![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pconnpi1 | Structured version Visualization version GIF version |
Description: All fundamental groups in a path-connected space are isomorphic. (Contributed by Mario Carneiro, 12-Feb-2015.) |
Ref | Expression |
---|---|
pconnpi1.x | ⊢ 𝑋 = ∪ 𝐽 |
pconnpi1.p | ⊢ 𝑃 = (𝐽 π1 𝐴) |
pconnpi1.q | ⊢ 𝑄 = (𝐽 π1 𝐵) |
pconnpi1.s | ⊢ 𝑆 = (Base‘𝑃) |
pconnpi1.t | ⊢ 𝑇 = (Base‘𝑄) |
Ref | Expression |
---|---|
pconnpi1 | ⊢ ((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝑃 ≃𝑔 𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pconnpi1.x | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | pconncn 35192 | . 2 ⊢ ((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵)) |
3 | eqid 2740 | . . . . 5 ⊢ (𝐽 π1 (𝑓‘0)) = (𝐽 π1 (𝑓‘0)) | |
4 | eqid 2740 | . . . . 5 ⊢ (𝐽 π1 (𝑓‘1)) = (𝐽 π1 (𝑓‘1)) | |
5 | eqid 2740 | . . . . 5 ⊢ (Base‘(𝐽 π1 (𝑓‘0))) = (Base‘(𝐽 π1 (𝑓‘0))) | |
6 | eqid 2740 | . . . . 5 ⊢ ran (ℎ ∈ ∪ (Base‘(𝐽 π1 (𝑓‘0))) ↦ 〈[ℎ]( ≃ph‘𝐽), [((𝑥 ∈ (0[,]1) ↦ (𝑓‘(1 − 𝑥)))(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝑓))]( ≃ph‘𝐽)〉) = ran (ℎ ∈ ∪ (Base‘(𝐽 π1 (𝑓‘0))) ↦ 〈[ℎ]( ≃ph‘𝐽), [((𝑥 ∈ (0[,]1) ↦ (𝑓‘(1 − 𝑥)))(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝑓))]( ≃ph‘𝐽)〉) | |
7 | simpl1 1191 | . . . . . . 7 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → 𝐽 ∈ PConn) | |
8 | pconntop 35193 | . . . . . . 7 ⊢ (𝐽 ∈ PConn → 𝐽 ∈ Top) | |
9 | 7, 8 | syl 17 | . . . . . 6 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → 𝐽 ∈ Top) |
10 | 1 | toptopon 22944 | . . . . . 6 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
11 | 9, 10 | sylib 218 | . . . . 5 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → 𝐽 ∈ (TopOn‘𝑋)) |
12 | simprl 770 | . . . . 5 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → 𝑓 ∈ (II Cn 𝐽)) | |
13 | oveq2 7456 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (1 − 𝑥) = (1 − 𝑦)) | |
14 | 13 | fveq2d 6924 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑓‘(1 − 𝑥)) = (𝑓‘(1 − 𝑦))) |
15 | 14 | cbvmptv 5279 | . . . . 5 ⊢ (𝑥 ∈ (0[,]1) ↦ (𝑓‘(1 − 𝑥))) = (𝑦 ∈ (0[,]1) ↦ (𝑓‘(1 − 𝑦))) |
16 | 3, 4, 5, 6, 11, 12, 15 | pi1xfrgim 25110 | . . . 4 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → ran (ℎ ∈ ∪ (Base‘(𝐽 π1 (𝑓‘0))) ↦ 〈[ℎ]( ≃ph‘𝐽), [((𝑥 ∈ (0[,]1) ↦ (𝑓‘(1 − 𝑥)))(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝑓))]( ≃ph‘𝐽)〉) ∈ ((𝐽 π1 (𝑓‘0)) GrpIso (𝐽 π1 (𝑓‘1)))) |
17 | simprrl 780 | . . . . . . 7 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → (𝑓‘0) = 𝐴) | |
18 | 17 | oveq2d 7464 | . . . . . 6 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → (𝐽 π1 (𝑓‘0)) = (𝐽 π1 𝐴)) |
19 | pconnpi1.p | . . . . . 6 ⊢ 𝑃 = (𝐽 π1 𝐴) | |
20 | 18, 19 | eqtr4di 2798 | . . . . 5 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → (𝐽 π1 (𝑓‘0)) = 𝑃) |
21 | simprrr 781 | . . . . . . 7 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → (𝑓‘1) = 𝐵) | |
22 | 21 | oveq2d 7464 | . . . . . 6 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → (𝐽 π1 (𝑓‘1)) = (𝐽 π1 𝐵)) |
23 | pconnpi1.q | . . . . . 6 ⊢ 𝑄 = (𝐽 π1 𝐵) | |
24 | 22, 23 | eqtr4di 2798 | . . . . 5 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → (𝐽 π1 (𝑓‘1)) = 𝑄) |
25 | 20, 24 | oveq12d 7466 | . . . 4 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → ((𝐽 π1 (𝑓‘0)) GrpIso (𝐽 π1 (𝑓‘1))) = (𝑃 GrpIso 𝑄)) |
26 | 16, 25 | eleqtrd 2846 | . . 3 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → ran (ℎ ∈ ∪ (Base‘(𝐽 π1 (𝑓‘0))) ↦ 〈[ℎ]( ≃ph‘𝐽), [((𝑥 ∈ (0[,]1) ↦ (𝑓‘(1 − 𝑥)))(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝑓))]( ≃ph‘𝐽)〉) ∈ (𝑃 GrpIso 𝑄)) |
27 | brgici 19311 | . . 3 ⊢ (ran (ℎ ∈ ∪ (Base‘(𝐽 π1 (𝑓‘0))) ↦ 〈[ℎ]( ≃ph‘𝐽), [((𝑥 ∈ (0[,]1) ↦ (𝑓‘(1 − 𝑥)))(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝑓))]( ≃ph‘𝐽)〉) ∈ (𝑃 GrpIso 𝑄) → 𝑃 ≃𝑔 𝑄) | |
28 | 26, 27 | syl 17 | . 2 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → 𝑃 ≃𝑔 𝑄) |
29 | 2, 28 | rexlimddv 3167 | 1 ⊢ ((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝑃 ≃𝑔 𝑄) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 〈cop 4654 ∪ cuni 4931 class class class wbr 5166 ↦ cmpt 5249 ran crn 5701 ‘cfv 6573 (class class class)co 7448 [cec 8761 0cc0 11184 1c1 11185 − cmin 11520 [,]cicc 13410 Basecbs 17258 GrpIso cgim 19297 ≃𝑔 cgic 19298 Topctop 22920 TopOnctopon 22937 Cn ccn 23253 IIcii 24920 ≃phcphtpc 25020 *𝑝cpco 25052 π1 cpi1 25055 PConncpconn 35187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-ec 8765 df-qs 8769 df-map 8886 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-icc 13414 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-xrs 17562 df-qtop 17567 df-imas 17568 df-qus 17569 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-grp 18976 df-mulg 19108 df-ghm 19253 df-gim 19299 df-gic 19300 df-cntz 19357 df-cmn 19824 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cld 23048 df-cn 23256 df-cnp 23257 df-tx 23591 df-hmeo 23784 df-xms 24351 df-ms 24352 df-tms 24353 df-ii 24922 df-htpy 25021 df-phtpy 25022 df-phtpc 25043 df-pco 25057 df-om1 25058 df-pi1 25060 df-pconn 35189 |
This theorem is referenced by: sconnpi1 35207 |
Copyright terms: Public domain | W3C validator |