| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mapprc | Structured version Visualization version GIF version | ||
| Description: When 𝐴 is a proper class, the class of all functions mapping 𝐴 to 𝐵 is empty. Exercise 4.41 of [Mendelson] p. 255. (Contributed by NM, 8-Dec-2003.) |
| Ref | Expression |
|---|---|
| mapprc | ⊢ (¬ 𝐴 ∈ V → {𝑓 ∣ 𝑓:𝐴⟶𝐵} = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abn0 4348 | . . 3 ⊢ ({𝑓 ∣ 𝑓:𝐴⟶𝐵} ≠ ∅ ↔ ∃𝑓 𝑓:𝐴⟶𝐵) | |
| 2 | fdm 6697 | . . . . 5 ⊢ (𝑓:𝐴⟶𝐵 → dom 𝑓 = 𝐴) | |
| 3 | vex 3451 | . . . . . 6 ⊢ 𝑓 ∈ V | |
| 4 | 3 | dmex 7885 | . . . . 5 ⊢ dom 𝑓 ∈ V |
| 5 | 2, 4 | eqeltrrdi 2837 | . . . 4 ⊢ (𝑓:𝐴⟶𝐵 → 𝐴 ∈ V) |
| 6 | 5 | exlimiv 1930 | . . 3 ⊢ (∃𝑓 𝑓:𝐴⟶𝐵 → 𝐴 ∈ V) |
| 7 | 1, 6 | sylbi 217 | . 2 ⊢ ({𝑓 ∣ 𝑓:𝐴⟶𝐵} ≠ ∅ → 𝐴 ∈ V) |
| 8 | 7 | necon1bi 2953 | 1 ⊢ (¬ 𝐴 ∈ V → {𝑓 ∣ 𝑓:𝐴⟶𝐵} = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2707 ≠ wne 2925 Vcvv 3447 ∅c0 4296 dom cdm 5638 ⟶wf 6507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-cnv 5646 df-dm 5648 df-rn 5649 df-fn 6514 df-f 6515 |
| This theorem is referenced by: efmndbasabf 18799 |
| Copyright terms: Public domain | W3C validator |