![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mapprc | Structured version Visualization version GIF version |
Description: When 𝐴 is a proper class, the class of all functions mapping 𝐴 to 𝐵 is empty. Exercise 4.41 of [Mendelson] p. 255. (Contributed by NM, 8-Dec-2003.) |
Ref | Expression |
---|---|
mapprc | ⊢ (¬ 𝐴 ∈ V → {𝑓 ∣ 𝑓:𝐴⟶𝐵} = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abn0 4379 | . . 3 ⊢ ({𝑓 ∣ 𝑓:𝐴⟶𝐵} ≠ ∅ ↔ ∃𝑓 𝑓:𝐴⟶𝐵) | |
2 | fdm 6723 | . . . . 5 ⊢ (𝑓:𝐴⟶𝐵 → dom 𝑓 = 𝐴) | |
3 | vex 3478 | . . . . . 6 ⊢ 𝑓 ∈ V | |
4 | 3 | dmex 7898 | . . . . 5 ⊢ dom 𝑓 ∈ V |
5 | 2, 4 | eqeltrrdi 2842 | . . . 4 ⊢ (𝑓:𝐴⟶𝐵 → 𝐴 ∈ V) |
6 | 5 | exlimiv 1933 | . . 3 ⊢ (∃𝑓 𝑓:𝐴⟶𝐵 → 𝐴 ∈ V) |
7 | 1, 6 | sylbi 216 | . 2 ⊢ ({𝑓 ∣ 𝑓:𝐴⟶𝐵} ≠ ∅ → 𝐴 ∈ V) |
8 | 7 | necon1bi 2969 | 1 ⊢ (¬ 𝐴 ∈ V → {𝑓 ∣ 𝑓:𝐴⟶𝐵} = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∃wex 1781 ∈ wcel 2106 {cab 2709 ≠ wne 2940 Vcvv 3474 ∅c0 4321 dom cdm 5675 ⟶wf 6536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-cnv 5683 df-dm 5685 df-rn 5686 df-fn 6543 df-f 6544 |
This theorem is referenced by: efmndbasabf 18749 |
Copyright terms: Public domain | W3C validator |