Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimgtmnf Structured version   Visualization version   GIF version

Theorem pimgtmnf 44146
Description: Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound -∞, is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimgtmnf.1 𝑥𝜑
pimgtmnf.2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
pimgtmnf (𝜑 → {𝑥𝐴 ∣ -∞ < 𝐵} = 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem pimgtmnf
StepHypRef Expression
1 pimgtmnf.1 . . 3 𝑥𝜑
2 eqidd 2739 . . . . . 6 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐵))
3 pimgtmnf.2 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
42, 3fvmpt2d 6870 . . . . 5 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
54eqcomd 2744 . . . 4 ((𝜑𝑥𝐴) → 𝐵 = ((𝑥𝐴𝐵)‘𝑥))
65breq2d 5082 . . 3 ((𝜑𝑥𝐴) → (-∞ < 𝐵 ↔ -∞ < ((𝑥𝐴𝐵)‘𝑥)))
71, 6rabbida 3398 . 2 (𝜑 → {𝑥𝐴 ∣ -∞ < 𝐵} = {𝑥𝐴 ∣ -∞ < ((𝑥𝐴𝐵)‘𝑥)})
8 nfmpt1 5178 . . 3 𝑥(𝑥𝐴𝐵)
9 eqid 2738 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
101, 3, 9fmptdf 6973 . . 3 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℝ)
118, 10pimgtmnf2 44138 . 2 (𝜑 → {𝑥𝐴 ∣ -∞ < ((𝑥𝐴𝐵)‘𝑥)} = 𝐴)
127, 11eqtrd 2778 1 (𝜑 → {𝑥𝐴 ∣ -∞ < 𝐵} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wnf 1787  wcel 2108  {crab 3067   class class class wbr 5070  cmpt 5153  cfv 6418  cr 10801  -∞cmnf 10938   < clt 10940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945
This theorem is referenced by:  smfpimgtxr  44202
  Copyright terms: Public domain W3C validator