![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > reuprpr | Structured version Visualization version GIF version |
Description: There is a unique proper unordered pair fulfilling a wff iff there are uniquely two different sets fulfilling a corresponding wff. (Contributed by AV, 30-Apr-2023.) |
Ref | Expression |
---|---|
reupr.a | ⊢ (𝑝 = {𝑎, 𝑏} → (𝜓 ↔ 𝜒)) |
reupr.x | ⊢ (𝑝 = {𝑥, 𝑦} → (𝜓 ↔ 𝜃)) |
Ref | Expression |
---|---|
reuprpr | ⊢ (𝑋 ∈ 𝑉 → (∃!𝑝 ∈ (Pairsproper‘𝑋)𝜓 ↔ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑎 ≠ 𝑏 ∧ 𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 ≠ 𝑦 ∧ 𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prprsprreu 47091 | . 2 ⊢ (𝑋 ∈ 𝑉 → (∃!𝑝 ∈ (Pairsproper‘𝑋)𝜓 ↔ ∃!𝑝 ∈ (Pairs‘𝑋)((♯‘𝑝) = 2 ∧ 𝜓))) | |
2 | fveqeq2 6910 | . . . . 5 ⊢ (𝑝 = {𝑎, 𝑏} → ((♯‘𝑝) = 2 ↔ (♯‘{𝑎, 𝑏}) = 2)) | |
3 | hashprg 14412 | . . . . . 6 ⊢ ((𝑎 ∈ V ∧ 𝑏 ∈ V) → (𝑎 ≠ 𝑏 ↔ (♯‘{𝑎, 𝑏}) = 2)) | |
4 | 3 | el2v 3470 | . . . . 5 ⊢ (𝑎 ≠ 𝑏 ↔ (♯‘{𝑎, 𝑏}) = 2) |
5 | 2, 4 | bitr4di 288 | . . . 4 ⊢ (𝑝 = {𝑎, 𝑏} → ((♯‘𝑝) = 2 ↔ 𝑎 ≠ 𝑏)) |
6 | reupr.a | . . . 4 ⊢ (𝑝 = {𝑎, 𝑏} → (𝜓 ↔ 𝜒)) | |
7 | 5, 6 | anbi12d 630 | . . 3 ⊢ (𝑝 = {𝑎, 𝑏} → (((♯‘𝑝) = 2 ∧ 𝜓) ↔ (𝑎 ≠ 𝑏 ∧ 𝜒))) |
8 | fveqeq2 6910 | . . . . 5 ⊢ (𝑝 = {𝑥, 𝑦} → ((♯‘𝑝) = 2 ↔ (♯‘{𝑥, 𝑦}) = 2)) | |
9 | hashprg 14412 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 ≠ 𝑦 ↔ (♯‘{𝑥, 𝑦}) = 2)) | |
10 | 9 | el2v 3470 | . . . . 5 ⊢ (𝑥 ≠ 𝑦 ↔ (♯‘{𝑥, 𝑦}) = 2) |
11 | 8, 10 | bitr4di 288 | . . . 4 ⊢ (𝑝 = {𝑥, 𝑦} → ((♯‘𝑝) = 2 ↔ 𝑥 ≠ 𝑦)) |
12 | reupr.x | . . . 4 ⊢ (𝑝 = {𝑥, 𝑦} → (𝜓 ↔ 𝜃)) | |
13 | 11, 12 | anbi12d 630 | . . 3 ⊢ (𝑝 = {𝑥, 𝑦} → (((♯‘𝑝) = 2 ∧ 𝜓) ↔ (𝑥 ≠ 𝑦 ∧ 𝜃))) |
14 | 7, 13 | reupr 47094 | . 2 ⊢ (𝑋 ∈ 𝑉 → (∃!𝑝 ∈ (Pairs‘𝑋)((♯‘𝑝) = 2 ∧ 𝜓) ↔ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 ((𝑎 ≠ 𝑏 ∧ 𝜒) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 ≠ 𝑦 ∧ 𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏})))) |
15 | df-3an 1086 | . . . . 5 ⊢ ((𝑎 ≠ 𝑏 ∧ 𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 ≠ 𝑦 ∧ 𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏})) ↔ ((𝑎 ≠ 𝑏 ∧ 𝜒) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 ≠ 𝑦 ∧ 𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏}))) | |
16 | 15 | bicomi 223 | . . . 4 ⊢ (((𝑎 ≠ 𝑏 ∧ 𝜒) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 ≠ 𝑦 ∧ 𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏})) ↔ (𝑎 ≠ 𝑏 ∧ 𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 ≠ 𝑦 ∧ 𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏}))) |
17 | 16 | a1i 11 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (((𝑎 ≠ 𝑏 ∧ 𝜒) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 ≠ 𝑦 ∧ 𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏})) ↔ (𝑎 ≠ 𝑏 ∧ 𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 ≠ 𝑦 ∧ 𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏})))) |
18 | 17 | 2rexbidv 3210 | . 2 ⊢ (𝑋 ∈ 𝑉 → (∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 ((𝑎 ≠ 𝑏 ∧ 𝜒) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 ≠ 𝑦 ∧ 𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏})) ↔ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑎 ≠ 𝑏 ∧ 𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 ≠ 𝑦 ∧ 𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏})))) |
19 | 1, 14, 18 | 3bitrd 304 | 1 ⊢ (𝑋 ∈ 𝑉 → (∃!𝑝 ∈ (Pairsproper‘𝑋)𝜓 ↔ ∃𝑎 ∈ 𝑋 ∃𝑏 ∈ 𝑋 (𝑎 ≠ 𝑏 ∧ 𝜒 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 ≠ 𝑦 ∧ 𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏})))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 ∀wral 3051 ∃wrex 3060 ∃!wreu 3362 Vcvv 3462 {cpr 4635 ‘cfv 6554 2c2 12319 ♯chash 14347 Pairscspr 47049 Pairspropercprpr 47084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-oadd 8500 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-dju 9944 df-card 9982 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-2 12327 df-n0 12525 df-z 12611 df-uz 12875 df-fz 13539 df-hash 14348 df-spr 47050 df-prpr 47085 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |