Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pimgtmnf | Structured version Visualization version GIF version |
Description: Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound -∞, is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
pimgtmnf.1 | ⊢ Ⅎ𝑥𝜑 |
pimgtmnf.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
pimgtmnf | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ -∞ < 𝐵} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pimgtmnf.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | eqidd 2739 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
3 | pimgtmnf.2 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
4 | 2, 3 | fvmpt2d 6870 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
5 | 4 | eqcomd 2744 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) |
6 | 5 | breq2d 5082 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (-∞ < 𝐵 ↔ -∞ < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥))) |
7 | 1, 6 | rabbida 3398 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ -∞ < 𝐵} = {𝑥 ∈ 𝐴 ∣ -∞ < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)}) |
8 | nfmpt1 5178 | . . 3 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
9 | eqid 2738 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
10 | 1, 3, 9 | fmptdf 6973 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ) |
11 | 8, 10 | pimgtmnf2 44138 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ -∞ < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)} = 𝐴) |
12 | 7, 11 | eqtrd 2778 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ -∞ < 𝐵} = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 Ⅎwnf 1787 ∈ wcel 2108 {crab 3067 class class class wbr 5070 ↦ cmpt 5153 ‘cfv 6418 ℝcr 10801 -∞cmnf 10938 < clt 10940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 |
This theorem is referenced by: smfpimgtxr 44202 |
Copyright terms: Public domain | W3C validator |