Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reuprpr Structured version   Visualization version   GIF version

Theorem reuprpr 44467
 Description: There is a unique proper unordered pair fulfilling a wff iff there are uniquely two different sets fulfilling a corresponding wff. (Contributed by AV, 30-Apr-2023.)
Hypotheses
Ref Expression
reupr.a (𝑝 = {𝑎, 𝑏} → (𝜓𝜒))
reupr.x (𝑝 = {𝑥, 𝑦} → (𝜓𝜃))
Assertion
Ref Expression
reuprpr (𝑋𝑉 → (∃!𝑝 ∈ (Pairsproper𝑋)𝜓 ↔ ∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝜒 ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥𝑦𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏}))))
Distinct variable groups:   𝑉,𝑎,𝑏,𝑝,𝑥,𝑦   𝑋,𝑎,𝑏,𝑝,𝑥,𝑦   𝜓,𝑎,𝑏,𝑥,𝑦   𝜃,𝑝   𝜒,𝑝
Allowed substitution hints:   𝜓(𝑝)   𝜒(𝑥,𝑦,𝑎,𝑏)   𝜃(𝑥,𝑦,𝑎,𝑏)

Proof of Theorem reuprpr
StepHypRef Expression
1 prprsprreu 44463 . 2 (𝑋𝑉 → (∃!𝑝 ∈ (Pairsproper𝑋)𝜓 ↔ ∃!𝑝 ∈ (Pairs‘𝑋)((♯‘𝑝) = 2 ∧ 𝜓)))
2 fveqeq2 6672 . . . . 5 (𝑝 = {𝑎, 𝑏} → ((♯‘𝑝) = 2 ↔ (♯‘{𝑎, 𝑏}) = 2))
3 hashprg 13819 . . . . . 6 ((𝑎 ∈ V ∧ 𝑏 ∈ V) → (𝑎𝑏 ↔ (♯‘{𝑎, 𝑏}) = 2))
43el2v 3417 . . . . 5 (𝑎𝑏 ↔ (♯‘{𝑎, 𝑏}) = 2)
52, 4bitr4di 292 . . . 4 (𝑝 = {𝑎, 𝑏} → ((♯‘𝑝) = 2 ↔ 𝑎𝑏))
6 reupr.a . . . 4 (𝑝 = {𝑎, 𝑏} → (𝜓𝜒))
75, 6anbi12d 633 . . 3 (𝑝 = {𝑎, 𝑏} → (((♯‘𝑝) = 2 ∧ 𝜓) ↔ (𝑎𝑏𝜒)))
8 fveqeq2 6672 . . . . 5 (𝑝 = {𝑥, 𝑦} → ((♯‘𝑝) = 2 ↔ (♯‘{𝑥, 𝑦}) = 2))
9 hashprg 13819 . . . . . 6 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥𝑦 ↔ (♯‘{𝑥, 𝑦}) = 2))
109el2v 3417 . . . . 5 (𝑥𝑦 ↔ (♯‘{𝑥, 𝑦}) = 2)
118, 10bitr4di 292 . . . 4 (𝑝 = {𝑥, 𝑦} → ((♯‘𝑝) = 2 ↔ 𝑥𝑦))
12 reupr.x . . . 4 (𝑝 = {𝑥, 𝑦} → (𝜓𝜃))
1311, 12anbi12d 633 . . 3 (𝑝 = {𝑥, 𝑦} → (((♯‘𝑝) = 2 ∧ 𝜓) ↔ (𝑥𝑦𝜃)))
147, 13reupr 44466 . 2 (𝑋𝑉 → (∃!𝑝 ∈ (Pairs‘𝑋)((♯‘𝑝) = 2 ∧ 𝜓) ↔ ∃𝑎𝑋𝑏𝑋 ((𝑎𝑏𝜒) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥𝑦𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏}))))
15 df-3an 1086 . . . . 5 ((𝑎𝑏𝜒 ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥𝑦𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏})) ↔ ((𝑎𝑏𝜒) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥𝑦𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏})))
1615bicomi 227 . . . 4 (((𝑎𝑏𝜒) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥𝑦𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏})) ↔ (𝑎𝑏𝜒 ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥𝑦𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏})))
1716a1i 11 . . 3 (𝑋𝑉 → (((𝑎𝑏𝜒) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥𝑦𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏})) ↔ (𝑎𝑏𝜒 ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥𝑦𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏}))))
18172rexbidv 3224 . 2 (𝑋𝑉 → (∃𝑎𝑋𝑏𝑋 ((𝑎𝑏𝜒) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥𝑦𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏})) ↔ ∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝜒 ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥𝑦𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏}))))
191, 14, 183bitrd 308 1 (𝑋𝑉 → (∃!𝑝 ∈ (Pairsproper𝑋)𝜓 ↔ ∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝜒 ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥𝑦𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏}))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2951  ∀wral 3070  ∃wrex 3071  ∃!wreu 3072  Vcvv 3409  {cpr 4527  ‘cfv 6340  2c2 11742  ♯chash 13753  Pairscspr 44421  Pairspropercprpr 44456 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-oadd 8122  df-er 8305  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-dju 9376  df-card 9414  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-nn 11688  df-2 11750  df-n0 11948  df-z 12034  df-uz 12296  df-fz 12953  df-hash 13754  df-spr 44422  df-prpr 44457 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator