Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimltpnf2f Structured version   Visualization version   GIF version

Theorem pimltpnf2f 46717
Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +∞, is the whole domain. (Contributed by Glauco Siliprandi, 15-Dec-2024.)
Hypotheses
Ref Expression
pimltpnf2f.1 𝑥𝐹
pimltpnf2f.2 𝑥𝐴
pimltpnf2f.3 (𝜑𝐹:𝐴⟶ℝ)
Assertion
Ref Expression
pimltpnf2f (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) < +∞} = 𝐴)

Proof of Theorem pimltpnf2f
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 pimltpnf2f.2 . . 3 𝑥𝐴
2 nfcv 2892 . . 3 𝑦𝐴
3 nfv 1914 . . 3 𝑦(𝐹𝑥) < +∞
4 pimltpnf2f.1 . . . . 5 𝑥𝐹
5 nfcv 2892 . . . . 5 𝑥𝑦
64, 5nffv 6871 . . . 4 𝑥(𝐹𝑦)
7 nfcv 2892 . . . 4 𝑥 <
8 nfcv 2892 . . . 4 𝑥+∞
96, 7, 8nfbr 5157 . . 3 𝑥(𝐹𝑦) < +∞
10 fveq2 6861 . . . 4 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
1110breq1d 5120 . . 3 (𝑥 = 𝑦 → ((𝐹𝑥) < +∞ ↔ (𝐹𝑦) < +∞))
121, 2, 3, 9, 11cbvrabw 3444 . 2 {𝑥𝐴 ∣ (𝐹𝑥) < +∞} = {𝑦𝐴 ∣ (𝐹𝑦) < +∞}
13 nfv 1914 . . 3 𝑦𝜑
14 pimltpnf2f.3 . . . 4 (𝜑𝐹:𝐴⟶ℝ)
1514ffvelcdmda 7059 . . 3 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ ℝ)
1613, 15pimltpnf 46709 . 2 (𝜑 → {𝑦𝐴 ∣ (𝐹𝑦) < +∞} = 𝐴)
1712, 16eqtrid 2777 1 (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) < +∞} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wnfc 2877  {crab 3408   class class class wbr 5110  wf 6510  cfv 6514  cr 11074  +∞cpnf 11212   < clt 11215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-pnf 11217  df-xr 11219  df-ltxr 11220
This theorem is referenced by:  pimltpnf2  46718  smfpimltxr  46752
  Copyright terms: Public domain W3C validator