| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pconnpi1 | Structured version Visualization version GIF version | ||
| Description: All fundamental groups in a path-connected space are isomorphic. (Contributed by Mario Carneiro, 12-Feb-2015.) |
| Ref | Expression |
|---|---|
| pconnpi1.x | ⊢ 𝑋 = ∪ 𝐽 |
| pconnpi1.p | ⊢ 𝑃 = (𝐽 π1 𝐴) |
| pconnpi1.q | ⊢ 𝑄 = (𝐽 π1 𝐵) |
| pconnpi1.s | ⊢ 𝑆 = (Base‘𝑃) |
| pconnpi1.t | ⊢ 𝑇 = (Base‘𝑄) |
| Ref | Expression |
|---|---|
| pconnpi1 | ⊢ ((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝑃 ≃𝑔 𝑄) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pconnpi1.x | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | pconncn 35251 | . 2 ⊢ ((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵)) |
| 3 | eqid 2736 | . . . . 5 ⊢ (𝐽 π1 (𝑓‘0)) = (𝐽 π1 (𝑓‘0)) | |
| 4 | eqid 2736 | . . . . 5 ⊢ (𝐽 π1 (𝑓‘1)) = (𝐽 π1 (𝑓‘1)) | |
| 5 | eqid 2736 | . . . . 5 ⊢ (Base‘(𝐽 π1 (𝑓‘0))) = (Base‘(𝐽 π1 (𝑓‘0))) | |
| 6 | eqid 2736 | . . . . 5 ⊢ ran (ℎ ∈ ∪ (Base‘(𝐽 π1 (𝑓‘0))) ↦ 〈[ℎ]( ≃ph‘𝐽), [((𝑥 ∈ (0[,]1) ↦ (𝑓‘(1 − 𝑥)))(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝑓))]( ≃ph‘𝐽)〉) = ran (ℎ ∈ ∪ (Base‘(𝐽 π1 (𝑓‘0))) ↦ 〈[ℎ]( ≃ph‘𝐽), [((𝑥 ∈ (0[,]1) ↦ (𝑓‘(1 − 𝑥)))(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝑓))]( ≃ph‘𝐽)〉) | |
| 7 | simpl1 1192 | . . . . . . 7 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → 𝐽 ∈ PConn) | |
| 8 | pconntop 35252 | . . . . . . 7 ⊢ (𝐽 ∈ PConn → 𝐽 ∈ Top) | |
| 9 | 7, 8 | syl 17 | . . . . . 6 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → 𝐽 ∈ Top) |
| 10 | 1 | toptopon 22860 | . . . . . 6 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
| 11 | 9, 10 | sylib 218 | . . . . 5 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → 𝐽 ∈ (TopOn‘𝑋)) |
| 12 | simprl 770 | . . . . 5 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → 𝑓 ∈ (II Cn 𝐽)) | |
| 13 | oveq2 7418 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (1 − 𝑥) = (1 − 𝑦)) | |
| 14 | 13 | fveq2d 6885 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑓‘(1 − 𝑥)) = (𝑓‘(1 − 𝑦))) |
| 15 | 14 | cbvmptv 5230 | . . . . 5 ⊢ (𝑥 ∈ (0[,]1) ↦ (𝑓‘(1 − 𝑥))) = (𝑦 ∈ (0[,]1) ↦ (𝑓‘(1 − 𝑦))) |
| 16 | 3, 4, 5, 6, 11, 12, 15 | pi1xfrgim 25014 | . . . 4 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → ran (ℎ ∈ ∪ (Base‘(𝐽 π1 (𝑓‘0))) ↦ 〈[ℎ]( ≃ph‘𝐽), [((𝑥 ∈ (0[,]1) ↦ (𝑓‘(1 − 𝑥)))(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝑓))]( ≃ph‘𝐽)〉) ∈ ((𝐽 π1 (𝑓‘0)) GrpIso (𝐽 π1 (𝑓‘1)))) |
| 17 | simprrl 780 | . . . . . . 7 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → (𝑓‘0) = 𝐴) | |
| 18 | 17 | oveq2d 7426 | . . . . . 6 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → (𝐽 π1 (𝑓‘0)) = (𝐽 π1 𝐴)) |
| 19 | pconnpi1.p | . . . . . 6 ⊢ 𝑃 = (𝐽 π1 𝐴) | |
| 20 | 18, 19 | eqtr4di 2789 | . . . . 5 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → (𝐽 π1 (𝑓‘0)) = 𝑃) |
| 21 | simprrr 781 | . . . . . . 7 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → (𝑓‘1) = 𝐵) | |
| 22 | 21 | oveq2d 7426 | . . . . . 6 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → (𝐽 π1 (𝑓‘1)) = (𝐽 π1 𝐵)) |
| 23 | pconnpi1.q | . . . . . 6 ⊢ 𝑄 = (𝐽 π1 𝐵) | |
| 24 | 22, 23 | eqtr4di 2789 | . . . . 5 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → (𝐽 π1 (𝑓‘1)) = 𝑄) |
| 25 | 20, 24 | oveq12d 7428 | . . . 4 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → ((𝐽 π1 (𝑓‘0)) GrpIso (𝐽 π1 (𝑓‘1))) = (𝑃 GrpIso 𝑄)) |
| 26 | 16, 25 | eleqtrd 2837 | . . 3 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → ran (ℎ ∈ ∪ (Base‘(𝐽 π1 (𝑓‘0))) ↦ 〈[ℎ]( ≃ph‘𝐽), [((𝑥 ∈ (0[,]1) ↦ (𝑓‘(1 − 𝑥)))(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝑓))]( ≃ph‘𝐽)〉) ∈ (𝑃 GrpIso 𝑄)) |
| 27 | brgici 19259 | . . 3 ⊢ (ran (ℎ ∈ ∪ (Base‘(𝐽 π1 (𝑓‘0))) ↦ 〈[ℎ]( ≃ph‘𝐽), [((𝑥 ∈ (0[,]1) ↦ (𝑓‘(1 − 𝑥)))(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝑓))]( ≃ph‘𝐽)〉) ∈ (𝑃 GrpIso 𝑄) → 𝑃 ≃𝑔 𝑄) | |
| 28 | 26, 27 | syl 17 | . 2 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → 𝑃 ≃𝑔 𝑄) |
| 29 | 2, 28 | rexlimddv 3148 | 1 ⊢ ((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝑃 ≃𝑔 𝑄) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 〈cop 4612 ∪ cuni 4888 class class class wbr 5124 ↦ cmpt 5206 ran crn 5660 ‘cfv 6536 (class class class)co 7410 [cec 8722 0cc0 11134 1c1 11135 − cmin 11471 [,]cicc 13370 Basecbs 17233 GrpIso cgim 19245 ≃𝑔 cgic 19246 Topctop 22836 TopOnctopon 22853 Cn ccn 23167 IIcii 24824 ≃phcphtpc 24924 *𝑝cpco 24956 π1 cpi1 24959 PConncpconn 35246 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 ax-addf 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-ec 8726 df-qs 8730 df-map 8847 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-fi 9428 df-sup 9459 df-inf 9460 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-q 12970 df-rp 13014 df-xneg 13133 df-xadd 13134 df-xmul 13135 df-ioo 13371 df-icc 13374 df-fz 13530 df-fzo 13677 df-seq 14025 df-exp 14085 df-hash 14354 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-starv 17291 df-sca 17292 df-vsca 17293 df-ip 17294 df-tset 17295 df-ple 17296 df-ds 17298 df-unif 17299 df-hom 17300 df-cco 17301 df-rest 17441 df-topn 17442 df-0g 17460 df-gsum 17461 df-topgen 17462 df-pt 17463 df-prds 17466 df-xrs 17521 df-qtop 17526 df-imas 17527 df-qus 17528 df-xps 17529 df-mre 17603 df-mrc 17604 df-acs 17606 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-grp 18924 df-mulg 19056 df-ghm 19201 df-gim 19247 df-gic 19248 df-cntz 19305 df-cmn 19768 df-psmet 21312 df-xmet 21313 df-met 21314 df-bl 21315 df-mopn 21316 df-cnfld 21321 df-top 22837 df-topon 22854 df-topsp 22876 df-bases 22889 df-cld 22962 df-cn 23170 df-cnp 23171 df-tx 23505 df-hmeo 23698 df-xms 24264 df-ms 24265 df-tms 24266 df-ii 24826 df-htpy 24925 df-phtpy 24926 df-phtpc 24947 df-pco 24961 df-om1 24962 df-pi1 24964 df-pconn 35248 |
| This theorem is referenced by: sconnpi1 35266 |
| Copyright terms: Public domain | W3C validator |