MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapprc Structured version   Visualization version   GIF version

Theorem mapprc 8602
Description: When 𝐴 is a proper class, the class of all functions mapping 𝐴 to 𝐵 is empty. Exercise 4.41 of [Mendelson] p. 255. (Contributed by NM, 8-Dec-2003.)
Assertion
Ref Expression
mapprc 𝐴 ∈ V → {𝑓𝑓:𝐴𝐵} = ∅)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem mapprc
StepHypRef Expression
1 abn0 4320 . . 3 ({𝑓𝑓:𝐴𝐵} ≠ ∅ ↔ ∃𝑓 𝑓:𝐴𝐵)
2 fdm 6607 . . . . 5 (𝑓:𝐴𝐵 → dom 𝑓 = 𝐴)
3 vex 3435 . . . . . 6 𝑓 ∈ V
43dmex 7752 . . . . 5 dom 𝑓 ∈ V
52, 4eqeltrrdi 2850 . . . 4 (𝑓:𝐴𝐵𝐴 ∈ V)
65exlimiv 1937 . . 3 (∃𝑓 𝑓:𝐴𝐵𝐴 ∈ V)
71, 6sylbi 216 . 2 ({𝑓𝑓:𝐴𝐵} ≠ ∅ → 𝐴 ∈ V)
87necon1bi 2974 1 𝐴 ∈ V → {𝑓𝑓:𝐴𝐵} = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1542  wex 1786  wcel 2110  {cab 2717  wne 2945  Vcvv 3431  c0 4262  dom cdm 5590  wf 6428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356  ax-un 7582
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-ne 2946  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-cnv 5598  df-dm 5600  df-rn 5601  df-fn 6435  df-f 6436
This theorem is referenced by:  efmndbasabf  18509
  Copyright terms: Public domain W3C validator