Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimgtpnf2f Structured version   Visualization version   GIF version

Theorem pimgtpnf2f 45411
Description: Given a real-valued function, the preimage of an open interval, unbounded above, with lower bound +∞, is the empty set. (Contributed by Glauco Siliprandi, 15-Dec-2021.)
Hypotheses
Ref Expression
pimgtpnf2f.1 β„²π‘₯𝐹
pimgtpnf2f.2 β„²π‘₯𝐴
pimgtpnf2f.3 (πœ‘ β†’ 𝐹:π΄βŸΆβ„)
Assertion
Ref Expression
pimgtpnf2f (πœ‘ β†’ {π‘₯ ∈ 𝐴 ∣ +∞ < (πΉβ€˜π‘₯)} = βˆ…)

Proof of Theorem pimgtpnf2f
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 pimgtpnf2f.2 . . 3 β„²π‘₯𝐴
2 nfcv 2903 . . 3 Ⅎ𝑦𝐴
3 nfv 1917 . . 3 Ⅎ𝑦+∞ < (πΉβ€˜π‘₯)
4 nfcv 2903 . . . 4 β„²π‘₯+∞
5 nfcv 2903 . . . 4 β„²π‘₯ <
6 pimgtpnf2f.1 . . . . 5 β„²π‘₯𝐹
7 nfcv 2903 . . . . 5 β„²π‘₯𝑦
86, 7nffv 6901 . . . 4 β„²π‘₯(πΉβ€˜π‘¦)
94, 5, 8nfbr 5195 . . 3 β„²π‘₯+∞ < (πΉβ€˜π‘¦)
10 fveq2 6891 . . . 4 (π‘₯ = 𝑦 β†’ (πΉβ€˜π‘₯) = (πΉβ€˜π‘¦))
1110breq2d 5160 . . 3 (π‘₯ = 𝑦 β†’ (+∞ < (πΉβ€˜π‘₯) ↔ +∞ < (πΉβ€˜π‘¦)))
121, 2, 3, 9, 11cbvrabw 3467 . 2 {π‘₯ ∈ 𝐴 ∣ +∞ < (πΉβ€˜π‘₯)} = {𝑦 ∈ 𝐴 ∣ +∞ < (πΉβ€˜π‘¦)}
13 pimgtpnf2f.3 . . . . . . . 8 (πœ‘ β†’ 𝐹:π΄βŸΆβ„)
1413ffvelcdmda 7086 . . . . . . 7 ((πœ‘ ∧ 𝑦 ∈ 𝐴) β†’ (πΉβ€˜π‘¦) ∈ ℝ)
1514rexrd 11263 . . . . . 6 ((πœ‘ ∧ 𝑦 ∈ 𝐴) β†’ (πΉβ€˜π‘¦) ∈ ℝ*)
1615pnfged 44174 . . . . 5 ((πœ‘ ∧ 𝑦 ∈ 𝐴) β†’ (πΉβ€˜π‘¦) ≀ +∞)
17 pnfxr 11267 . . . . . . 7 +∞ ∈ ℝ*
1817a1i 11 . . . . . 6 ((πœ‘ ∧ 𝑦 ∈ 𝐴) β†’ +∞ ∈ ℝ*)
1915, 18xrlenltd 11279 . . . . 5 ((πœ‘ ∧ 𝑦 ∈ 𝐴) β†’ ((πΉβ€˜π‘¦) ≀ +∞ ↔ Β¬ +∞ < (πΉβ€˜π‘¦)))
2016, 19mpbid 231 . . . 4 ((πœ‘ ∧ 𝑦 ∈ 𝐴) β†’ Β¬ +∞ < (πΉβ€˜π‘¦))
2120ralrimiva 3146 . . 3 (πœ‘ β†’ βˆ€π‘¦ ∈ 𝐴 Β¬ +∞ < (πΉβ€˜π‘¦))
22 rabeq0 4384 . . 3 ({𝑦 ∈ 𝐴 ∣ +∞ < (πΉβ€˜π‘¦)} = βˆ… ↔ βˆ€π‘¦ ∈ 𝐴 Β¬ +∞ < (πΉβ€˜π‘¦))
2321, 22sylibr 233 . 2 (πœ‘ β†’ {𝑦 ∈ 𝐴 ∣ +∞ < (πΉβ€˜π‘¦)} = βˆ…)
2412, 23eqtrid 2784 1 (πœ‘ β†’ {π‘₯ ∈ 𝐴 ∣ +∞ < (πΉβ€˜π‘₯)} = βˆ…)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  β„²wnfc 2883  βˆ€wral 3061  {crab 3432  βˆ…c0 4322   class class class wbr 5148  βŸΆwf 6539  β€˜cfv 6543  β„cr 11108  +∞cpnf 11244  β„*cxr 11246   < clt 11247   ≀ cle 11248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253
This theorem is referenced by:  pimgtpnf2  45412  smfpimgtxr  45486
  Copyright terms: Public domain W3C validator