![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pimgtmnf | Structured version Visualization version GIF version |
Description: Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound -∞, is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Revised by Glauco Siliprandi, 20-Dec-2024.) |
Ref | Expression |
---|---|
pimgtmnf.1 | ⊢ Ⅎ𝑥𝜑 |
pimgtmnf.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
pimgtmnf | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ -∞ < 𝐵} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pimgtmnf.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfcv 2902 | . 2 ⊢ Ⅎ𝑥𝐴 | |
3 | pimgtmnf.2 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
4 | 1, 2, 3 | pimgtmnff 46677 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ -∞ < 𝐵} = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 Ⅎwnf 1779 ∈ wcel 2105 {crab 3432 class class class wbr 5147 ℝcr 11151 -∞cmnf 11290 < clt 11292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-xp 5694 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 |
This theorem is referenced by: smfpimgtxr 46735 |
Copyright terms: Public domain | W3C validator |