Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimgtmnf Structured version   Visualization version   GIF version

Theorem pimgtmnf 44259
Description: Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound -∞, is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimgtmnf.1 𝑥𝜑
pimgtmnf.2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
pimgtmnf (𝜑 → {𝑥𝐴 ∣ -∞ < 𝐵} = 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem pimgtmnf
StepHypRef Expression
1 pimgtmnf.1 . . 3 𝑥𝜑
2 eqidd 2739 . . . . . 6 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐵))
3 pimgtmnf.2 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
42, 3fvmpt2d 6888 . . . . 5 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
54eqcomd 2744 . . . 4 ((𝜑𝑥𝐴) → 𝐵 = ((𝑥𝐴𝐵)‘𝑥))
65breq2d 5086 . . 3 ((𝜑𝑥𝐴) → (-∞ < 𝐵 ↔ -∞ < ((𝑥𝐴𝐵)‘𝑥)))
71, 6rabbida 3409 . 2 (𝜑 → {𝑥𝐴 ∣ -∞ < 𝐵} = {𝑥𝐴 ∣ -∞ < ((𝑥𝐴𝐵)‘𝑥)})
8 nfmpt1 5182 . . 3 𝑥(𝑥𝐴𝐵)
9 eqid 2738 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
101, 3, 9fmptdf 6991 . . 3 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℝ)
118, 10pimgtmnf2 44251 . 2 (𝜑 → {𝑥𝐴 ∣ -∞ < ((𝑥𝐴𝐵)‘𝑥)} = 𝐴)
127, 11eqtrd 2778 1 (𝜑 → {𝑥𝐴 ∣ -∞ < 𝐵} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wnf 1786  wcel 2106  {crab 3068   class class class wbr 5074  cmpt 5157  cfv 6433  cr 10870  -∞cmnf 11007   < clt 11009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014
This theorem is referenced by:  smfpimgtxr  44315
  Copyright terms: Public domain W3C validator