Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pconnpi1 Structured version   Visualization version   GIF version

Theorem pconnpi1 34978
Description: All fundamental groups in a path-connected space are isomorphic. (Contributed by Mario Carneiro, 12-Feb-2015.)
Hypotheses
Ref Expression
pconnpi1.x 𝑋 = 𝐽
pconnpi1.p 𝑃 = (𝐽 π1 𝐴)
pconnpi1.q 𝑄 = (𝐽 π1 𝐵)
pconnpi1.s 𝑆 = (Base‘𝑃)
pconnpi1.t 𝑇 = (Base‘𝑄)
Assertion
Ref Expression
pconnpi1 ((𝐽 ∈ PConn ∧ 𝐴𝑋𝐵𝑋) → 𝑃𝑔 𝑄)

Proof of Theorem pconnpi1
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pconnpi1.x . . 3 𝑋 = 𝐽
21pconncn 34965 . 2 ((𝐽 ∈ PConn ∧ 𝐴𝑋𝐵𝑋) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))
3 eqid 2725 . . . . 5 (𝐽 π1 (𝑓‘0)) = (𝐽 π1 (𝑓‘0))
4 eqid 2725 . . . . 5 (𝐽 π1 (𝑓‘1)) = (𝐽 π1 (𝑓‘1))
5 eqid 2725 . . . . 5 (Base‘(𝐽 π1 (𝑓‘0))) = (Base‘(𝐽 π1 (𝑓‘0)))
6 eqid 2725 . . . . 5 ran ( (Base‘(𝐽 π1 (𝑓‘0))) ↦ ⟨[]( ≃ph𝐽), [((𝑥 ∈ (0[,]1) ↦ (𝑓‘(1 − 𝑥)))(*𝑝𝐽)((*𝑝𝐽)𝑓))]( ≃ph𝐽)⟩) = ran ( (Base‘(𝐽 π1 (𝑓‘0))) ↦ ⟨[]( ≃ph𝐽), [((𝑥 ∈ (0[,]1) ↦ (𝑓‘(1 − 𝑥)))(*𝑝𝐽)((*𝑝𝐽)𝑓))]( ≃ph𝐽)⟩)
7 simpl1 1188 . . . . . . 7 (((𝐽 ∈ PConn ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → 𝐽 ∈ PConn)
8 pconntop 34966 . . . . . . 7 (𝐽 ∈ PConn → 𝐽 ∈ Top)
97, 8syl 17 . . . . . 6 (((𝐽 ∈ PConn ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → 𝐽 ∈ Top)
101toptopon 22863 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
119, 10sylib 217 . . . . 5 (((𝐽 ∈ PConn ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → 𝐽 ∈ (TopOn‘𝑋))
12 simprl 769 . . . . 5 (((𝐽 ∈ PConn ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → 𝑓 ∈ (II Cn 𝐽))
13 oveq2 7427 . . . . . . 7 (𝑥 = 𝑦 → (1 − 𝑥) = (1 − 𝑦))
1413fveq2d 6900 . . . . . 6 (𝑥 = 𝑦 → (𝑓‘(1 − 𝑥)) = (𝑓‘(1 − 𝑦)))
1514cbvmptv 5262 . . . . 5 (𝑥 ∈ (0[,]1) ↦ (𝑓‘(1 − 𝑥))) = (𝑦 ∈ (0[,]1) ↦ (𝑓‘(1 − 𝑦)))
163, 4, 5, 6, 11, 12, 15pi1xfrgim 25029 . . . 4 (((𝐽 ∈ PConn ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → ran ( (Base‘(𝐽 π1 (𝑓‘0))) ↦ ⟨[]( ≃ph𝐽), [((𝑥 ∈ (0[,]1) ↦ (𝑓‘(1 − 𝑥)))(*𝑝𝐽)((*𝑝𝐽)𝑓))]( ≃ph𝐽)⟩) ∈ ((𝐽 π1 (𝑓‘0)) GrpIso (𝐽 π1 (𝑓‘1))))
17 simprrl 779 . . . . . . 7 (((𝐽 ∈ PConn ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → (𝑓‘0) = 𝐴)
1817oveq2d 7435 . . . . . 6 (((𝐽 ∈ PConn ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → (𝐽 π1 (𝑓‘0)) = (𝐽 π1 𝐴))
19 pconnpi1.p . . . . . 6 𝑃 = (𝐽 π1 𝐴)
2018, 19eqtr4di 2783 . . . . 5 (((𝐽 ∈ PConn ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → (𝐽 π1 (𝑓‘0)) = 𝑃)
21 simprrr 780 . . . . . . 7 (((𝐽 ∈ PConn ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → (𝑓‘1) = 𝐵)
2221oveq2d 7435 . . . . . 6 (((𝐽 ∈ PConn ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → (𝐽 π1 (𝑓‘1)) = (𝐽 π1 𝐵))
23 pconnpi1.q . . . . . 6 𝑄 = (𝐽 π1 𝐵)
2422, 23eqtr4di 2783 . . . . 5 (((𝐽 ∈ PConn ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → (𝐽 π1 (𝑓‘1)) = 𝑄)
2520, 24oveq12d 7437 . . . 4 (((𝐽 ∈ PConn ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → ((𝐽 π1 (𝑓‘0)) GrpIso (𝐽 π1 (𝑓‘1))) = (𝑃 GrpIso 𝑄))
2616, 25eleqtrd 2827 . . 3 (((𝐽 ∈ PConn ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → ran ( (Base‘(𝐽 π1 (𝑓‘0))) ↦ ⟨[]( ≃ph𝐽), [((𝑥 ∈ (0[,]1) ↦ (𝑓‘(1 − 𝑥)))(*𝑝𝐽)((*𝑝𝐽)𝑓))]( ≃ph𝐽)⟩) ∈ (𝑃 GrpIso 𝑄))
27 brgici 19234 . . 3 (ran ( (Base‘(𝐽 π1 (𝑓‘0))) ↦ ⟨[]( ≃ph𝐽), [((𝑥 ∈ (0[,]1) ↦ (𝑓‘(1 − 𝑥)))(*𝑝𝐽)((*𝑝𝐽)𝑓))]( ≃ph𝐽)⟩) ∈ (𝑃 GrpIso 𝑄) → 𝑃𝑔 𝑄)
2826, 27syl 17 . 2 (((𝐽 ∈ PConn ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → 𝑃𝑔 𝑄)
292, 28rexlimddv 3150 1 ((𝐽 ∈ PConn ∧ 𝐴𝑋𝐵𝑋) → 𝑃𝑔 𝑄)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  cop 4636   cuni 4909   class class class wbr 5149  cmpt 5232  ran crn 5679  cfv 6549  (class class class)co 7419  [cec 8723  0cc0 11140  1c1 11141  cmin 11476  [,]cicc 13362  Basecbs 17183   GrpIso cgim 19220  𝑔 cgic 19221  Topctop 22839  TopOnctopon 22856   Cn ccn 23172  IIcii 24839  phcphtpc 24939  *𝑝cpco 24971   π1 cpi1 24974  PConncpconn 34960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218  ax-addf 11219
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-ec 8727  df-qs 8731  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-fi 9436  df-sup 9467  df-inf 9468  df-oi 9535  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-q 12966  df-rp 13010  df-xneg 13127  df-xadd 13128  df-xmul 13129  df-ioo 13363  df-icc 13366  df-fz 13520  df-fzo 13663  df-seq 14003  df-exp 14063  df-hash 14326  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-starv 17251  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-hom 17260  df-cco 17261  df-rest 17407  df-topn 17408  df-0g 17426  df-gsum 17427  df-topgen 17428  df-pt 17429  df-prds 17432  df-xrs 17487  df-qtop 17492  df-imas 17493  df-qus 17494  df-xps 17495  df-mre 17569  df-mrc 17570  df-acs 17572  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18744  df-grp 18901  df-mulg 19032  df-ghm 19176  df-gim 19222  df-gic 19223  df-cntz 19280  df-cmn 19749  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-cnfld 21297  df-top 22840  df-topon 22857  df-topsp 22879  df-bases 22893  df-cld 22967  df-cn 23175  df-cnp 23176  df-tx 23510  df-hmeo 23703  df-xms 24270  df-ms 24271  df-tms 24272  df-ii 24841  df-htpy 24940  df-phtpy 24941  df-phtpc 24962  df-pco 24976  df-om1 24977  df-pi1 24979  df-pconn 34962
This theorem is referenced by:  sconnpi1  34980
  Copyright terms: Public domain W3C validator