Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimltpnff Structured version   Visualization version   GIF version

Theorem pimltpnff 46708
Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +∞, is the whole domain. (Contributed by Glauco Siliprandi, 20-Dec-2024.)
Hypotheses
Ref Expression
pimltpnff.1 𝑥𝜑
pimltpnff.2 𝑥𝐴
pimltpnff.3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Assertion
Ref Expression
pimltpnff (𝜑 → {𝑥𝐴𝐵 < +∞} = 𝐴)

Proof of Theorem pimltpnff
StepHypRef Expression
1 pimltpnff.2 . . . 4 𝑥𝐴
21ssrab2f 45118 . . 3 {𝑥𝐴𝐵 < +∞} ⊆ 𝐴
32a1i 11 . 2 (𝜑 → {𝑥𝐴𝐵 < +∞} ⊆ 𝐴)
4 pimltpnff.1 . . . 4 𝑥𝜑
5 simpr 484 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑥𝐴)
6 pimltpnff.3 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
7 ltpnf 13087 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 < +∞)
86, 7syl 17 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵 < +∞)
95, 8jca 511 . . . . . 6 ((𝜑𝑥𝐴) → (𝑥𝐴𝐵 < +∞))
10 rabid 3430 . . . . . 6 (𝑥 ∈ {𝑥𝐴𝐵 < +∞} ↔ (𝑥𝐴𝐵 < +∞))
119, 10sylibr 234 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ∈ {𝑥𝐴𝐵 < +∞})
1211ex 412 . . . 4 (𝜑 → (𝑥𝐴𝑥 ∈ {𝑥𝐴𝐵 < +∞}))
134, 12ralrimi 3236 . . 3 (𝜑 → ∀𝑥𝐴 𝑥 ∈ {𝑥𝐴𝐵 < +∞})
14 nfrab1 3429 . . . 4 𝑥{𝑥𝐴𝐵 < +∞}
151, 14dfss3f 3941 . . 3 (𝐴 ⊆ {𝑥𝐴𝐵 < +∞} ↔ ∀𝑥𝐴 𝑥 ∈ {𝑥𝐴𝐵 < +∞})
1613, 15sylibr 234 . 2 (𝜑𝐴 ⊆ {𝑥𝐴𝐵 < +∞})
173, 16eqssd 3967 1 (𝜑 → {𝑥𝐴𝐵 < +∞} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wnfc 2877  wral 3045  {crab 3408  wss 3917   class class class wbr 5110  cr 11074  +∞cpnf 11212   < clt 11215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-xp 5647  df-pnf 11217  df-xr 11219  df-ltxr 11220
This theorem is referenced by:  pimltpnf  46709
  Copyright terms: Public domain W3C validator