| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pimltpnf2f | Structured version Visualization version GIF version | ||
| Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +∞, is the whole domain. (Contributed by Glauco Siliprandi, 15-Dec-2024.) |
| Ref | Expression |
|---|---|
| pimltpnf2f.1 | ⊢ Ⅎ𝑥𝐹 |
| pimltpnf2f.2 | ⊢ Ⅎ𝑥𝐴 |
| pimltpnf2f.3 | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
| Ref | Expression |
|---|---|
| pimltpnf2f | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < +∞} = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pimltpnf2f.2 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2895 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
| 3 | nfv 1915 | . . 3 ⊢ Ⅎ𝑦(𝐹‘𝑥) < +∞ | |
| 4 | pimltpnf2f.1 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
| 5 | nfcv 2895 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
| 6 | 4, 5 | nffv 6838 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝑦) |
| 7 | nfcv 2895 | . . . 4 ⊢ Ⅎ𝑥 < | |
| 8 | nfcv 2895 | . . . 4 ⊢ Ⅎ𝑥+∞ | |
| 9 | 6, 7, 8 | nfbr 5140 | . . 3 ⊢ Ⅎ𝑥(𝐹‘𝑦) < +∞ |
| 10 | fveq2 6828 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | |
| 11 | 10 | breq1d 5103 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝐹‘𝑥) < +∞ ↔ (𝐹‘𝑦) < +∞)) |
| 12 | 1, 2, 3, 9, 11 | cbvrabw 3431 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < +∞} = {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) < +∞} |
| 13 | nfv 1915 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 14 | pimltpnf2f.3 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) | |
| 15 | 14 | ffvelcdmda 7023 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ ℝ) |
| 16 | 13, 15 | pimltpnf 46826 | . 2 ⊢ (𝜑 → {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) < +∞} = 𝐴) |
| 17 | 12, 16 | eqtrid 2780 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < +∞} = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 Ⅎwnfc 2880 {crab 3396 class class class wbr 5093 ⟶wf 6482 ‘cfv 6486 ℝcr 11012 +∞cpnf 11150 < clt 11153 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-pnf 11155 df-xr 11157 df-ltxr 11158 |
| This theorem is referenced by: pimltpnf2 46835 smfpimltxr 46869 |
| Copyright terms: Public domain | W3C validator |