 + 2)) | |
| 12 | 1p2e3 12392 | . . . . 5 ⊢ (1 + 2) = 3 | |
| 13 | 11, 12 | eqtrdi 2785 | . . . 4 ⊢ (𝑛 = 1 → (𝑛 + 2) = 3) |
| 14 | 1nn0 12526 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
| 15 | 14 | a1i 11 | . . . 4 ⊢ ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → 1 ∈ ℕ0) |
| 16 | 3nn0 12528 | . . . . 5 ⊢ 3 ∈ ℕ0 | |
| 17 | 16 | a1i 11 | . . . 4 ⊢ ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → 3 ∈ ℕ0) |
| 18 | 1, 13, 15, 17 | fvmptd3 7020 | . . 3 ⊢ ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → ((Ack‘1)‘1) = 3) |
| 19 | oveq1 7421 | . . . . 5 ⊢ (𝑛 = 2 → (𝑛 + 2) = (2 + 2)) | |
| 20 | 2p2e4 12384 | . . . . 5 ⊢ (2 + 2) = 4 | |
| 21 | 19, 20 | eqtrdi 2785 | . . . 4 ⊢ (𝑛 = 2 → (𝑛 + 2) = 4) |
| 22 | 4nn0 12529 | . . . . 5 ⊢ 4 ∈ ℕ0 | |
| 23 | 22 | a1i 11 | . . . 4 ⊢ ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → 4 ∈ ℕ0) |
| 24 | 1, 21, 9, 23 | fvmptd3 7020 | . . 3 ⊢ ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → ((Ack‘1)‘2) = 4) |
| 25 | 10, 18, 24 | oteq123d 4870 | . 2 ⊢ ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → 〈((Ack‘1)‘0), ((Ack‘1)‘1), ((Ack‘1)‘2)〉 = 〈2, 3, 4〉) |
| 26 | 1, 25 | ax-mp 5 | 1 ⊢ 〈((Ack‘1)‘0), ((Ack‘1)‘1), ((Ack‘1)‘2)〉 = 〈2, 3, 4〉 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 〈cotp 4616 ↦ cmpt 5207 ‘cfv 6542 (class class class)co 7414 0cc0 11138 1c1 11139 + caddc 11141 2c2 12304 3c3 12305 4c4 12306 ℕ0cn0 12510 Ackcack 48525 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-inf2 9664 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-ot 4617 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-2 12312 df-3 12313 df-4 12314 df-n0 12511 df-z 12598 df-uz 12862 df-seq 14026 df-itco 48526 df-ack 48527 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |