| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pimgtmnff | Structured version Visualization version GIF version | ||
| Description: Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound -∞, is the whole domain. (Contributed by Glauco Siliprandi, 20-Dec-2024.) |
| Ref | Expression |
|---|---|
| pimgtmnff.1 | ⊢ Ⅎ𝑥𝜑 |
| pimgtmnff.2 | ⊢ Ⅎ𝑥𝐴 |
| pimgtmnff.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| Ref | Expression |
|---|---|
| pimgtmnff | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ -∞ < 𝐵} = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pimgtmnff.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | ssrab2f 45055 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ -∞ < 𝐵} ⊆ 𝐴 |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ -∞ < 𝐵} ⊆ 𝐴) |
| 4 | pimgtmnff.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 5 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
| 6 | pimgtmnff.3 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
| 7 | mnflt 13146 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ → -∞ < 𝐵) | |
| 8 | 6, 7 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -∞ < 𝐵) |
| 9 | 5, 8 | jca 511 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐴 ∧ -∞ < 𝐵)) |
| 10 | rabid 3441 | . . . . . 6 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ -∞ < 𝐵} ↔ (𝑥 ∈ 𝐴 ∧ -∞ < 𝐵)) | |
| 11 | 9, 10 | sylibr 234 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ -∞ < 𝐵}) |
| 12 | 11 | ex 412 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ -∞ < 𝐵})) |
| 13 | 4, 12 | ralrimi 3243 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ -∞ < 𝐵}) |
| 14 | nfrab1 3440 | . . . 4 ⊢ Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ -∞ < 𝐵} | |
| 15 | 1, 14 | dfss3f 3955 | . . 3 ⊢ (𝐴 ⊆ {𝑥 ∈ 𝐴 ∣ -∞ < 𝐵} ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ -∞ < 𝐵}) |
| 16 | 13, 15 | sylibr 234 | . 2 ⊢ (𝜑 → 𝐴 ⊆ {𝑥 ∈ 𝐴 ∣ -∞ < 𝐵}) |
| 17 | 3, 16 | eqssd 3981 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ -∞ < 𝐵} = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 Ⅎwnf 1782 ∈ wcel 2107 Ⅎwnfc 2882 ∀wral 3050 {crab 3419 ⊆ wss 3931 class class class wbr 5123 ℝcr 11135 -∞cmnf 11274 < clt 11276 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-xp 5671 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 |
| This theorem is referenced by: pimgtmnf 46671 |
| Copyright terms: Public domain | W3C validator |