Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pimltpnf2f | Structured version Visualization version GIF version |
Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +∞, is the whole domain. (Contributed by Glauco Siliprandi, 15-Dec-2024.) |
Ref | Expression |
---|---|
pimltpnf2f.1 | ⊢ Ⅎ𝑥𝐹 |
pimltpnf2f.2 | ⊢ Ⅎ𝑥𝐴 |
pimltpnf2f.3 | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
Ref | Expression |
---|---|
pimltpnf2f | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < +∞} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pimltpnf2f.2 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2907 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
3 | nfv 1917 | . . 3 ⊢ Ⅎ𝑦(𝐹‘𝑥) < +∞ | |
4 | pimltpnf2f.1 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
5 | nfcv 2907 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
6 | 4, 5 | nffv 6784 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝑦) |
7 | nfcv 2907 | . . . 4 ⊢ Ⅎ𝑥 < | |
8 | nfcv 2907 | . . . 4 ⊢ Ⅎ𝑥+∞ | |
9 | 6, 7, 8 | nfbr 5121 | . . 3 ⊢ Ⅎ𝑥(𝐹‘𝑦) < +∞ |
10 | fveq2 6774 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | |
11 | 10 | breq1d 5084 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝐹‘𝑥) < +∞ ↔ (𝐹‘𝑦) < +∞)) |
12 | 1, 2, 3, 9, 11 | cbvrabw 3424 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < +∞} = {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) < +∞} |
13 | nfv 1917 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
14 | pimltpnf2f.3 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) | |
15 | 14 | ffvelrnda 6961 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ ℝ) |
16 | 13, 15 | pimltpnf 44241 | . 2 ⊢ (𝜑 → {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) < +∞} = 𝐴) |
17 | 12, 16 | eqtrid 2790 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < +∞} = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 Ⅎwnfc 2887 {crab 3068 class class class wbr 5074 ⟶wf 6429 ‘cfv 6433 ℝcr 10870 +∞cpnf 11006 < clt 11009 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-pnf 11011 df-xr 11013 df-ltxr 11014 |
This theorem is referenced by: pimltpnf2 44250 smfpimltxr 44283 |
Copyright terms: Public domain | W3C validator |