MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapprc Structured version   Visualization version   GIF version

Theorem mapprc 8849
Description: When 𝐴 is a proper class, the class of all functions mapping 𝐴 to 𝐵 is empty. Exercise 4.41 of [Mendelson] p. 255. (Contributed by NM, 8-Dec-2003.)
Assertion
Ref Expression
mapprc 𝐴 ∈ V → {𝑓𝑓:𝐴𝐵} = ∅)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem mapprc
StepHypRef Expression
1 abn0 4365 . . 3 ({𝑓𝑓:𝐴𝐵} ≠ ∅ ↔ ∃𝑓 𝑓:𝐴𝐵)
2 fdm 6720 . . . . 5 (𝑓:𝐴𝐵 → dom 𝑓 = 𝐴)
3 vex 3468 . . . . . 6 𝑓 ∈ V
43dmex 7910 . . . . 5 dom 𝑓 ∈ V
52, 4eqeltrrdi 2844 . . . 4 (𝑓:𝐴𝐵𝐴 ∈ V)
65exlimiv 1930 . . 3 (∃𝑓 𝑓:𝐴𝐵𝐴 ∈ V)
71, 6sylbi 217 . 2 ({𝑓𝑓:𝐴𝐵} ≠ ∅ → 𝐴 ∈ V)
87necon1bi 2961 1 𝐴 ∈ V → {𝑓𝑓:𝐴𝐵} = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wex 1779  wcel 2109  {cab 2714  wne 2933  Vcvv 3464  c0 4313  dom cdm 5659  wf 6532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-cnv 5667  df-dm 5669  df-rn 5670  df-fn 6539  df-f 6540
This theorem is referenced by:  efmndbasabf  18855
  Copyright terms: Public domain W3C validator