![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pconnpi1 | Structured version Visualization version GIF version |
Description: All fundamental groups in a path-connected space are isomorphic. (Contributed by Mario Carneiro, 12-Feb-2015.) |
Ref | Expression |
---|---|
pconnpi1.x | ⊢ 𝑋 = ∪ 𝐽 |
pconnpi1.p | ⊢ 𝑃 = (𝐽 π1 𝐴) |
pconnpi1.q | ⊢ 𝑄 = (𝐽 π1 𝐵) |
pconnpi1.s | ⊢ 𝑆 = (Base‘𝑃) |
pconnpi1.t | ⊢ 𝑇 = (Base‘𝑄) |
Ref | Expression |
---|---|
pconnpi1 | ⊢ ((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝑃 ≃𝑔 𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pconnpi1.x | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | pconncn 35209 | . 2 ⊢ ((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵)) |
3 | eqid 2735 | . . . . 5 ⊢ (𝐽 π1 (𝑓‘0)) = (𝐽 π1 (𝑓‘0)) | |
4 | eqid 2735 | . . . . 5 ⊢ (𝐽 π1 (𝑓‘1)) = (𝐽 π1 (𝑓‘1)) | |
5 | eqid 2735 | . . . . 5 ⊢ (Base‘(𝐽 π1 (𝑓‘0))) = (Base‘(𝐽 π1 (𝑓‘0))) | |
6 | eqid 2735 | . . . . 5 ⊢ ran (ℎ ∈ ∪ (Base‘(𝐽 π1 (𝑓‘0))) ↦ 〈[ℎ]( ≃ph‘𝐽), [((𝑥 ∈ (0[,]1) ↦ (𝑓‘(1 − 𝑥)))(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝑓))]( ≃ph‘𝐽)〉) = ran (ℎ ∈ ∪ (Base‘(𝐽 π1 (𝑓‘0))) ↦ 〈[ℎ]( ≃ph‘𝐽), [((𝑥 ∈ (0[,]1) ↦ (𝑓‘(1 − 𝑥)))(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝑓))]( ≃ph‘𝐽)〉) | |
7 | simpl1 1190 | . . . . . . 7 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → 𝐽 ∈ PConn) | |
8 | pconntop 35210 | . . . . . . 7 ⊢ (𝐽 ∈ PConn → 𝐽 ∈ Top) | |
9 | 7, 8 | syl 17 | . . . . . 6 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → 𝐽 ∈ Top) |
10 | 1 | toptopon 22939 | . . . . . 6 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
11 | 9, 10 | sylib 218 | . . . . 5 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → 𝐽 ∈ (TopOn‘𝑋)) |
12 | simprl 771 | . . . . 5 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → 𝑓 ∈ (II Cn 𝐽)) | |
13 | oveq2 7439 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (1 − 𝑥) = (1 − 𝑦)) | |
14 | 13 | fveq2d 6911 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑓‘(1 − 𝑥)) = (𝑓‘(1 − 𝑦))) |
15 | 14 | cbvmptv 5261 | . . . . 5 ⊢ (𝑥 ∈ (0[,]1) ↦ (𝑓‘(1 − 𝑥))) = (𝑦 ∈ (0[,]1) ↦ (𝑓‘(1 − 𝑦))) |
16 | 3, 4, 5, 6, 11, 12, 15 | pi1xfrgim 25105 | . . . 4 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → ran (ℎ ∈ ∪ (Base‘(𝐽 π1 (𝑓‘0))) ↦ 〈[ℎ]( ≃ph‘𝐽), [((𝑥 ∈ (0[,]1) ↦ (𝑓‘(1 − 𝑥)))(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝑓))]( ≃ph‘𝐽)〉) ∈ ((𝐽 π1 (𝑓‘0)) GrpIso (𝐽 π1 (𝑓‘1)))) |
17 | simprrl 781 | . . . . . . 7 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → (𝑓‘0) = 𝐴) | |
18 | 17 | oveq2d 7447 | . . . . . 6 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → (𝐽 π1 (𝑓‘0)) = (𝐽 π1 𝐴)) |
19 | pconnpi1.p | . . . . . 6 ⊢ 𝑃 = (𝐽 π1 𝐴) | |
20 | 18, 19 | eqtr4di 2793 | . . . . 5 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → (𝐽 π1 (𝑓‘0)) = 𝑃) |
21 | simprrr 782 | . . . . . . 7 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → (𝑓‘1) = 𝐵) | |
22 | 21 | oveq2d 7447 | . . . . . 6 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → (𝐽 π1 (𝑓‘1)) = (𝐽 π1 𝐵)) |
23 | pconnpi1.q | . . . . . 6 ⊢ 𝑄 = (𝐽 π1 𝐵) | |
24 | 22, 23 | eqtr4di 2793 | . . . . 5 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → (𝐽 π1 (𝑓‘1)) = 𝑄) |
25 | 20, 24 | oveq12d 7449 | . . . 4 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → ((𝐽 π1 (𝑓‘0)) GrpIso (𝐽 π1 (𝑓‘1))) = (𝑃 GrpIso 𝑄)) |
26 | 16, 25 | eleqtrd 2841 | . . 3 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → ran (ℎ ∈ ∪ (Base‘(𝐽 π1 (𝑓‘0))) ↦ 〈[ℎ]( ≃ph‘𝐽), [((𝑥 ∈ (0[,]1) ↦ (𝑓‘(1 − 𝑥)))(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝑓))]( ≃ph‘𝐽)〉) ∈ (𝑃 GrpIso 𝑄)) |
27 | brgici 19302 | . . 3 ⊢ (ran (ℎ ∈ ∪ (Base‘(𝐽 π1 (𝑓‘0))) ↦ 〈[ℎ]( ≃ph‘𝐽), [((𝑥 ∈ (0[,]1) ↦ (𝑓‘(1 − 𝑥)))(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝑓))]( ≃ph‘𝐽)〉) ∈ (𝑃 GrpIso 𝑄) → 𝑃 ≃𝑔 𝑄) | |
28 | 26, 27 | syl 17 | . 2 ⊢ (((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵))) → 𝑃 ≃𝑔 𝑄) |
29 | 2, 28 | rexlimddv 3159 | 1 ⊢ ((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝑃 ≃𝑔 𝑄) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 〈cop 4637 ∪ cuni 4912 class class class wbr 5148 ↦ cmpt 5231 ran crn 5690 ‘cfv 6563 (class class class)co 7431 [cec 8742 0cc0 11153 1c1 11154 − cmin 11490 [,]cicc 13387 Basecbs 17245 GrpIso cgim 19288 ≃𝑔 cgic 19289 Topctop 22915 TopOnctopon 22932 Cn ccn 23248 IIcii 24915 ≃phcphtpc 25015 *𝑝cpco 25047 π1 cpi1 25050 PConncpconn 35204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-addf 11232 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-ec 8746 df-qs 8750 df-map 8867 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-fi 9449 df-sup 9480 df-inf 9481 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-ioo 13388 df-icc 13391 df-fz 13545 df-fzo 13692 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-rest 17469 df-topn 17470 df-0g 17488 df-gsum 17489 df-topgen 17490 df-pt 17491 df-prds 17494 df-xrs 17549 df-qtop 17554 df-imas 17555 df-qus 17556 df-xps 17557 df-mre 17631 df-mrc 17632 df-acs 17634 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-grp 18967 df-mulg 19099 df-ghm 19244 df-gim 19290 df-gic 19291 df-cntz 19348 df-cmn 19815 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-cnfld 21383 df-top 22916 df-topon 22933 df-topsp 22955 df-bases 22969 df-cld 23043 df-cn 23251 df-cnp 23252 df-tx 23586 df-hmeo 23779 df-xms 24346 df-ms 24347 df-tms 24348 df-ii 24917 df-htpy 25016 df-phtpy 25017 df-phtpc 25038 df-pco 25052 df-om1 25053 df-pi1 25055 df-pconn 35206 |
This theorem is referenced by: sconnpi1 35224 |
Copyright terms: Public domain | W3C validator |