Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pconnpi1 Structured version   Visualization version   GIF version

Theorem pconnpi1 35264
Description: All fundamental groups in a path-connected space are isomorphic. (Contributed by Mario Carneiro, 12-Feb-2015.)
Hypotheses
Ref Expression
pconnpi1.x 𝑋 = 𝐽
pconnpi1.p 𝑃 = (𝐽 π1 𝐴)
pconnpi1.q 𝑄 = (𝐽 π1 𝐵)
pconnpi1.s 𝑆 = (Base‘𝑃)
pconnpi1.t 𝑇 = (Base‘𝑄)
Assertion
Ref Expression
pconnpi1 ((𝐽 ∈ PConn ∧ 𝐴𝑋𝐵𝑋) → 𝑃𝑔 𝑄)

Proof of Theorem pconnpi1
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pconnpi1.x . . 3 𝑋 = 𝐽
21pconncn 35251 . 2 ((𝐽 ∈ PConn ∧ 𝐴𝑋𝐵𝑋) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))
3 eqid 2736 . . . . 5 (𝐽 π1 (𝑓‘0)) = (𝐽 π1 (𝑓‘0))
4 eqid 2736 . . . . 5 (𝐽 π1 (𝑓‘1)) = (𝐽 π1 (𝑓‘1))
5 eqid 2736 . . . . 5 (Base‘(𝐽 π1 (𝑓‘0))) = (Base‘(𝐽 π1 (𝑓‘0)))
6 eqid 2736 . . . . 5 ran ( (Base‘(𝐽 π1 (𝑓‘0))) ↦ ⟨[]( ≃ph𝐽), [((𝑥 ∈ (0[,]1) ↦ (𝑓‘(1 − 𝑥)))(*𝑝𝐽)((*𝑝𝐽)𝑓))]( ≃ph𝐽)⟩) = ran ( (Base‘(𝐽 π1 (𝑓‘0))) ↦ ⟨[]( ≃ph𝐽), [((𝑥 ∈ (0[,]1) ↦ (𝑓‘(1 − 𝑥)))(*𝑝𝐽)((*𝑝𝐽)𝑓))]( ≃ph𝐽)⟩)
7 simpl1 1192 . . . . . . 7 (((𝐽 ∈ PConn ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → 𝐽 ∈ PConn)
8 pconntop 35252 . . . . . . 7 (𝐽 ∈ PConn → 𝐽 ∈ Top)
97, 8syl 17 . . . . . 6 (((𝐽 ∈ PConn ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → 𝐽 ∈ Top)
101toptopon 22860 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
119, 10sylib 218 . . . . 5 (((𝐽 ∈ PConn ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → 𝐽 ∈ (TopOn‘𝑋))
12 simprl 770 . . . . 5 (((𝐽 ∈ PConn ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → 𝑓 ∈ (II Cn 𝐽))
13 oveq2 7418 . . . . . . 7 (𝑥 = 𝑦 → (1 − 𝑥) = (1 − 𝑦))
1413fveq2d 6885 . . . . . 6 (𝑥 = 𝑦 → (𝑓‘(1 − 𝑥)) = (𝑓‘(1 − 𝑦)))
1514cbvmptv 5230 . . . . 5 (𝑥 ∈ (0[,]1) ↦ (𝑓‘(1 − 𝑥))) = (𝑦 ∈ (0[,]1) ↦ (𝑓‘(1 − 𝑦)))
163, 4, 5, 6, 11, 12, 15pi1xfrgim 25014 . . . 4 (((𝐽 ∈ PConn ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → ran ( (Base‘(𝐽 π1 (𝑓‘0))) ↦ ⟨[]( ≃ph𝐽), [((𝑥 ∈ (0[,]1) ↦ (𝑓‘(1 − 𝑥)))(*𝑝𝐽)((*𝑝𝐽)𝑓))]( ≃ph𝐽)⟩) ∈ ((𝐽 π1 (𝑓‘0)) GrpIso (𝐽 π1 (𝑓‘1))))
17 simprrl 780 . . . . . . 7 (((𝐽 ∈ PConn ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → (𝑓‘0) = 𝐴)
1817oveq2d 7426 . . . . . 6 (((𝐽 ∈ PConn ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → (𝐽 π1 (𝑓‘0)) = (𝐽 π1 𝐴))
19 pconnpi1.p . . . . . 6 𝑃 = (𝐽 π1 𝐴)
2018, 19eqtr4di 2789 . . . . 5 (((𝐽 ∈ PConn ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → (𝐽 π1 (𝑓‘0)) = 𝑃)
21 simprrr 781 . . . . . . 7 (((𝐽 ∈ PConn ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → (𝑓‘1) = 𝐵)
2221oveq2d 7426 . . . . . 6 (((𝐽 ∈ PConn ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → (𝐽 π1 (𝑓‘1)) = (𝐽 π1 𝐵))
23 pconnpi1.q . . . . . 6 𝑄 = (𝐽 π1 𝐵)
2422, 23eqtr4di 2789 . . . . 5 (((𝐽 ∈ PConn ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → (𝐽 π1 (𝑓‘1)) = 𝑄)
2520, 24oveq12d 7428 . . . 4 (((𝐽 ∈ PConn ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → ((𝐽 π1 (𝑓‘0)) GrpIso (𝐽 π1 (𝑓‘1))) = (𝑃 GrpIso 𝑄))
2616, 25eleqtrd 2837 . . 3 (((𝐽 ∈ PConn ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → ran ( (Base‘(𝐽 π1 (𝑓‘0))) ↦ ⟨[]( ≃ph𝐽), [((𝑥 ∈ (0[,]1) ↦ (𝑓‘(1 − 𝑥)))(*𝑝𝐽)((*𝑝𝐽)𝑓))]( ≃ph𝐽)⟩) ∈ (𝑃 GrpIso 𝑄))
27 brgici 19259 . . 3 (ran ( (Base‘(𝐽 π1 (𝑓‘0))) ↦ ⟨[]( ≃ph𝐽), [((𝑥 ∈ (0[,]1) ↦ (𝑓‘(1 − 𝑥)))(*𝑝𝐽)((*𝑝𝐽)𝑓))]( ≃ph𝐽)⟩) ∈ (𝑃 GrpIso 𝑄) → 𝑃𝑔 𝑄)
2826, 27syl 17 . 2 (((𝐽 ∈ PConn ∧ 𝐴𝑋𝐵𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → 𝑃𝑔 𝑄)
292, 28rexlimddv 3148 1 ((𝐽 ∈ PConn ∧ 𝐴𝑋𝐵𝑋) → 𝑃𝑔 𝑄)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cop 4612   cuni 4888   class class class wbr 5124  cmpt 5206  ran crn 5660  cfv 6536  (class class class)co 7410  [cec 8722  0cc0 11134  1c1 11135  cmin 11471  [,]cicc 13370  Basecbs 17233   GrpIso cgim 19245  𝑔 cgic 19246  Topctop 22836  TopOnctopon 22853   Cn ccn 23167  IIcii 24824  phcphtpc 24924  *𝑝cpco 24956   π1 cpi1 24959  PConncpconn 35246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-ec 8726  df-qs 8730  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-icc 13374  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-qus 17528  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-grp 18924  df-mulg 19056  df-ghm 19201  df-gim 19247  df-gic 19248  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-cn 23170  df-cnp 23171  df-tx 23505  df-hmeo 23698  df-xms 24264  df-ms 24265  df-tms 24266  df-ii 24826  df-htpy 24925  df-phtpy 24926  df-phtpc 24947  df-pco 24961  df-om1 24962  df-pi1 24964  df-pconn 35248
This theorem is referenced by:  sconnpi1  35266
  Copyright terms: Public domain W3C validator