Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimltpnf2f Structured version   Visualization version   GIF version

Theorem pimltpnf2f 46710
Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +∞, is the whole domain. (Contributed by Glauco Siliprandi, 15-Dec-2024.)
Hypotheses
Ref Expression
pimltpnf2f.1 𝑥𝐹
pimltpnf2f.2 𝑥𝐴
pimltpnf2f.3 (𝜑𝐹:𝐴⟶ℝ)
Assertion
Ref Expression
pimltpnf2f (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) < +∞} = 𝐴)

Proof of Theorem pimltpnf2f
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 pimltpnf2f.2 . . 3 𝑥𝐴
2 nfcv 2891 . . 3 𝑦𝐴
3 nfv 1914 . . 3 𝑦(𝐹𝑥) < +∞
4 pimltpnf2f.1 . . . . 5 𝑥𝐹
5 nfcv 2891 . . . . 5 𝑥𝑦
64, 5nffv 6868 . . . 4 𝑥(𝐹𝑦)
7 nfcv 2891 . . . 4 𝑥 <
8 nfcv 2891 . . . 4 𝑥+∞
96, 7, 8nfbr 5154 . . 3 𝑥(𝐹𝑦) < +∞
10 fveq2 6858 . . . 4 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
1110breq1d 5117 . . 3 (𝑥 = 𝑦 → ((𝐹𝑥) < +∞ ↔ (𝐹𝑦) < +∞))
121, 2, 3, 9, 11cbvrabw 3441 . 2 {𝑥𝐴 ∣ (𝐹𝑥) < +∞} = {𝑦𝐴 ∣ (𝐹𝑦) < +∞}
13 nfv 1914 . . 3 𝑦𝜑
14 pimltpnf2f.3 . . . 4 (𝜑𝐹:𝐴⟶ℝ)
1514ffvelcdmda 7056 . . 3 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ ℝ)
1613, 15pimltpnf 46702 . 2 (𝜑 → {𝑦𝐴 ∣ (𝐹𝑦) < +∞} = 𝐴)
1712, 16eqtrid 2776 1 (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) < +∞} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wnfc 2876  {crab 3405   class class class wbr 5107  wf 6507  cfv 6511  cr 11067  +∞cpnf 11205   < clt 11208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-pnf 11210  df-xr 11212  df-ltxr 11213
This theorem is referenced by:  pimltpnf2  46711  smfpimltxr  46745
  Copyright terms: Public domain W3C validator