![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pimgtpnf2f | Structured version Visualization version GIF version |
Description: Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound +∞, is the empty set. (Contributed by Glauco Siliprandi, 15-Dec-2021.) |
Ref | Expression |
---|---|
pimgtpnf2f.1 | ⊢ Ⅎ𝑥𝐹 |
pimgtpnf2f.2 | ⊢ Ⅎ𝑥𝐴 |
pimgtpnf2f.3 | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
Ref | Expression |
---|---|
pimgtpnf2f | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ +∞ < (𝐹‘𝑥)} = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pimgtpnf2f.2 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2908 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
3 | nfv 1913 | . . 3 ⊢ Ⅎ𝑦+∞ < (𝐹‘𝑥) | |
4 | nfcv 2908 | . . . 4 ⊢ Ⅎ𝑥+∞ | |
5 | nfcv 2908 | . . . 4 ⊢ Ⅎ𝑥 < | |
6 | pimgtpnf2f.1 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
7 | nfcv 2908 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
8 | 6, 7 | nffv 6930 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝑦) |
9 | 4, 5, 8 | nfbr 5213 | . . 3 ⊢ Ⅎ𝑥+∞ < (𝐹‘𝑦) |
10 | fveq2 6920 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | |
11 | 10 | breq2d 5178 | . . 3 ⊢ (𝑥 = 𝑦 → (+∞ < (𝐹‘𝑥) ↔ +∞ < (𝐹‘𝑦))) |
12 | 1, 2, 3, 9, 11 | cbvrabw 3481 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ +∞ < (𝐹‘𝑥)} = {𝑦 ∈ 𝐴 ∣ +∞ < (𝐹‘𝑦)} |
13 | pimgtpnf2f.3 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) | |
14 | 13 | ffvelcdmda 7118 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ ℝ) |
15 | 14 | rexrd 11340 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ ℝ*) |
16 | 15 | pnfged 45389 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ≤ +∞) |
17 | pnfxr 11344 | . . . . . . 7 ⊢ +∞ ∈ ℝ* | |
18 | 17 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → +∞ ∈ ℝ*) |
19 | 15, 18 | xrlenltd 11356 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝐹‘𝑦) ≤ +∞ ↔ ¬ +∞ < (𝐹‘𝑦))) |
20 | 16, 19 | mpbid 232 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ¬ +∞ < (𝐹‘𝑦)) |
21 | 20 | ralrimiva 3152 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 ¬ +∞ < (𝐹‘𝑦)) |
22 | rabeq0 4411 | . . 3 ⊢ ({𝑦 ∈ 𝐴 ∣ +∞ < (𝐹‘𝑦)} = ∅ ↔ ∀𝑦 ∈ 𝐴 ¬ +∞ < (𝐹‘𝑦)) | |
23 | 21, 22 | sylibr 234 | . 2 ⊢ (𝜑 → {𝑦 ∈ 𝐴 ∣ +∞ < (𝐹‘𝑦)} = ∅) |
24 | 12, 23 | eqtrid 2792 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ +∞ < (𝐹‘𝑥)} = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Ⅎwnfc 2893 ∀wral 3067 {crab 3443 ∅c0 4352 class class class wbr 5166 ⟶wf 6569 ‘cfv 6573 ℝcr 11183 +∞cpnf 11321 ℝ*cxr 11323 < clt 11324 ≤ cle 11325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 |
This theorem is referenced by: pimgtpnf2 46627 smfpimgtxr 46701 |
Copyright terms: Public domain | W3C validator |