![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ackval1012 | Structured version Visualization version GIF version |
Description: The Ackermann function at (1,0), (1,1), (1,2). (Contributed by AV, 4-May-2024.) |
Ref | Expression |
---|---|
ackval1012 | ⊢ 〈((Ack‘1)‘0), ((Ack‘1)‘1), ((Ack‘1)‘2)〉 = 〈2, 3, 4〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ackval1 48552 | . 2 ⊢ (Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) | |
2 | oveq1 7442 | . . . . 5 ⊢ (𝑛 = 0 → (𝑛 + 2) = (0 + 2)) | |
3 | 2cn 12345 | . . . . . 6 ⊢ 2 ∈ ℂ | |
4 | 3 | addlidi 11453 | . . . . 5 ⊢ (0 + 2) = 2 |
5 | 2, 4 | eqtrdi 2792 | . . . 4 ⊢ (𝑛 = 0 → (𝑛 + 2) = 2) |
6 | 0nn0 12545 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
7 | 6 | a1i 11 | . . . 4 ⊢ ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → 0 ∈ ℕ0) |
8 | 2nn0 12547 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
9 | 8 | a1i 11 | . . . 4 ⊢ ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → 2 ∈ ℕ0) |
10 | 1, 5, 7, 9 | fvmptd3 7043 | . . 3 ⊢ ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → ((Ack‘1)‘0) = 2) |
11 | oveq1 7442 | . . . . 5 ⊢ (𝑛 = 1 → (𝑛 + 2) = (1 + 2)) | |
12 | 1p2e3 12413 | . . . . 5 ⊢ (1 + 2) = 3 | |
13 | 11, 12 | eqtrdi 2792 | . . . 4 ⊢ (𝑛 = 1 → (𝑛 + 2) = 3) |
14 | 1nn0 12546 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
15 | 14 | a1i 11 | . . . 4 ⊢ ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → 1 ∈ ℕ0) |
16 | 3nn0 12548 | . . . . 5 ⊢ 3 ∈ ℕ0 | |
17 | 16 | a1i 11 | . . . 4 ⊢ ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → 3 ∈ ℕ0) |
18 | 1, 13, 15, 17 | fvmptd3 7043 | . . 3 ⊢ ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → ((Ack‘1)‘1) = 3) |
19 | oveq1 7442 | . . . . 5 ⊢ (𝑛 = 2 → (𝑛 + 2) = (2 + 2)) | |
20 | 2p2e4 12405 | . . . . 5 ⊢ (2 + 2) = 4 | |
21 | 19, 20 | eqtrdi 2792 | . . . 4 ⊢ (𝑛 = 2 → (𝑛 + 2) = 4) |
22 | 4nn0 12549 | . . . . 5 ⊢ 4 ∈ ℕ0 | |
23 | 22 | a1i 11 | . . . 4 ⊢ ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → 4 ∈ ℕ0) |
24 | 1, 21, 9, 23 | fvmptd3 7043 | . . 3 ⊢ ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → ((Ack‘1)‘2) = 4) |
25 | 10, 18, 24 | oteq123d 4894 | . 2 ⊢ ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → 〈((Ack‘1)‘0), ((Ack‘1)‘1), ((Ack‘1)‘2)〉 = 〈2, 3, 4〉) |
26 | 1, 25 | ax-mp 5 | 1 ⊢ 〈((Ack‘1)‘0), ((Ack‘1)‘1), ((Ack‘1)‘2)〉 = 〈2, 3, 4〉 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ∈ wcel 2107 〈cotp 4640 ↦ cmpt 5232 ‘cfv 6566 (class class class)co 7435 0cc0 11159 1c1 11160 + caddc 11162 2c2 12325 3c3 12326 4c4 12327 ℕ0cn0 12530 Ackcack 48529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5286 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 ax-inf2 9685 ax-cnex 11215 ax-resscn 11216 ax-1cn 11217 ax-icn 11218 ax-addcl 11219 ax-addrcl 11220 ax-mulcl 11221 ax-mulrcl 11222 ax-mulcom 11223 ax-addass 11224 ax-mulass 11225 ax-distr 11226 ax-i2m1 11227 ax-1ne0 11228 ax-1rid 11229 ax-rnegex 11230 ax-rrecex 11231 ax-cnre 11232 ax-pre-lttri 11233 ax-pre-lttrn 11234 ax-pre-ltadd 11235 ax-pre-mulgt0 11236 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-ot 4641 df-uni 4914 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-pred 6326 df-ord 6392 df-on 6393 df-lim 6394 df-suc 6395 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-riota 7392 df-ov 7438 df-oprab 7439 df-mpo 7440 df-om 7892 df-2nd 8020 df-frecs 8311 df-wrecs 8342 df-recs 8416 df-rdg 8455 df-er 8750 df-en 8991 df-dom 8992 df-sdom 8993 df-pnf 11301 df-mnf 11302 df-xr 11303 df-ltxr 11304 df-le 11305 df-sub 11498 df-neg 11499 df-nn 12271 df-2 12333 df-3 12334 df-4 12335 df-n0 12531 df-z 12618 df-uz 12883 df-seq 14046 df-itco 48530 df-ack 48531 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |