Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimltpnff Structured version   Visualization version   GIF version

Theorem pimltpnff 46685
Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +∞, is the whole domain. (Contributed by Glauco Siliprandi, 20-Dec-2024.)
Hypotheses
Ref Expression
pimltpnff.1 𝑥𝜑
pimltpnff.2 𝑥𝐴
pimltpnff.3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
pimltpnff (𝜑 → {𝑥𝐴𝐵 < +∞} = 𝐴)

Proof of Theorem pimltpnff
StepHypRef Expression
1 pimltpnff.2 . . . 4 𝑥𝐴
21ssrab2f 45095 . . 3 {𝑥𝐴𝐵 < +∞} ⊆ 𝐴
32a1i 11 . 2 (𝜑 → {𝑥𝐴𝐵 < +∞} ⊆ 𝐴)
4 pimltpnff.1 . . . 4 𝑥𝜑
5 simpr 484 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑥𝐴)
6 pimltpnff.3 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
7 ltpnf 13040 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 < +∞)
86, 7syl 17 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵 < +∞)
95, 8jca 511 . . . . . 6 ((𝜑𝑥𝐴) → (𝑥𝐴𝐵 < +∞))
10 rabid 3418 . . . . . 6 (𝑥 ∈ {𝑥𝐴𝐵 < +∞} ↔ (𝑥𝐴𝐵 < +∞))
119, 10sylibr 234 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ∈ {𝑥𝐴𝐵 < +∞})
1211ex 412 . . . 4 (𝜑 → (𝑥𝐴𝑥 ∈ {𝑥𝐴𝐵 < +∞}))
134, 12ralrimi 3227 . . 3 (𝜑 → ∀𝑥𝐴 𝑥 ∈ {𝑥𝐴𝐵 < +∞})
14 nfrab1 3417 . . . 4 𝑥{𝑥𝐴𝐵 < +∞}
151, 14dfss3f 3929 . . 3 (𝐴 ⊆ {𝑥𝐴𝐵 < +∞} ↔ ∀𝑥𝐴 𝑥 ∈ {𝑥𝐴𝐵 < +∞})
1613, 15sylibr 234 . 2 (𝜑𝐴 ⊆ {𝑥𝐴𝐵 < +∞})
173, 16eqssd 3955 1 (𝜑 → {𝑥𝐴𝐵 < +∞} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wnfc 2876  wral 3044  {crab 3396  wss 3905   class class class wbr 5095  cr 11027  +∞cpnf 11165   < clt 11168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-xp 5629  df-pnf 11170  df-xr 11172  df-ltxr 11173
This theorem is referenced by:  pimltpnf  46686
  Copyright terms: Public domain W3C validator