Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pimgtmnf | Structured version Visualization version GIF version |
Description: Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound -∞, is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
pimgtmnf.1 | ⊢ Ⅎ𝑥𝜑 |
pimgtmnf.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
pimgtmnf | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ -∞ < 𝐵} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pimgtmnf.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | eqidd 2739 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
3 | pimgtmnf.2 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
4 | 2, 3 | fvmpt2d 6888 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥) = 𝐵) |
5 | 4 | eqcomd 2744 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)) |
6 | 5 | breq2d 5086 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (-∞ < 𝐵 ↔ -∞ < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥))) |
7 | 1, 6 | rabbida 3409 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ -∞ < 𝐵} = {𝑥 ∈ 𝐴 ∣ -∞ < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)}) |
8 | nfmpt1 5182 | . . 3 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) | |
9 | eqid 2738 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
10 | 1, 3, 9 | fmptdf 6991 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ) |
11 | 8, 10 | pimgtmnf2 44251 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ -∞ < ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝑥)} = 𝐴) |
12 | 7, 11 | eqtrd 2778 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ -∞ < 𝐵} = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2106 {crab 3068 class class class wbr 5074 ↦ cmpt 5157 ‘cfv 6433 ℝcr 10870 -∞cmnf 11007 < clt 11009 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 |
This theorem is referenced by: smfpimgtxr 44315 |
Copyright terms: Public domain | W3C validator |