Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimltpnf Structured version   Visualization version   GIF version

Theorem pimltpnf 44241
Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +∞, is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimltpnf.1 𝑥𝜑
pimltpnf.2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
pimltpnf (𝜑 → {𝑥𝐴𝐵 < +∞} = 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem pimltpnf
StepHypRef Expression
1 ssrab2 4013 . . 3 {𝑥𝐴𝐵 < +∞} ⊆ 𝐴
21a1i 11 . 2 (𝜑 → {𝑥𝐴𝐵 < +∞} ⊆ 𝐴)
3 pimltpnf.1 . . . 4 𝑥𝜑
4 simpr 485 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑥𝐴)
5 pimltpnf.2 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
6 ltpnf 12856 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 < +∞)
75, 6syl 17 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵 < +∞)
84, 7jca 512 . . . . . 6 ((𝜑𝑥𝐴) → (𝑥𝐴𝐵 < +∞))
9 rabid 3310 . . . . . 6 (𝑥 ∈ {𝑥𝐴𝐵 < +∞} ↔ (𝑥𝐴𝐵 < +∞))
108, 9sylibr 233 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ∈ {𝑥𝐴𝐵 < +∞})
1110ex 413 . . . 4 (𝜑 → (𝑥𝐴𝑥 ∈ {𝑥𝐴𝐵 < +∞}))
123, 11ralrimi 3141 . . 3 (𝜑 → ∀𝑥𝐴 𝑥 ∈ {𝑥𝐴𝐵 < +∞})
13 nfcv 2907 . . . 4 𝑥𝐴
14 nfrab1 3317 . . . 4 𝑥{𝑥𝐴𝐵 < +∞}
1513, 14dfss3f 3912 . . 3 (𝐴 ⊆ {𝑥𝐴𝐵 < +∞} ↔ ∀𝑥𝐴 𝑥 ∈ {𝑥𝐴𝐵 < +∞})
1612, 15sylibr 233 . 2 (𝜑𝐴 ⊆ {𝑥𝐴𝐵 < +∞})
172, 16eqssd 3938 1 (𝜑 → {𝑥𝐴𝐵 < +∞} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wnf 1786  wcel 2106  wral 3064  {crab 3068  wss 3887   class class class wbr 5074  cr 10870  +∞cpnf 11006   < clt 11009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-xp 5595  df-pnf 11011  df-xr 11013  df-ltxr 11014
This theorem is referenced by:  pimltpnf2f  44249
  Copyright terms: Public domain W3C validator