Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimgtmnff Structured version   Visualization version   GIF version

Theorem pimgtmnff 46343
Description: Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound -∞, is the whole domain. (Contributed by Glauco Siliprandi, 20-Dec-2024.)
Hypotheses
Ref Expression
pimgtmnff.1 𝑥𝜑
pimgtmnff.2 𝑥𝐴
pimgtmnff.3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
pimgtmnff (𝜑 → {𝑥𝐴 ∣ -∞ < 𝐵} = 𝐴)

Proof of Theorem pimgtmnff
StepHypRef Expression
1 pimgtmnff.2 . . . 4 𝑥𝐴
21ssrab2f 44718 . . 3 {𝑥𝐴 ∣ -∞ < 𝐵} ⊆ 𝐴
32a1i 11 . 2 (𝜑 → {𝑥𝐴 ∣ -∞ < 𝐵} ⊆ 𝐴)
4 pimgtmnff.1 . . . 4 𝑥𝜑
5 simpr 483 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑥𝐴)
6 pimgtmnff.3 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
7 mnflt 13157 . . . . . . . 8 (𝐵 ∈ ℝ → -∞ < 𝐵)
86, 7syl 17 . . . . . . 7 ((𝜑𝑥𝐴) → -∞ < 𝐵)
95, 8jca 510 . . . . . 6 ((𝜑𝑥𝐴) → (𝑥𝐴 ∧ -∞ < 𝐵))
10 rabid 3440 . . . . . 6 (𝑥 ∈ {𝑥𝐴 ∣ -∞ < 𝐵} ↔ (𝑥𝐴 ∧ -∞ < 𝐵))
119, 10sylibr 233 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ∈ {𝑥𝐴 ∣ -∞ < 𝐵})
1211ex 411 . . . 4 (𝜑 → (𝑥𝐴𝑥 ∈ {𝑥𝐴 ∣ -∞ < 𝐵}))
134, 12ralrimi 3245 . . 3 (𝜑 → ∀𝑥𝐴 𝑥 ∈ {𝑥𝐴 ∣ -∞ < 𝐵})
14 nfrab1 3439 . . . 4 𝑥{𝑥𝐴 ∣ -∞ < 𝐵}
151, 14dfss3f 3971 . . 3 (𝐴 ⊆ {𝑥𝐴 ∣ -∞ < 𝐵} ↔ ∀𝑥𝐴 𝑥 ∈ {𝑥𝐴 ∣ -∞ < 𝐵})
1613, 15sylibr 233 . 2 (𝜑𝐴 ⊆ {𝑥𝐴 ∣ -∞ < 𝐵})
173, 16eqssd 3997 1 (𝜑 → {𝑥𝐴 ∣ -∞ < 𝐵} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wnf 1778  wcel 2099  wnfc 2876  wral 3051  {crab 3419  wss 3947   class class class wbr 5153  cr 11157  -∞cmnf 11296   < clt 11298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-opab 5216  df-xp 5688  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303
This theorem is referenced by:  pimgtmnf  46344
  Copyright terms: Public domain W3C validator