Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimgtmnff Structured version   Visualization version   GIF version

Theorem pimgtmnff 46693
Description: Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound -∞, is the whole domain. (Contributed by Glauco Siliprandi, 20-Dec-2024.)
Hypotheses
Ref Expression
pimgtmnff.1 𝑥𝜑
pimgtmnff.2 𝑥𝐴
pimgtmnff.3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
pimgtmnff (𝜑 → {𝑥𝐴 ∣ -∞ < 𝐵} = 𝐴)

Proof of Theorem pimgtmnff
StepHypRef Expression
1 pimgtmnff.2 . . . 4 𝑥𝐴
21ssrab2f 45083 . . 3 {𝑥𝐴 ∣ -∞ < 𝐵} ⊆ 𝐴
32a1i 11 . 2 (𝜑 → {𝑥𝐴 ∣ -∞ < 𝐵} ⊆ 𝐴)
4 pimgtmnff.1 . . . 4 𝑥𝜑
5 simpr 484 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑥𝐴)
6 pimgtmnff.3 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
7 mnflt 13096 . . . . . . . 8 (𝐵 ∈ ℝ → -∞ < 𝐵)
86, 7syl 17 . . . . . . 7 ((𝜑𝑥𝐴) → -∞ < 𝐵)
95, 8jca 511 . . . . . 6 ((𝜑𝑥𝐴) → (𝑥𝐴 ∧ -∞ < 𝐵))
10 rabid 3433 . . . . . 6 (𝑥 ∈ {𝑥𝐴 ∣ -∞ < 𝐵} ↔ (𝑥𝐴 ∧ -∞ < 𝐵))
119, 10sylibr 234 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ∈ {𝑥𝐴 ∣ -∞ < 𝐵})
1211ex 412 . . . 4 (𝜑 → (𝑥𝐴𝑥 ∈ {𝑥𝐴 ∣ -∞ < 𝐵}))
134, 12ralrimi 3237 . . 3 (𝜑 → ∀𝑥𝐴 𝑥 ∈ {𝑥𝐴 ∣ -∞ < 𝐵})
14 nfrab1 3432 . . . 4 𝑥{𝑥𝐴 ∣ -∞ < 𝐵}
151, 14dfss3f 3946 . . 3 (𝐴 ⊆ {𝑥𝐴 ∣ -∞ < 𝐵} ↔ ∀𝑥𝐴 𝑥 ∈ {𝑥𝐴 ∣ -∞ < 𝐵})
1613, 15sylibr 234 . 2 (𝜑𝐴 ⊆ {𝑥𝐴 ∣ -∞ < 𝐵})
173, 16eqssd 3972 1 (𝜑 → {𝑥𝐴 ∣ -∞ < 𝐵} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wnfc 2878  wral 3046  {crab 3411  wss 3922   class class class wbr 5115  cr 11085  -∞cmnf 11224   < clt 11226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-cnex 11142
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-opab 5178  df-xp 5652  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231
This theorem is referenced by:  pimgtmnf  46694
  Copyright terms: Public domain W3C validator