Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimltpnff Structured version   Visualization version   GIF version

Theorem pimltpnff 44248
Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +∞, is the whole domain. (Contributed by Glauco Siliprandi, 20-Dec-2024.)
Hypotheses
Ref Expression
pimltpnff.1 𝑥𝜑
pimltpnff.2 𝑥𝐴
pimltpnff.3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
pimltpnff (𝜑 → {𝑥𝐴𝐵 < +∞} = 𝐴)

Proof of Theorem pimltpnff
StepHypRef Expression
1 pimltpnff.2 . . . 4 𝑥𝐴
21ssrab2f 42673 . . 3 {𝑥𝐴𝐵 < +∞} ⊆ 𝐴
32a1i 11 . 2 (𝜑 → {𝑥𝐴𝐵 < +∞} ⊆ 𝐴)
4 pimltpnff.1 . . . 4 𝑥𝜑
5 simpr 485 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑥𝐴)
6 pimltpnff.3 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
7 ltpnf 12865 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 < +∞)
86, 7syl 17 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵 < +∞)
95, 8jca 512 . . . . . 6 ((𝜑𝑥𝐴) → (𝑥𝐴𝐵 < +∞))
10 rabid 3311 . . . . . 6 (𝑥 ∈ {𝑥𝐴𝐵 < +∞} ↔ (𝑥𝐴𝐵 < +∞))
119, 10sylibr 233 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ∈ {𝑥𝐴𝐵 < +∞})
1211ex 413 . . . 4 (𝜑 → (𝑥𝐴𝑥 ∈ {𝑥𝐴𝐵 < +∞}))
134, 12ralrimi 3142 . . 3 (𝜑 → ∀𝑥𝐴 𝑥 ∈ {𝑥𝐴𝐵 < +∞})
14 nfrab1 3318 . . . 4 𝑥{𝑥𝐴𝐵 < +∞}
151, 14dfss3f 3913 . . 3 (𝐴 ⊆ {𝑥𝐴𝐵 < +∞} ↔ ∀𝑥𝐴 𝑥 ∈ {𝑥𝐴𝐵 < +∞})
1613, 15sylibr 233 . 2 (𝜑𝐴 ⊆ {𝑥𝐴𝐵 < +∞})
173, 16eqssd 3939 1 (𝜑 → {𝑥𝐴𝐵 < +∞} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wnf 1786  wcel 2107  wnfc 2888  wral 3065  {crab 3069  wss 3888   class class class wbr 5075  cr 10879  +∞cpnf 11015   < clt 11018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-cnex 10936
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3435  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-br 5076  df-opab 5138  df-xp 5596  df-pnf 11020  df-xr 11022  df-ltxr 11023
This theorem is referenced by:  pimltpnf  44249
  Copyright terms: Public domain W3C validator