Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ackval1012 Structured version   Visualization version   GIF version

Theorem ackval1012 48343
Description: The Ackermann function at (1,0), (1,1), (1,2). (Contributed by AV, 4-May-2024.)
Assertion
Ref Expression
ackval1012 ⟨((Ack‘1)‘0), ((Ack‘1)‘1), ((Ack‘1)‘2)⟩ = ⟨2, 3, 4⟩

Proof of Theorem ackval1012
StepHypRef Expression
1 ackval1 48334 . 2 (Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2))
2 oveq1 7452 . . . . 5 (𝑛 = 0 → (𝑛 + 2) = (0 + 2))
3 2cn 12364 . . . . . 6 2 ∈ ℂ
43addlidi 11474 . . . . 5 (0 + 2) = 2
52, 4eqtrdi 2790 . . . 4 (𝑛 = 0 → (𝑛 + 2) = 2)
6 0nn0 12564 . . . . 5 0 ∈ ℕ0
76a1i 11 . . . 4 ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → 0 ∈ ℕ0)
8 2nn0 12566 . . . . 5 2 ∈ ℕ0
98a1i 11 . . . 4 ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → 2 ∈ ℕ0)
101, 5, 7, 9fvmptd3 7050 . . 3 ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → ((Ack‘1)‘0) = 2)
11 oveq1 7452 . . . . 5 (𝑛 = 1 → (𝑛 + 2) = (1 + 2))
12 1p2e3 12432 . . . . 5 (1 + 2) = 3
1311, 12eqtrdi 2790 . . . 4 (𝑛 = 1 → (𝑛 + 2) = 3)
14 1nn0 12565 . . . . 5 1 ∈ ℕ0
1514a1i 11 . . . 4 ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → 1 ∈ ℕ0)
16 3nn0 12567 . . . . 5 3 ∈ ℕ0
1716a1i 11 . . . 4 ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → 3 ∈ ℕ0)
181, 13, 15, 17fvmptd3 7050 . . 3 ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → ((Ack‘1)‘1) = 3)
19 oveq1 7452 . . . . 5 (𝑛 = 2 → (𝑛 + 2) = (2 + 2))
20 2p2e4 12424 . . . . 5 (2 + 2) = 4
2119, 20eqtrdi 2790 . . . 4 (𝑛 = 2 → (𝑛 + 2) = 4)
22 4nn0 12568 . . . . 5 4 ∈ ℕ0
2322a1i 11 . . . 4 ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → 4 ∈ ℕ0)
241, 21, 9, 23fvmptd3 7050 . . 3 ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → ((Ack‘1)‘2) = 4)
2510, 18, 24oteq123d 4912 . 2 ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → ⟨((Ack‘1)‘0), ((Ack‘1)‘1), ((Ack‘1)‘2)⟩ = ⟨2, 3, 4⟩)
261, 25ax-mp 5 1 ⟨((Ack‘1)‘0), ((Ack‘1)‘1), ((Ack‘1)‘2)⟩ = ⟨2, 3, 4⟩
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2103  cotp 4656  cmpt 5252  cfv 6572  (class class class)co 7445  0cc0 11180  1c1 11181   + caddc 11183  2c2 12344  3c3 12345  4c4 12346  0cn0 12549  Ackcack 48311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-rep 5306  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450  ax-un 7766  ax-inf2 9706  ax-cnex 11236  ax-resscn 11237  ax-1cn 11238  ax-icn 11239  ax-addcl 11240  ax-addrcl 11241  ax-mulcl 11242  ax-mulrcl 11243  ax-mulcom 11244  ax-addass 11245  ax-mulass 11246  ax-distr 11247  ax-i2m1 11248  ax-1ne0 11249  ax-1rid 11250  ax-rnegex 11251  ax-rrecex 11252  ax-cnre 11253  ax-pre-lttri 11254  ax-pre-lttrn 11255  ax-pre-ltadd 11256  ax-pre-mulgt0 11257
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-pss 3990  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-ot 4657  df-uni 4932  df-iun 5021  df-br 5170  df-opab 5232  df-mpt 5253  df-tr 5287  df-id 5597  df-eprel 5603  df-po 5611  df-so 5612  df-fr 5654  df-we 5656  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-pred 6331  df-ord 6397  df-on 6398  df-lim 6399  df-suc 6400  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-riota 7401  df-ov 7448  df-oprab 7449  df-mpo 7450  df-om 7900  df-2nd 8027  df-frecs 8318  df-wrecs 8349  df-recs 8423  df-rdg 8462  df-er 8759  df-en 9000  df-dom 9001  df-sdom 9002  df-pnf 11322  df-mnf 11323  df-xr 11324  df-ltxr 11325  df-le 11326  df-sub 11518  df-neg 11519  df-nn 12290  df-2 12352  df-3 12353  df-4 12354  df-n0 12550  df-z 12636  df-uz 12900  df-seq 14049  df-itco 48312  df-ack 48313
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator