Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimgtmnff Structured version   Visualization version   GIF version

Theorem pimgtmnff 46578
Description: Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound -∞, is the whole domain. (Contributed by Glauco Siliprandi, 20-Dec-2024.)
Hypotheses
Ref Expression
pimgtmnff.1 𝑥𝜑
pimgtmnff.2 𝑥𝐴
pimgtmnff.3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
pimgtmnff (𝜑 → {𝑥𝐴 ∣ -∞ < 𝐵} = 𝐴)

Proof of Theorem pimgtmnff
StepHypRef Expression
1 pimgtmnff.2 . . . 4 𝑥𝐴
21ssrab2f 44954 . . 3 {𝑥𝐴 ∣ -∞ < 𝐵} ⊆ 𝐴
32a1i 11 . 2 (𝜑 → {𝑥𝐴 ∣ -∞ < 𝐵} ⊆ 𝐴)
4 pimgtmnff.1 . . . 4 𝑥𝜑
5 simpr 484 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑥𝐴)
6 pimgtmnff.3 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
7 mnflt 13182 . . . . . . . 8 (𝐵 ∈ ℝ → -∞ < 𝐵)
86, 7syl 17 . . . . . . 7 ((𝜑𝑥𝐴) → -∞ < 𝐵)
95, 8jca 511 . . . . . 6 ((𝜑𝑥𝐴) → (𝑥𝐴 ∧ -∞ < 𝐵))
10 rabid 3459 . . . . . 6 (𝑥 ∈ {𝑥𝐴 ∣ -∞ < 𝐵} ↔ (𝑥𝐴 ∧ -∞ < 𝐵))
119, 10sylibr 234 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ∈ {𝑥𝐴 ∣ -∞ < 𝐵})
1211ex 412 . . . 4 (𝜑 → (𝑥𝐴𝑥 ∈ {𝑥𝐴 ∣ -∞ < 𝐵}))
134, 12ralrimi 3258 . . 3 (𝜑 → ∀𝑥𝐴 𝑥 ∈ {𝑥𝐴 ∣ -∞ < 𝐵})
14 nfrab1 3458 . . . 4 𝑥{𝑥𝐴 ∣ -∞ < 𝐵}
151, 14dfss3f 3994 . . 3 (𝐴 ⊆ {𝑥𝐴 ∣ -∞ < 𝐵} ↔ ∀𝑥𝐴 𝑥 ∈ {𝑥𝐴 ∣ -∞ < 𝐵})
1613, 15sylibr 234 . 2 (𝜑𝐴 ⊆ {𝑥𝐴 ∣ -∞ < 𝐵})
173, 16eqssd 4020 1 (𝜑 → {𝑥𝐴 ∣ -∞ < 𝐵} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wnf 1781  wcel 2103  wnfc 2888  wral 3063  {crab 3438  wss 3970   class class class wbr 5169  cr 11179  -∞cmnf 11318   < clt 11320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450  ax-un 7766  ax-cnex 11236
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ral 3064  df-rex 3073  df-rab 3439  df-v 3484  df-dif 3973  df-un 3975  df-ss 3987  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5170  df-opab 5232  df-xp 5705  df-pnf 11322  df-mnf 11323  df-xr 11324  df-ltxr 11325
This theorem is referenced by:  pimgtmnf  46579
  Copyright terms: Public domain W3C validator