Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimltpnf Structured version   Visualization version   GIF version

Theorem pimltpnf 44130
Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +∞, is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimltpnf.1 𝑥𝜑
pimltpnf.2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
pimltpnf (𝜑 → {𝑥𝐴𝐵 < +∞} = 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem pimltpnf
StepHypRef Expression
1 ssrab2 4009 . . 3 {𝑥𝐴𝐵 < +∞} ⊆ 𝐴
21a1i 11 . 2 (𝜑 → {𝑥𝐴𝐵 < +∞} ⊆ 𝐴)
3 pimltpnf.1 . . . 4 𝑥𝜑
4 simpr 484 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑥𝐴)
5 pimltpnf.2 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
6 ltpnf 12785 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 < +∞)
75, 6syl 17 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵 < +∞)
84, 7jca 511 . . . . . 6 ((𝜑𝑥𝐴) → (𝑥𝐴𝐵 < +∞))
9 rabid 3304 . . . . . 6 (𝑥 ∈ {𝑥𝐴𝐵 < +∞} ↔ (𝑥𝐴𝐵 < +∞))
108, 9sylibr 233 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ∈ {𝑥𝐴𝐵 < +∞})
1110ex 412 . . . 4 (𝜑 → (𝑥𝐴𝑥 ∈ {𝑥𝐴𝐵 < +∞}))
123, 11ralrimi 3139 . . 3 (𝜑 → ∀𝑥𝐴 𝑥 ∈ {𝑥𝐴𝐵 < +∞})
13 nfcv 2906 . . . 4 𝑥𝐴
14 nfrab1 3310 . . . 4 𝑥{𝑥𝐴𝐵 < +∞}
1513, 14dfss3f 3908 . . 3 (𝐴 ⊆ {𝑥𝐴𝐵 < +∞} ↔ ∀𝑥𝐴 𝑥 ∈ {𝑥𝐴𝐵 < +∞})
1612, 15sylibr 233 . 2 (𝜑𝐴 ⊆ {𝑥𝐴𝐵 < +∞})
172, 16eqssd 3934 1 (𝜑 → {𝑥𝐴𝐵 < +∞} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wnf 1787  wcel 2108  wral 3063  {crab 3067  wss 3883   class class class wbr 5070  cr 10801  +∞cpnf 10937   < clt 10940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-pnf 10942  df-xr 10944  df-ltxr 10945
This theorem is referenced by:  pimltpnf2  44137
  Copyright terms: Public domain W3C validator