Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pconnpi1 | Structured version Visualization version GIF version |
Description: All fundamental groups in a path-connected space are isomorphic. (Contributed by Mario Carneiro, 12-Feb-2015.) |
Ref | Expression |
---|---|
pconnpi1.x | ⊢ 𝑋 = ∪ 𝐽 |
pconnpi1.p | ⊢ 𝑃 = (𝐽 π1 𝐴) |
pconnpi1.q | ⊢ 𝑄 = (𝐽 π1 𝐵) |
pconnpi1.s | ⊢ 𝑆 = (Base‘𝑃) |
pconnpi1.t | ⊢ 𝑇 = (Base‘𝑄) |
Ref | Expression |
---|---|
pconnpi1 | ⊢ ((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝑃 ≃𝑔 𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pconnpi1.x | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | pconncn 33182 | . 2 ⊢ ((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵)) |
3 | eqid 2740 | . . . . 5 ⊢ (𝐽 π1 (𝑓‘0)) = (𝐽 π1 (𝑓‘0)) | |
4 | eqid 2740 | . . . . 5 ⊢ (𝐽 π1 (𝑓‘1)) = (𝐽 π1 (𝑓‘1)) | |
5 | eqid 2740 | . . . . 5 ⊢ (Base‘(𝐽 π1 (𝑓‘0))) = (Base‘(𝐽 π1 (𝑓‘0))) | |
6 | eqid 2740 | . . . . 5 ⊢ ran (ℎ ∈ ∪ (Base‘(𝐽 π1 (𝑓‘0))) ↦ 〈[ℎ]( ≃ph‘𝐽), [((𝑥 ∈ (0[,]1) ↦ (𝑓‘(1 − 𝑥)))(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝑓))]( ≃ph‘𝐽)〉) = ran (ℎ ∈ ∪ (Base‘(𝐽 π1 (𝑓‘0))) ↦ 〈[ℎ]( ≃ph‘𝐽), [((𝑥 ∈ (0[,]1) ↦ (𝑓‘(1 − 𝑥)))(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝑓))]( ≃ph‘𝐽)〉) | |
7 | simpl1 1190 | . . . . . . 7 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → 𝐽 ∈ PConn) | |
8 | pconntop 33183 | . . . . . . 7 ⊢ (𝐽 ∈ PConn → 𝐽 ∈ Top) | |
9 | 7, 8 | syl 17 | . . . . . 6 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → 𝐽 ∈ Top) |
10 | 1 | toptopon 22064 | . . . . . 6 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
11 | 9, 10 | sylib 217 | . . . . 5 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → 𝐽 ∈ (TopOn‘𝑋)) |
12 | simprl 768 | . . . . 5 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → 𝑓 ∈ (II Cn 𝐽)) | |
13 | oveq2 7279 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (1 − 𝑥) = (1 − 𝑦)) | |
14 | 13 | fveq2d 6775 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑓‘(1 − 𝑥)) = (𝑓‘(1 − 𝑦))) |
15 | 14 | cbvmptv 5192 | . . . . 5 ⊢ (𝑥 ∈ (0[,]1) ↦ (𝑓‘(1 − 𝑥))) = (𝑦 ∈ (0[,]1) ↦ (𝑓‘(1 − 𝑦))) |
16 | 3, 4, 5, 6, 11, 12, 15 | pi1xfrgim 24219 | . . . 4 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → ran (ℎ ∈ ∪ (Base‘(𝐽 π1 (𝑓‘0))) ↦ 〈[ℎ]( ≃ph‘𝐽), [((𝑥 ∈ (0[,]1) ↦ (𝑓‘(1 − 𝑥)))(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝑓))]( ≃ph‘𝐽)〉) ∈ ((𝐽 π1 (𝑓‘0)) GrpIso (𝐽 π1 (𝑓‘1)))) |
17 | simprrl 778 | . . . . . . 7 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → (𝑓‘0) = 𝐴) | |
18 | 17 | oveq2d 7287 | . . . . . 6 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → (𝐽 π1 (𝑓‘0)) = (𝐽 π1 𝐴)) |
19 | pconnpi1.p | . . . . . 6 ⊢ 𝑃 = (𝐽 π1 𝐴) | |
20 | 18, 19 | eqtr4di 2798 | . . . . 5 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → (𝐽 π1 (𝑓‘0)) = 𝑃) |
21 | simprrr 779 | . . . . . . 7 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → (𝑓‘1) = 𝐵) | |
22 | 21 | oveq2d 7287 | . . . . . 6 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → (𝐽 π1 (𝑓‘1)) = (𝐽 π1 𝐵)) |
23 | pconnpi1.q | . . . . . 6 ⊢ 𝑄 = (𝐽 π1 𝐵) | |
24 | 22, 23 | eqtr4di 2798 | . . . . 5 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → (𝐽 π1 (𝑓‘1)) = 𝑄) |
25 | 20, 24 | oveq12d 7289 | . . . 4 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → ((𝐽 π1 (𝑓‘0)) GrpIso (𝐽 π1 (𝑓‘1))) = (𝑃 GrpIso 𝑄)) |
26 | 16, 25 | eleqtrd 2843 | . . 3 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → ran (ℎ ∈ ∪ (Base‘(𝐽 π1 (𝑓‘0))) ↦ 〈[ℎ]( ≃ph‘𝐽), [((𝑥 ∈ (0[,]1) ↦ (𝑓‘(1 − 𝑥)))(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝑓))]( ≃ph‘𝐽)〉) ∈ (𝑃 GrpIso 𝑄)) |
27 | brgici 18884 | . . 3 ⊢ (ran (ℎ ∈ ∪ (Base‘(𝐽 π1 (𝑓‘0))) ↦ 〈[ℎ]( ≃ph‘𝐽), [((𝑥 ∈ (0[,]1) ↦ (𝑓‘(1 − 𝑥)))(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝑓))]( ≃ph‘𝐽)〉) ∈ (𝑃 GrpIso 𝑄) → 𝑃 ≃𝑔 𝑄) | |
28 | 26, 27 | syl 17 | . 2 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → 𝑃 ≃𝑔 𝑄) |
29 | 2, 28 | rexlimddv 3222 | 1 ⊢ ((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝑃 ≃𝑔 𝑄) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 〈cop 4573 ∪ cuni 4845 class class class wbr 5079 ↦ cmpt 5162 ran crn 5591 ‘cfv 6432 (class class class)co 7271 [cec 8479 0cc0 10872 1c1 10873 − cmin 11205 [,]cicc 13081 Basecbs 16910 GrpIso cgim 18871 ≃𝑔 cgic 18872 Topctop 22040 TopOnctopon 22057 Cn ccn 22373 IIcii 24036 ≃phcphtpc 24130 *𝑝cpco 24161 π1 cpi1 24164 PConncpconn 33177 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 ax-pre-sup 10950 ax-addf 10951 ax-mulf 10952 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-iin 4933 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-se 5546 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-isom 6441 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-of 7527 df-om 7707 df-1st 7824 df-2nd 7825 df-supp 7969 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-2o 8289 df-er 8481 df-ec 8483 df-qs 8487 df-map 8600 df-ixp 8669 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-fsupp 9107 df-fi 9148 df-sup 9179 df-inf 9180 df-oi 9247 df-card 9698 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12437 df-uz 12582 df-q 12688 df-rp 12730 df-xneg 12847 df-xadd 12848 df-xmul 12849 df-ioo 13082 df-icc 13085 df-fz 13239 df-fzo 13382 df-seq 13720 df-exp 13781 df-hash 14043 df-cj 14808 df-re 14809 df-im 14810 df-sqrt 14944 df-abs 14945 df-struct 16846 df-sets 16863 df-slot 16881 df-ndx 16893 df-base 16911 df-ress 16940 df-plusg 16973 df-mulr 16974 df-starv 16975 df-sca 16976 df-vsca 16977 df-ip 16978 df-tset 16979 df-ple 16980 df-ds 16982 df-unif 16983 df-hom 16984 df-cco 16985 df-rest 17131 df-topn 17132 df-0g 17150 df-gsum 17151 df-topgen 17152 df-pt 17153 df-prds 17156 df-xrs 17211 df-qtop 17216 df-imas 17217 df-qus 17218 df-xps 17219 df-mre 17293 df-mrc 17294 df-acs 17296 df-mgm 18324 df-sgrp 18373 df-mnd 18384 df-submnd 18429 df-grp 18578 df-mulg 18699 df-ghm 18830 df-gim 18873 df-gic 18874 df-cntz 18921 df-cmn 19386 df-psmet 20587 df-xmet 20588 df-met 20589 df-bl 20590 df-mopn 20591 df-cnfld 20596 df-top 22041 df-topon 22058 df-topsp 22080 df-bases 22094 df-cld 22168 df-cn 22376 df-cnp 22377 df-tx 22711 df-hmeo 22904 df-xms 23471 df-ms 23472 df-tms 23473 df-ii 24038 df-htpy 24131 df-phtpy 24132 df-phtpc 24153 df-pco 24166 df-om1 24167 df-pi1 24169 df-pconn 33179 |
This theorem is referenced by: sconnpi1 33197 |
Copyright terms: Public domain | W3C validator |