Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimgtpnf2f Structured version   Visualization version   GIF version

Theorem pimgtpnf2f 46696
Description: Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound +∞, is the empty set. (Contributed by Glauco Siliprandi, 15-Dec-2021.)
Hypotheses
Ref Expression
pimgtpnf2f.1 𝑥𝐹
pimgtpnf2f.2 𝑥𝐴
pimgtpnf2f.3 (𝜑𝐹:𝐴⟶ℝ)
Assertion
Ref Expression
pimgtpnf2f (𝜑 → {𝑥𝐴 ∣ +∞ < (𝐹𝑥)} = ∅)

Proof of Theorem pimgtpnf2f
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 pimgtpnf2f.2 . . 3 𝑥𝐴
2 nfcv 2891 . . 3 𝑦𝐴
3 nfv 1914 . . 3 𝑦+∞ < (𝐹𝑥)
4 nfcv 2891 . . . 4 𝑥+∞
5 nfcv 2891 . . . 4 𝑥 <
6 pimgtpnf2f.1 . . . . 5 𝑥𝐹
7 nfcv 2891 . . . . 5 𝑥𝑦
86, 7nffv 6850 . . . 4 𝑥(𝐹𝑦)
94, 5, 8nfbr 5149 . . 3 𝑥+∞ < (𝐹𝑦)
10 fveq2 6840 . . . 4 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
1110breq2d 5114 . . 3 (𝑥 = 𝑦 → (+∞ < (𝐹𝑥) ↔ +∞ < (𝐹𝑦)))
121, 2, 3, 9, 11cbvrabw 3438 . 2 {𝑥𝐴 ∣ +∞ < (𝐹𝑥)} = {𝑦𝐴 ∣ +∞ < (𝐹𝑦)}
13 pimgtpnf2f.3 . . . . . . . 8 (𝜑𝐹:𝐴⟶ℝ)
1413ffvelcdmda 7038 . . . . . . 7 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ ℝ)
1514rexrd 11200 . . . . . 6 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ ℝ*)
1615pnfged 13067 . . . . 5 ((𝜑𝑦𝐴) → (𝐹𝑦) ≤ +∞)
17 pnfxr 11204 . . . . . . 7 +∞ ∈ ℝ*
1817a1i 11 . . . . . 6 ((𝜑𝑦𝐴) → +∞ ∈ ℝ*)
1915, 18xrlenltd 11216 . . . . 5 ((𝜑𝑦𝐴) → ((𝐹𝑦) ≤ +∞ ↔ ¬ +∞ < (𝐹𝑦)))
2016, 19mpbid 232 . . . 4 ((𝜑𝑦𝐴) → ¬ +∞ < (𝐹𝑦))
2120ralrimiva 3125 . . 3 (𝜑 → ∀𝑦𝐴 ¬ +∞ < (𝐹𝑦))
22 rabeq0 4347 . . 3 ({𝑦𝐴 ∣ +∞ < (𝐹𝑦)} = ∅ ↔ ∀𝑦𝐴 ¬ +∞ < (𝐹𝑦))
2321, 22sylibr 234 . 2 (𝜑 → {𝑦𝐴 ∣ +∞ < (𝐹𝑦)} = ∅)
2412, 23eqtrid 2776 1 (𝜑 → {𝑥𝐴 ∣ +∞ < (𝐹𝑥)} = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wnfc 2876  wral 3044  {crab 3402  c0 4292   class class class wbr 5102  wf 6495  cfv 6499  cr 11043  +∞cpnf 11181  *cxr 11183   < clt 11184  cle 11185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190
This theorem is referenced by:  pimgtpnf2  46697  smfpimgtxr  46771
  Copyright terms: Public domain W3C validator