Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimltpnf Structured version   Visualization version   GIF version

Theorem pimltpnf 43004
Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +∞, is the whole domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimltpnf.1 𝑥𝜑
pimltpnf.2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
pimltpnf (𝜑 → {𝑥𝐴𝐵 < +∞} = 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem pimltpnf
StepHypRef Expression
1 ssrab2 4056 . . 3 {𝑥𝐴𝐵 < +∞} ⊆ 𝐴
21a1i 11 . 2 (𝜑 → {𝑥𝐴𝐵 < +∞} ⊆ 𝐴)
3 pimltpnf.1 . . . 4 𝑥𝜑
4 simpr 487 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑥𝐴)
5 pimltpnf.2 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
6 ltpnf 12516 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 < +∞)
75, 6syl 17 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵 < +∞)
84, 7jca 514 . . . . . 6 ((𝜑𝑥𝐴) → (𝑥𝐴𝐵 < +∞))
9 rabid 3378 . . . . . 6 (𝑥 ∈ {𝑥𝐴𝐵 < +∞} ↔ (𝑥𝐴𝐵 < +∞))
108, 9sylibr 236 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ∈ {𝑥𝐴𝐵 < +∞})
1110ex 415 . . . 4 (𝜑 → (𝑥𝐴𝑥 ∈ {𝑥𝐴𝐵 < +∞}))
123, 11ralrimi 3216 . . 3 (𝜑 → ∀𝑥𝐴 𝑥 ∈ {𝑥𝐴𝐵 < +∞})
13 nfcv 2977 . . . 4 𝑥𝐴
14 nfrab1 3384 . . . 4 𝑥{𝑥𝐴𝐵 < +∞}
1513, 14dfss3f 3959 . . 3 (𝐴 ⊆ {𝑥𝐴𝐵 < +∞} ↔ ∀𝑥𝐴 𝑥 ∈ {𝑥𝐴𝐵 < +∞})
1612, 15sylibr 236 . 2 (𝜑𝐴 ⊆ {𝑥𝐴𝐵 < +∞})
172, 16eqssd 3984 1 (𝜑 → {𝑥𝐴𝐵 < +∞} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wnf 1784  wcel 2114  wral 3138  {crab 3142  wss 3936   class class class wbr 5066  cr 10536  +∞cpnf 10672   < clt 10675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-xp 5561  df-pnf 10677  df-xr 10679  df-ltxr 10680
This theorem is referenced by:  pimltpnf2  43011
  Copyright terms: Public domain W3C validator