![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pimltpnf | Structured version Visualization version GIF version |
Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +∞, is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Revised by Glauco Siliprandi, 20-Dec-2024.) |
Ref | Expression |
---|---|
pimltpnf.1 | ⊢ Ⅎ𝑥𝜑 |
pimltpnf.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
pimltpnf | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < +∞} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pimltpnf.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfcv 2899 | . 2 ⊢ Ⅎ𝑥𝐴 | |
3 | pimltpnf.2 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
4 | 1, 2, 3 | pimltpnff 46120 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < +∞} = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 Ⅎwnf 1777 ∈ wcel 2098 {crab 3430 class class class wbr 5152 ℝcr 11145 +∞cpnf 11283 < clt 11286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-xp 5688 df-pnf 11288 df-xr 11290 df-ltxr 11291 |
This theorem is referenced by: pimltpnf2f 46129 |
Copyright terms: Public domain | W3C validator |