Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimltpnff Structured version   Visualization version   GIF version

Theorem pimltpnff 46723
Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +∞, is the whole domain. (Contributed by Glauco Siliprandi, 20-Dec-2024.)
Hypotheses
Ref Expression
pimltpnff.1 𝑥𝜑
pimltpnff.2 𝑥𝐴
pimltpnff.3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
pimltpnff (𝜑 → {𝑥𝐴𝐵 < +∞} = 𝐴)

Proof of Theorem pimltpnff
StepHypRef Expression
1 pimltpnff.2 . . . 4 𝑥𝐴
21ssrab2f 45127 . . 3 {𝑥𝐴𝐵 < +∞} ⊆ 𝐴
32a1i 11 . 2 (𝜑 → {𝑥𝐴𝐵 < +∞} ⊆ 𝐴)
4 pimltpnff.1 . . . 4 𝑥𝜑
5 simpr 484 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑥𝐴)
6 pimltpnff.3 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
7 ltpnf 13163 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 < +∞)
86, 7syl 17 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵 < +∞)
95, 8jca 511 . . . . . 6 ((𝜑𝑥𝐴) → (𝑥𝐴𝐵 < +∞))
10 rabid 3457 . . . . . 6 (𝑥 ∈ {𝑥𝐴𝐵 < +∞} ↔ (𝑥𝐴𝐵 < +∞))
119, 10sylibr 234 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ∈ {𝑥𝐴𝐵 < +∞})
1211ex 412 . . . 4 (𝜑 → (𝑥𝐴𝑥 ∈ {𝑥𝐴𝐵 < +∞}))
134, 12ralrimi 3256 . . 3 (𝜑 → ∀𝑥𝐴 𝑥 ∈ {𝑥𝐴𝐵 < +∞})
14 nfrab1 3456 . . . 4 𝑥{𝑥𝐴𝐵 < +∞}
151, 14dfss3f 3974 . . 3 (𝐴 ⊆ {𝑥𝐴𝐵 < +∞} ↔ ∀𝑥𝐴 𝑥 ∈ {𝑥𝐴𝐵 < +∞})
1613, 15sylibr 234 . 2 (𝜑𝐴 ⊆ {𝑥𝐴𝐵 < +∞})
173, 16eqssd 4000 1 (𝜑 → {𝑥𝐴𝐵 < +∞} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wnf 1782  wcel 2107  wnfc 2889  wral 3060  {crab 3435  wss 3950   class class class wbr 5142  cr 11155  +∞cpnf 11293   < clt 11296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-xp 5690  df-pnf 11298  df-xr 11300  df-ltxr 11301
This theorem is referenced by:  pimltpnf  46724
  Copyright terms: Public domain W3C validator