Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimgtmnff Structured version   Visualization version   GIF version

Theorem pimgtmnff 46670
Description: Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound -∞, is the whole domain. (Contributed by Glauco Siliprandi, 20-Dec-2024.)
Hypotheses
Ref Expression
pimgtmnff.1 𝑥𝜑
pimgtmnff.2 𝑥𝐴
pimgtmnff.3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
pimgtmnff (𝜑 → {𝑥𝐴 ∣ -∞ < 𝐵} = 𝐴)

Proof of Theorem pimgtmnff
StepHypRef Expression
1 pimgtmnff.2 . . . 4 𝑥𝐴
21ssrab2f 45055 . . 3 {𝑥𝐴 ∣ -∞ < 𝐵} ⊆ 𝐴
32a1i 11 . 2 (𝜑 → {𝑥𝐴 ∣ -∞ < 𝐵} ⊆ 𝐴)
4 pimgtmnff.1 . . . 4 𝑥𝜑
5 simpr 484 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑥𝐴)
6 pimgtmnff.3 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
7 mnflt 13146 . . . . . . . 8 (𝐵 ∈ ℝ → -∞ < 𝐵)
86, 7syl 17 . . . . . . 7 ((𝜑𝑥𝐴) → -∞ < 𝐵)
95, 8jca 511 . . . . . 6 ((𝜑𝑥𝐴) → (𝑥𝐴 ∧ -∞ < 𝐵))
10 rabid 3441 . . . . . 6 (𝑥 ∈ {𝑥𝐴 ∣ -∞ < 𝐵} ↔ (𝑥𝐴 ∧ -∞ < 𝐵))
119, 10sylibr 234 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ∈ {𝑥𝐴 ∣ -∞ < 𝐵})
1211ex 412 . . . 4 (𝜑 → (𝑥𝐴𝑥 ∈ {𝑥𝐴 ∣ -∞ < 𝐵}))
134, 12ralrimi 3243 . . 3 (𝜑 → ∀𝑥𝐴 𝑥 ∈ {𝑥𝐴 ∣ -∞ < 𝐵})
14 nfrab1 3440 . . . 4 𝑥{𝑥𝐴 ∣ -∞ < 𝐵}
151, 14dfss3f 3955 . . 3 (𝐴 ⊆ {𝑥𝐴 ∣ -∞ < 𝐵} ↔ ∀𝑥𝐴 𝑥 ∈ {𝑥𝐴 ∣ -∞ < 𝐵})
1613, 15sylibr 234 . 2 (𝜑𝐴 ⊆ {𝑥𝐴 ∣ -∞ < 𝐵})
173, 16eqssd 3981 1 (𝜑 → {𝑥𝐴 ∣ -∞ < 𝐵} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wnf 1782  wcel 2107  wnfc 2882  wral 3050  {crab 3419  wss 3931   class class class wbr 5123  cr 11135  -∞cmnf 11274   < clt 11276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736  ax-cnex 11192
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-xp 5671  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281
This theorem is referenced by:  pimgtmnf  46671
  Copyright terms: Public domain W3C validator