| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pimltpnf2f | Structured version Visualization version GIF version | ||
| Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +∞, is the whole domain. (Contributed by Glauco Siliprandi, 15-Dec-2024.) |
| Ref | Expression |
|---|---|
| pimltpnf2f.1 | ⊢ Ⅎ𝑥𝐹 |
| pimltpnf2f.2 | ⊢ Ⅎ𝑥𝐴 |
| pimltpnf2f.3 | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
| Ref | Expression |
|---|---|
| pimltpnf2f | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < +∞} = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pimltpnf2f.2 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2894 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
| 3 | nfv 1915 | . . 3 ⊢ Ⅎ𝑦(𝐹‘𝑥) < +∞ | |
| 4 | pimltpnf2f.1 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
| 5 | nfcv 2894 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
| 6 | 4, 5 | nffv 6832 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝑦) |
| 7 | nfcv 2894 | . . . 4 ⊢ Ⅎ𝑥 < | |
| 8 | nfcv 2894 | . . . 4 ⊢ Ⅎ𝑥+∞ | |
| 9 | 6, 7, 8 | nfbr 5138 | . . 3 ⊢ Ⅎ𝑥(𝐹‘𝑦) < +∞ |
| 10 | fveq2 6822 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) | |
| 11 | 10 | breq1d 5101 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝐹‘𝑥) < +∞ ↔ (𝐹‘𝑦) < +∞)) |
| 12 | 1, 2, 3, 9, 11 | cbvrabw 3430 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < +∞} = {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) < +∞} |
| 13 | nfv 1915 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 14 | pimltpnf2f.3 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ) | |
| 15 | 14 | ffvelcdmda 7017 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ ℝ) |
| 16 | 13, 15 | pimltpnf 46741 | . 2 ⊢ (𝜑 → {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) < +∞} = 𝐴) |
| 17 | 12, 16 | eqtrid 2778 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < +∞} = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 Ⅎwnfc 2879 {crab 3395 class class class wbr 5091 ⟶wf 6477 ‘cfv 6481 ℝcr 11002 +∞cpnf 11140 < clt 11143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-pnf 11145 df-xr 11147 df-ltxr 11148 |
| This theorem is referenced by: pimltpnf2 46750 smfpimltxr 46784 |
| Copyright terms: Public domain | W3C validator |