![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pimgtpnf2f | Structured version Visualization version GIF version |
Description: Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound +β, is the empty set. (Contributed by Glauco Siliprandi, 15-Dec-2021.) |
Ref | Expression |
---|---|
pimgtpnf2f.1 | β’ β²π₯πΉ |
pimgtpnf2f.2 | β’ β²π₯π΄ |
pimgtpnf2f.3 | β’ (π β πΉ:π΄βΆβ) |
Ref | Expression |
---|---|
pimgtpnf2f | β’ (π β {π₯ β π΄ β£ +β < (πΉβπ₯)} = β ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pimgtpnf2f.2 | . . 3 β’ β²π₯π΄ | |
2 | nfcv 2903 | . . 3 β’ β²π¦π΄ | |
3 | nfv 1917 | . . 3 β’ β²π¦+β < (πΉβπ₯) | |
4 | nfcv 2903 | . . . 4 β’ β²π₯+β | |
5 | nfcv 2903 | . . . 4 β’ β²π₯ < | |
6 | pimgtpnf2f.1 | . . . . 5 β’ β²π₯πΉ | |
7 | nfcv 2903 | . . . . 5 β’ β²π₯π¦ | |
8 | 6, 7 | nffv 6901 | . . . 4 β’ β²π₯(πΉβπ¦) |
9 | 4, 5, 8 | nfbr 5195 | . . 3 β’ β²π₯+β < (πΉβπ¦) |
10 | fveq2 6891 | . . . 4 β’ (π₯ = π¦ β (πΉβπ₯) = (πΉβπ¦)) | |
11 | 10 | breq2d 5160 | . . 3 β’ (π₯ = π¦ β (+β < (πΉβπ₯) β +β < (πΉβπ¦))) |
12 | 1, 2, 3, 9, 11 | cbvrabw 3467 | . 2 β’ {π₯ β π΄ β£ +β < (πΉβπ₯)} = {π¦ β π΄ β£ +β < (πΉβπ¦)} |
13 | pimgtpnf2f.3 | . . . . . . . 8 β’ (π β πΉ:π΄βΆβ) | |
14 | 13 | ffvelcdmda 7086 | . . . . . . 7 β’ ((π β§ π¦ β π΄) β (πΉβπ¦) β β) |
15 | 14 | rexrd 11263 | . . . . . 6 β’ ((π β§ π¦ β π΄) β (πΉβπ¦) β β*) |
16 | 15 | pnfged 44174 | . . . . 5 β’ ((π β§ π¦ β π΄) β (πΉβπ¦) β€ +β) |
17 | pnfxr 11267 | . . . . . . 7 β’ +β β β* | |
18 | 17 | a1i 11 | . . . . . 6 β’ ((π β§ π¦ β π΄) β +β β β*) |
19 | 15, 18 | xrlenltd 11279 | . . . . 5 β’ ((π β§ π¦ β π΄) β ((πΉβπ¦) β€ +β β Β¬ +β < (πΉβπ¦))) |
20 | 16, 19 | mpbid 231 | . . . 4 β’ ((π β§ π¦ β π΄) β Β¬ +β < (πΉβπ¦)) |
21 | 20 | ralrimiva 3146 | . . 3 β’ (π β βπ¦ β π΄ Β¬ +β < (πΉβπ¦)) |
22 | rabeq0 4384 | . . 3 β’ ({π¦ β π΄ β£ +β < (πΉβπ¦)} = β β βπ¦ β π΄ Β¬ +β < (πΉβπ¦)) | |
23 | 21, 22 | sylibr 233 | . 2 β’ (π β {π¦ β π΄ β£ +β < (πΉβπ¦)} = β ) |
24 | 12, 23 | eqtrid 2784 | 1 β’ (π β {π₯ β π΄ β£ +β < (πΉβπ₯)} = β ) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 β²wnfc 2883 βwral 3061 {crab 3432 β c0 4322 class class class wbr 5148 βΆwf 6539 βcfv 6543 βcr 11108 +βcpnf 11244 β*cxr 11246 < clt 11247 β€ cle 11248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 |
This theorem is referenced by: pimgtpnf2 45412 smfpimgtxr 45486 |
Copyright terms: Public domain | W3C validator |