| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pimltpnf2f | Structured version Visualization version GIF version | ||
| Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +∞, is the whole domain. (Contributed by Glauco Siliprandi, 15-Dec-2024.) |
| Ref | Expression |
|---|---|
| pimltpnf2f.1 | ⊢ Ⅎ𝑥𝐹 |
| pimltpnf2f.2 | ⊢ Ⅎ𝑥𝐴 |
| pimltpnf2f.3 | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
| Ref | Expression |
|---|---|
| pimltpnf2f | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < +∞} = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pimltpnf2f.2 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2891 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
| 3 | nfv 1914 | . . 3 ⊢ Ⅎ𝑦(𝐹‘𝑥) < +∞ | |
| 4 | pimltpnf2f.1 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
| 5 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
| 6 | 4, 5 | nffv 6836 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝑦) |
| 7 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑥 < | |
| 8 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑥+∞ | |
| 9 | 6, 7, 8 | nfbr 5142 | . . 3 ⊢ Ⅎ𝑥(𝐹‘𝑦) < +∞ |
| 10 | fveq2 6826 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | |
| 11 | 10 | breq1d 5105 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝐹‘𝑥) < +∞ ↔ (𝐹‘𝑦) < +∞)) |
| 12 | 1, 2, 3, 9, 11 | cbvrabw 3432 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < +∞} = {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) < +∞} |
| 13 | nfv 1914 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 14 | pimltpnf2f.3 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) | |
| 15 | 14 | ffvelcdmda 7022 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ ℝ) |
| 16 | 13, 15 | pimltpnf 46686 | . 2 ⊢ (𝜑 → {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) < +∞} = 𝐴) |
| 17 | 12, 16 | eqtrid 2776 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < +∞} = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Ⅎwnfc 2876 {crab 3396 class class class wbr 5095 ⟶wf 6482 ‘cfv 6486 ℝcr 11027 +∞cpnf 11165 < clt 11168 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-pnf 11170 df-xr 11172 df-ltxr 11173 |
| This theorem is referenced by: pimltpnf2 46695 smfpimltxr 46729 |
| Copyright terms: Public domain | W3C validator |