Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ackval1012 | Structured version Visualization version GIF version |
Description: The Ackermann function at (1,0), (1,1), (1,2). (Contributed by AV, 4-May-2024.) |
Ref | Expression |
---|---|
ackval1012 | ⊢ 〈((Ack‘1)‘0), ((Ack‘1)‘1), ((Ack‘1)‘2)〉 = 〈2, 3, 4〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ackval1 45488 | . 2 ⊢ (Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) | |
2 | oveq1 7162 | . . . . 5 ⊢ (𝑛 = 0 → (𝑛 + 2) = (0 + 2)) | |
3 | 2cn 11754 | . . . . . 6 ⊢ 2 ∈ ℂ | |
4 | 3 | addid2i 10871 | . . . . 5 ⊢ (0 + 2) = 2 |
5 | 2, 4 | eqtrdi 2809 | . . . 4 ⊢ (𝑛 = 0 → (𝑛 + 2) = 2) |
6 | 0nn0 11954 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
7 | 6 | a1i 11 | . . . 4 ⊢ ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → 0 ∈ ℕ0) |
8 | 2nn0 11956 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
9 | 8 | a1i 11 | . . . 4 ⊢ ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → 2 ∈ ℕ0) |
10 | 1, 5, 7, 9 | fvmptd3 6786 | . . 3 ⊢ ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → ((Ack‘1)‘0) = 2) |
11 | oveq1 7162 | . . . . 5 ⊢ (𝑛 = 1 → (𝑛 + 2) = (1 + 2)) | |
12 | 1p2e3 11822 | . . . . 5 ⊢ (1 + 2) = 3 | |
13 | 11, 12 | eqtrdi 2809 | . . . 4 ⊢ (𝑛 = 1 → (𝑛 + 2) = 3) |
14 | 1nn0 11955 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
15 | 14 | a1i 11 | . . . 4 ⊢ ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → 1 ∈ ℕ0) |
16 | 3nn0 11957 | . . . . 5 ⊢ 3 ∈ ℕ0 | |
17 | 16 | a1i 11 | . . . 4 ⊢ ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → 3 ∈ ℕ0) |
18 | 1, 13, 15, 17 | fvmptd3 6786 | . . 3 ⊢ ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → ((Ack‘1)‘1) = 3) |
19 | oveq1 7162 | . . . . 5 ⊢ (𝑛 = 2 → (𝑛 + 2) = (2 + 2)) | |
20 | 2p2e4 11814 | . . . . 5 ⊢ (2 + 2) = 4 | |
21 | 19, 20 | eqtrdi 2809 | . . . 4 ⊢ (𝑛 = 2 → (𝑛 + 2) = 4) |
22 | 4nn0 11958 | . . . . 5 ⊢ 4 ∈ ℕ0 | |
23 | 22 | a1i 11 | . . . 4 ⊢ ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → 4 ∈ ℕ0) |
24 | 1, 21, 9, 23 | fvmptd3 6786 | . . 3 ⊢ ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → ((Ack‘1)‘2) = 4) |
25 | 10, 18, 24 | oteq123d 4781 | . 2 ⊢ ((Ack‘1) = (𝑛 ∈ ℕ0 ↦ (𝑛 + 2)) → 〈((Ack‘1)‘0), ((Ack‘1)‘1), ((Ack‘1)‘2)〉 = 〈2, 3, 4〉) |
26 | 1, 25 | ax-mp 5 | 1 ⊢ 〈((Ack‘1)‘0), ((Ack‘1)‘1), ((Ack‘1)‘2)〉 = 〈2, 3, 4〉 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ∈ wcel 2111 〈cotp 4533 ↦ cmpt 5115 ‘cfv 6339 (class class class)co 7155 0cc0 10580 1c1 10581 + caddc 10583 2c2 11734 3c3 11735 4c4 11736 ℕ0cn0 11939 Ackcack 45465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-inf2 9142 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-ot 4534 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-om 7585 df-2nd 7699 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-er 8304 df-en 8533 df-dom 8534 df-sdom 8535 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-nn 11680 df-2 11742 df-3 11743 df-4 11744 df-n0 11940 df-z 12026 df-uz 12288 df-seq 13424 df-itco 45466 df-ack 45467 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |