![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mapprc | Structured version Visualization version GIF version |
Description: When 𝐴 is a proper class, the class of all functions mapping 𝐴 to 𝐵 is empty. Exercise 4.41 of [Mendelson] p. 255. (Contributed by NM, 8-Dec-2003.) |
Ref | Expression |
---|---|
mapprc | ⊢ (¬ 𝐴 ∈ V → {𝑓 ∣ 𝑓:𝐴⟶𝐵} = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abn0 4341 | . . 3 ⊢ ({𝑓 ∣ 𝑓:𝐴⟶𝐵} ≠ ∅ ↔ ∃𝑓 𝑓:𝐴⟶𝐵) | |
2 | fdm 6678 | . . . . 5 ⊢ (𝑓:𝐴⟶𝐵 → dom 𝑓 = 𝐴) | |
3 | vex 3448 | . . . . . 6 ⊢ 𝑓 ∈ V | |
4 | 3 | dmex 7849 | . . . . 5 ⊢ dom 𝑓 ∈ V |
5 | 2, 4 | eqeltrrdi 2843 | . . . 4 ⊢ (𝑓:𝐴⟶𝐵 → 𝐴 ∈ V) |
6 | 5 | exlimiv 1934 | . . 3 ⊢ (∃𝑓 𝑓:𝐴⟶𝐵 → 𝐴 ∈ V) |
7 | 1, 6 | sylbi 216 | . 2 ⊢ ({𝑓 ∣ 𝑓:𝐴⟶𝐵} ≠ ∅ → 𝐴 ∈ V) |
8 | 7 | necon1bi 2969 | 1 ⊢ (¬ 𝐴 ∈ V → {𝑓 ∣ 𝑓:𝐴⟶𝐵} = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1542 ∃wex 1782 ∈ wcel 2107 {cab 2710 ≠ wne 2940 Vcvv 3444 ∅c0 4283 dom cdm 5634 ⟶wf 6493 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2941 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-cnv 5642 df-dm 5644 df-rn 5645 df-fn 6500 df-f 6501 |
This theorem is referenced by: efmndbasabf 18687 |
Copyright terms: Public domain | W3C validator |