Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > reuprpr | Structured version Visualization version GIF version |
Description: There is a unique proper unordered pair fulfilling a wff iff there are uniquely two different sets fulfilling a corresponding wff. (Contributed by AV, 30-Apr-2023.) |
Ref | Expression |
---|---|
reupr.a | ⊢ (𝑝 = {𝑎, 𝑏} → (𝜓 ↔ 𝜒)) |
reupr.x | ⊢ (𝑝 = {𝑥, 𝑦} → (𝜓 ↔ 𝜃)) |
Ref | Expression |
---|---|
reuprpr | ⊢ (𝑋 ∈ 𝑉 → (∃!𝑝 ∈ (Pairsproper‘𝑋)𝜓 ↔ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑎 ≠ 𝑏 ∧ 𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 ≠ 𝑦 ∧ 𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prprsprreu 44463 | . 2 ⊢ (𝑋 ∈ 𝑉 → (∃!𝑝 ∈ (Pairsproper‘𝑋)𝜓 ↔ ∃!𝑝 ∈ (Pairs‘𝑋)((♯‘𝑝) = 2 ∧ 𝜓))) | |
2 | fveqeq2 6672 | . . . . 5 ⊢ (𝑝 = {𝑎, 𝑏} → ((♯‘𝑝) = 2 ↔ (♯‘{𝑎, 𝑏}) = 2)) | |
3 | hashprg 13819 | . . . . . 6 ⊢ ((𝑎 ∈ V ∧ 𝑏 ∈ V) → (𝑎 ≠ 𝑏 ↔ (♯‘{𝑎, 𝑏}) = 2)) | |
4 | 3 | el2v 3417 | . . . . 5 ⊢ (𝑎 ≠ 𝑏 ↔ (♯‘{𝑎, 𝑏}) = 2) |
5 | 2, 4 | bitr4di 292 | . . . 4 ⊢ (𝑝 = {𝑎, 𝑏} → ((♯‘𝑝) = 2 ↔ 𝑎 ≠ 𝑏)) |
6 | reupr.a | . . . 4 ⊢ (𝑝 = {𝑎, 𝑏} → (𝜓 ↔ 𝜒)) | |
7 | 5, 6 | anbi12d 633 | . . 3 ⊢ (𝑝 = {𝑎, 𝑏} → (((♯‘𝑝) = 2 ∧ 𝜓) ↔ (𝑎 ≠ 𝑏 ∧ 𝜒))) |
8 | fveqeq2 6672 | . . . . 5 ⊢ (𝑝 = {𝑥, 𝑦} → ((♯‘𝑝) = 2 ↔ (♯‘{𝑥, 𝑦}) = 2)) | |
9 | hashprg 13819 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 ≠ 𝑦 ↔ (♯‘{𝑥, 𝑦}) = 2)) | |
10 | 9 | el2v 3417 | . . . . 5 ⊢ (𝑥 ≠ 𝑦 ↔ (♯‘{𝑥, 𝑦}) = 2) |
11 | 8, 10 | bitr4di 292 | . . . 4 ⊢ (𝑝 = {𝑥, 𝑦} → ((♯‘𝑝) = 2 ↔ 𝑥 ≠ 𝑦)) |
12 | reupr.x | . . . 4 ⊢ (𝑝 = {𝑥, 𝑦} → (𝜓 ↔ 𝜃)) | |
13 | 11, 12 | anbi12d 633 | . . 3 ⊢ (𝑝 = {𝑥, 𝑦} → (((♯‘𝑝) = 2 ∧ 𝜓) ↔ (𝑥 ≠ 𝑦 ∧ 𝜃))) |
14 | 7, 13 | reupr 44466 | . 2 ⊢ (𝑋 ∈ 𝑉 → (∃!𝑝 ∈ (Pairs‘𝑋)((♯‘𝑝) = 2 ∧ 𝜓) ↔ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 ((𝑎 ≠ 𝑏 ∧ 𝜒) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 ≠ 𝑦 ∧ 𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏})))) |
15 | df-3an 1086 | . . . . 5 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 ≠ 𝑦 ∧ 𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏})) ↔ ((𝑎 ≠ 𝑏 ∧ 𝜒) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 ≠ 𝑦 ∧ 𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏}))) | |
16 | 15 | bicomi 227 | . . . 4 ⊢ (((𝑎 ≠ 𝑏 ∧ 𝜒) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 ≠ 𝑦 ∧ 𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏})) ↔ (𝑎 ≠ 𝑏 ∧ 𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 ≠ 𝑦 ∧ 𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏}))) |
17 | 16 | a1i 11 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (((𝑎 ≠ 𝑏 ∧ 𝜒) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 ≠ 𝑦 ∧ 𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏})) ↔ (𝑎 ≠ 𝑏 ∧ 𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 ≠ 𝑦 ∧ 𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏})))) |
18 | 17 | 2rexbidv 3224 | . 2 ⊢ (𝑋 ∈ 𝑉 → (∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 ((𝑎 ≠ 𝑏 ∧ 𝜒) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 ≠ 𝑦 ∧ 𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏})) ↔ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑎 ≠ 𝑏 ∧ 𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 ≠ 𝑦 ∧ 𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏})))) |
19 | 1, 14, 18 | 3bitrd 308 | 1 ⊢ (𝑋 ∈ 𝑉 → (∃!𝑝 ∈ (Pairsproper‘𝑋)𝜓 ↔ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑎 ≠ 𝑏 ∧ 𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 ≠ 𝑦 ∧ 𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏})))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ∀wral 3070 ∃wrex 3071 ∃!wreu 3072 Vcvv 3409 {cpr 4527 ‘cfv 6340 2c2 11742 ♯chash 13753 Pairscspr 44421 Pairspropercprpr 44456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-1st 7699 df-2nd 7700 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-oadd 8122 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-dju 9376 df-card 9414 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-nn 11688 df-2 11750 df-n0 11948 df-z 12034 df-uz 12296 df-fz 12953 df-hash 13754 df-spr 44422 df-prpr 44457 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |