| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mapprc | Structured version Visualization version GIF version | ||
| Description: When 𝐴 is a proper class, the class of all functions mapping 𝐴 to 𝐵 is empty. Exercise 4.41 of [Mendelson] p. 255. (Contributed by NM, 8-Dec-2003.) |
| Ref | Expression |
|---|---|
| mapprc | ⊢ (¬ 𝐴 ∈ V → {𝑓 ∣ 𝑓:𝐴⟶𝐵} = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abn0 4365 | . . 3 ⊢ ({𝑓 ∣ 𝑓:𝐴⟶𝐵} ≠ ∅ ↔ ∃𝑓 𝑓:𝐴⟶𝐵) | |
| 2 | fdm 6720 | . . . . 5 ⊢ (𝑓:𝐴⟶𝐵 → dom 𝑓 = 𝐴) | |
| 3 | vex 3468 | . . . . . 6 ⊢ 𝑓 ∈ V | |
| 4 | 3 | dmex 7910 | . . . . 5 ⊢ dom 𝑓 ∈ V |
| 5 | 2, 4 | eqeltrrdi 2844 | . . . 4 ⊢ (𝑓:𝐴⟶𝐵 → 𝐴 ∈ V) |
| 6 | 5 | exlimiv 1930 | . . 3 ⊢ (∃𝑓 𝑓:𝐴⟶𝐵 → 𝐴 ∈ V) |
| 7 | 1, 6 | sylbi 217 | . 2 ⊢ ({𝑓 ∣ 𝑓:𝐴⟶𝐵} ≠ ∅ → 𝐴 ∈ V) |
| 8 | 7 | necon1bi 2961 | 1 ⊢ (¬ 𝐴 ∈ V → {𝑓 ∣ 𝑓:𝐴⟶𝐵} = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2714 ≠ wne 2933 Vcvv 3464 ∅c0 4313 dom cdm 5659 ⟶wf 6532 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-cnv 5667 df-dm 5669 df-rn 5670 df-fn 6539 df-f 6540 |
| This theorem is referenced by: efmndbasabf 18855 |
| Copyright terms: Public domain | W3C validator |