| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pimltpnff | Structured version Visualization version GIF version | ||
| Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +∞, is the whole domain. (Contributed by Glauco Siliprandi, 20-Dec-2024.) |
| Ref | Expression |
|---|---|
| pimltpnff.1 | ⊢ Ⅎ𝑥𝜑 |
| pimltpnff.2 | ⊢ Ⅎ𝑥𝐴 |
| pimltpnff.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| Ref | Expression |
|---|---|
| pimltpnff | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < +∞} = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pimltpnff.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | ssrab2f 45238 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝐵 < +∞} ⊆ 𝐴 |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < +∞} ⊆ 𝐴) |
| 4 | pimltpnff.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 5 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
| 6 | pimltpnff.3 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
| 7 | ltpnf 13021 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ → 𝐵 < +∞) | |
| 8 | 6, 7 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 < +∞) |
| 9 | 5, 8 | jca 511 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐴 ∧ 𝐵 < +∞)) |
| 10 | rabid 3417 | . . . . . 6 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 < +∞} ↔ (𝑥 ∈ 𝐴 ∧ 𝐵 < +∞)) | |
| 11 | 9, 10 | sylibr 234 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 < +∞}) |
| 12 | 11 | ex 412 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 < +∞})) |
| 13 | 4, 12 | ralrimi 3231 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 < +∞}) |
| 14 | nfrab1 3416 | . . . 4 ⊢ Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ 𝐵 < +∞} | |
| 15 | 1, 14 | dfss3f 3922 | . . 3 ⊢ (𝐴 ⊆ {𝑥 ∈ 𝐴 ∣ 𝐵 < +∞} ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝐵 < +∞}) |
| 16 | 13, 15 | sylibr 234 | . 2 ⊢ (𝜑 → 𝐴 ⊆ {𝑥 ∈ 𝐴 ∣ 𝐵 < +∞}) |
| 17 | 3, 16 | eqssd 3948 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 < +∞} = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2113 Ⅎwnfc 2880 ∀wral 3048 {crab 3396 ⊆ wss 3898 class class class wbr 5093 ℝcr 11012 +∞cpnf 11150 < clt 11153 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-xp 5625 df-pnf 11155 df-xr 11157 df-ltxr 11158 |
| This theorem is referenced by: pimltpnf 46826 |
| Copyright terms: Public domain | W3C validator |