| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pimgtpnf2f | Structured version Visualization version GIF version | ||
| Description: Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound +∞, is the empty set. (Contributed by Glauco Siliprandi, 15-Dec-2021.) |
| Ref | Expression |
|---|---|
| pimgtpnf2f.1 | ⊢ Ⅎ𝑥𝐹 |
| pimgtpnf2f.2 | ⊢ Ⅎ𝑥𝐴 |
| pimgtpnf2f.3 | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
| Ref | Expression |
|---|---|
| pimgtpnf2f | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ +∞ < (𝐹‘𝑥)} = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pimgtpnf2f.2 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2891 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
| 3 | nfv 1914 | . . 3 ⊢ Ⅎ𝑦+∞ < (𝐹‘𝑥) | |
| 4 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑥+∞ | |
| 5 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑥 < | |
| 6 | pimgtpnf2f.1 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
| 7 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
| 8 | 6, 7 | nffv 6850 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝑦) |
| 9 | 4, 5, 8 | nfbr 5149 | . . 3 ⊢ Ⅎ𝑥+∞ < (𝐹‘𝑦) |
| 10 | fveq2 6840 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | |
| 11 | 10 | breq2d 5114 | . . 3 ⊢ (𝑥 = 𝑦 → (+∞ < (𝐹‘𝑥) ↔ +∞ < (𝐹‘𝑦))) |
| 12 | 1, 2, 3, 9, 11 | cbvrabw 3438 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ +∞ < (𝐹‘𝑥)} = {𝑦 ∈ 𝐴 ∣ +∞ < (𝐹‘𝑦)} |
| 13 | pimgtpnf2f.3 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) | |
| 14 | 13 | ffvelcdmda 7038 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ ℝ) |
| 15 | 14 | rexrd 11200 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ ℝ*) |
| 16 | 15 | pnfged 13067 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ≤ +∞) |
| 17 | pnfxr 11204 | . . . . . . 7 ⊢ +∞ ∈ ℝ* | |
| 18 | 17 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → +∞ ∈ ℝ*) |
| 19 | 15, 18 | xrlenltd 11216 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝐹‘𝑦) ≤ +∞ ↔ ¬ +∞ < (𝐹‘𝑦))) |
| 20 | 16, 19 | mpbid 232 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ¬ +∞ < (𝐹‘𝑦)) |
| 21 | 20 | ralrimiva 3125 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 ¬ +∞ < (𝐹‘𝑦)) |
| 22 | rabeq0 4347 | . . 3 ⊢ ({𝑦 ∈ 𝐴 ∣ +∞ < (𝐹‘𝑦)} = ∅ ↔ ∀𝑦 ∈ 𝐴 ¬ +∞ < (𝐹‘𝑦)) | |
| 23 | 21, 22 | sylibr 234 | . 2 ⊢ (𝜑 → {𝑦 ∈ 𝐴 ∣ +∞ < (𝐹‘𝑦)} = ∅) |
| 24 | 12, 23 | eqtrid 2776 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ +∞ < (𝐹‘𝑥)} = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Ⅎwnfc 2876 ∀wral 3044 {crab 3402 ∅c0 4292 class class class wbr 5102 ⟶wf 6495 ‘cfv 6499 ℝcr 11043 +∞cpnf 11181 ℝ*cxr 11183 < clt 11184 ≤ cle 11185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 |
| This theorem is referenced by: pimgtpnf2 46697 smfpimgtxr 46771 |
| Copyright terms: Public domain | W3C validator |