MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapprc Structured version   Visualization version   GIF version

Theorem mapprc 8754
Description: When 𝐴 is a proper class, the class of all functions mapping 𝐴 to 𝐵 is empty. Exercise 4.41 of [Mendelson] p. 255. (Contributed by NM, 8-Dec-2003.)
Assertion
Ref Expression
mapprc 𝐴 ∈ V → {𝑓𝑓:𝐴𝐵} = ∅)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem mapprc
StepHypRef Expression
1 abn0 4332 . . 3 ({𝑓𝑓:𝐴𝐵} ≠ ∅ ↔ ∃𝑓 𝑓:𝐴𝐵)
2 fdm 6660 . . . . 5 (𝑓:𝐴𝐵 → dom 𝑓 = 𝐴)
3 vex 3440 . . . . . 6 𝑓 ∈ V
43dmex 7839 . . . . 5 dom 𝑓 ∈ V
52, 4eqeltrrdi 2840 . . . 4 (𝑓:𝐴𝐵𝐴 ∈ V)
65exlimiv 1931 . . 3 (∃𝑓 𝑓:𝐴𝐵𝐴 ∈ V)
71, 6sylbi 217 . 2 ({𝑓𝑓:𝐴𝐵} ≠ ∅ → 𝐴 ∈ V)
87necon1bi 2956 1 𝐴 ∈ V → {𝑓𝑓:𝐴𝐵} = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wex 1780  wcel 2111  {cab 2709  wne 2928  Vcvv 3436  c0 4280  dom cdm 5614  wf 6477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-cnv 5622  df-dm 5624  df-rn 5625  df-fn 6484  df-f 6485
This theorem is referenced by:  efmndbasabf  18780
  Copyright terms: Public domain W3C validator