Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimgtpnf2f Structured version   Visualization version   GIF version

Theorem pimgtpnf2f 45258
Description: Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound +∞, is the empty set. (Contributed by Glauco Siliprandi, 15-Dec-2021.)
Hypotheses
Ref Expression
pimgtpnf2f.1 𝑥𝐹
pimgtpnf2f.2 𝑥𝐴
pimgtpnf2f.3 (𝜑𝐹:𝐴⟶ℝ)
Assertion
Ref Expression
pimgtpnf2f (𝜑 → {𝑥𝐴 ∣ +∞ < (𝐹𝑥)} = ∅)

Proof of Theorem pimgtpnf2f
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 pimgtpnf2f.2 . . 3 𝑥𝐴
2 nfcv 2903 . . 3 𝑦𝐴
3 nfv 1917 . . 3 𝑦+∞ < (𝐹𝑥)
4 nfcv 2903 . . . 4 𝑥+∞
5 nfcv 2903 . . . 4 𝑥 <
6 pimgtpnf2f.1 . . . . 5 𝑥𝐹
7 nfcv 2903 . . . . 5 𝑥𝑦
86, 7nffv 6889 . . . 4 𝑥(𝐹𝑦)
94, 5, 8nfbr 5189 . . 3 𝑥+∞ < (𝐹𝑦)
10 fveq2 6879 . . . 4 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
1110breq2d 5154 . . 3 (𝑥 = 𝑦 → (+∞ < (𝐹𝑥) ↔ +∞ < (𝐹𝑦)))
121, 2, 3, 9, 11cbvrabw 3467 . 2 {𝑥𝐴 ∣ +∞ < (𝐹𝑥)} = {𝑦𝐴 ∣ +∞ < (𝐹𝑦)}
13 pimgtpnf2f.3 . . . . . . . 8 (𝜑𝐹:𝐴⟶ℝ)
1413ffvelcdmda 7072 . . . . . . 7 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ ℝ)
1514rexrd 11248 . . . . . 6 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ ℝ*)
1615pnfged 44021 . . . . 5 ((𝜑𝑦𝐴) → (𝐹𝑦) ≤ +∞)
17 pnfxr 11252 . . . . . . 7 +∞ ∈ ℝ*
1817a1i 11 . . . . . 6 ((𝜑𝑦𝐴) → +∞ ∈ ℝ*)
1915, 18xrlenltd 11264 . . . . 5 ((𝜑𝑦𝐴) → ((𝐹𝑦) ≤ +∞ ↔ ¬ +∞ < (𝐹𝑦)))
2016, 19mpbid 231 . . . 4 ((𝜑𝑦𝐴) → ¬ +∞ < (𝐹𝑦))
2120ralrimiva 3146 . . 3 (𝜑 → ∀𝑦𝐴 ¬ +∞ < (𝐹𝑦))
22 rabeq0 4381 . . 3 ({𝑦𝐴 ∣ +∞ < (𝐹𝑦)} = ∅ ↔ ∀𝑦𝐴 ¬ +∞ < (𝐹𝑦))
2321, 22sylibr 233 . 2 (𝜑 → {𝑦𝐴 ∣ +∞ < (𝐹𝑦)} = ∅)
2412, 23eqtrid 2784 1 (𝜑 → {𝑥𝐴 ∣ +∞ < (𝐹𝑥)} = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  wnfc 2883  wral 3061  {crab 3432  c0 4319   class class class wbr 5142  wf 6529  cfv 6533  cr 11093  +∞cpnf 11229  *cxr 11231   < clt 11232  cle 11233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5293  ax-nul 5300  ax-pow 5357  ax-pr 5421  ax-un 7709  ax-cnex 11150  ax-resscn 11151
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5143  df-opab 5205  df-id 5568  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-fv 6541  df-pnf 11234  df-mnf 11235  df-xr 11236  df-ltxr 11237  df-le 11238
This theorem is referenced by:  pimgtpnf2  45259  smfpimgtxr  45333
  Copyright terms: Public domain W3C validator