Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pimltpnf | Structured version Visualization version GIF version |
Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +∞, is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
pimltpnf.1 | ⊢ Ⅎ𝑥𝜑 |
pimltpnf.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
pimltpnf | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < +∞} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 4009 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝐵 < +∞} ⊆ 𝐴 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < +∞} ⊆ 𝐴) |
3 | pimltpnf.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
4 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
5 | pimltpnf.2 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
6 | ltpnf 12785 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ → 𝐵 < +∞) | |
7 | 5, 6 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 < +∞) |
8 | 4, 7 | jca 511 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐴 ∧ 𝐵 < +∞)) |
9 | rabid 3304 | . . . . . 6 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 < +∞} ↔ (𝑥 ∈ 𝐴 ∧ 𝐵 < +∞)) | |
10 | 8, 9 | sylibr 233 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 < +∞}) |
11 | 10 | ex 412 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 < +∞})) |
12 | 3, 11 | ralrimi 3139 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 < +∞}) |
13 | nfcv 2906 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
14 | nfrab1 3310 | . . . 4 ⊢ Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ 𝐵 < +∞} | |
15 | 13, 14 | dfss3f 3908 | . . 3 ⊢ (𝐴 ⊆ {𝑥 ∈ 𝐴 ∣ 𝐵 < +∞} ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 < +∞}) |
16 | 12, 15 | sylibr 233 | . 2 ⊢ (𝜑 → 𝐴 ⊆ {𝑥 ∈ 𝐴 ∣ 𝐵 < +∞}) |
17 | 2, 16 | eqssd 3934 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < +∞} = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 Ⅎwnf 1787 ∈ wcel 2108 ∀wral 3063 {crab 3067 ⊆ wss 3883 class class class wbr 5070 ℝcr 10801 +∞cpnf 10937 < clt 10940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-pnf 10942 df-xr 10944 df-ltxr 10945 |
This theorem is referenced by: pimltpnf2 44137 |
Copyright terms: Public domain | W3C validator |