Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reuprpr Structured version   Visualization version   GIF version

Theorem reuprpr 47622
Description: There is a unique proper unordered pair fulfilling a wff iff there are uniquely two different sets fulfilling a corresponding wff. (Contributed by AV, 30-Apr-2023.)
Hypotheses
Ref Expression
reupr.a (𝑝 = {𝑎, 𝑏} → (𝜓𝜒))
reupr.x (𝑝 = {𝑥, 𝑦} → (𝜓𝜃))
Assertion
Ref Expression
reuprpr (𝑋𝑉 → (∃!𝑝 ∈ (Pairsproper𝑋)𝜓 ↔ ∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝜒 ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥𝑦𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏}))))
Distinct variable groups:   𝑉,𝑎,𝑏,𝑝,𝑥,𝑦   𝑋,𝑎,𝑏,𝑝,𝑥,𝑦   𝜓,𝑎,𝑏,𝑥,𝑦   𝜃,𝑝   𝜒,𝑝
Allowed substitution hints:   𝜓(𝑝)   𝜒(𝑥,𝑦,𝑎,𝑏)   𝜃(𝑥,𝑦,𝑎,𝑏)

Proof of Theorem reuprpr
StepHypRef Expression
1 prprsprreu 47618 . 2 (𝑋𝑉 → (∃!𝑝 ∈ (Pairsproper𝑋)𝜓 ↔ ∃!𝑝 ∈ (Pairs‘𝑋)((♯‘𝑝) = 2 ∧ 𝜓)))
2 fveqeq2 6831 . . . . 5 (𝑝 = {𝑎, 𝑏} → ((♯‘𝑝) = 2 ↔ (♯‘{𝑎, 𝑏}) = 2))
3 hashprg 14302 . . . . . 6 ((𝑎 ∈ V ∧ 𝑏 ∈ V) → (𝑎𝑏 ↔ (♯‘{𝑎, 𝑏}) = 2))
43el2v 3443 . . . . 5 (𝑎𝑏 ↔ (♯‘{𝑎, 𝑏}) = 2)
52, 4bitr4di 289 . . . 4 (𝑝 = {𝑎, 𝑏} → ((♯‘𝑝) = 2 ↔ 𝑎𝑏))
6 reupr.a . . . 4 (𝑝 = {𝑎, 𝑏} → (𝜓𝜒))
75, 6anbi12d 632 . . 3 (𝑝 = {𝑎, 𝑏} → (((♯‘𝑝) = 2 ∧ 𝜓) ↔ (𝑎𝑏𝜒)))
8 fveqeq2 6831 . . . . 5 (𝑝 = {𝑥, 𝑦} → ((♯‘𝑝) = 2 ↔ (♯‘{𝑥, 𝑦}) = 2))
9 hashprg 14302 . . . . . 6 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥𝑦 ↔ (♯‘{𝑥, 𝑦}) = 2))
109el2v 3443 . . . . 5 (𝑥𝑦 ↔ (♯‘{𝑥, 𝑦}) = 2)
118, 10bitr4di 289 . . . 4 (𝑝 = {𝑥, 𝑦} → ((♯‘𝑝) = 2 ↔ 𝑥𝑦))
12 reupr.x . . . 4 (𝑝 = {𝑥, 𝑦} → (𝜓𝜃))
1311, 12anbi12d 632 . . 3 (𝑝 = {𝑥, 𝑦} → (((♯‘𝑝) = 2 ∧ 𝜓) ↔ (𝑥𝑦𝜃)))
147, 13reupr 47621 . 2 (𝑋𝑉 → (∃!𝑝 ∈ (Pairs‘𝑋)((♯‘𝑝) = 2 ∧ 𝜓) ↔ ∃𝑎𝑋𝑏𝑋 ((𝑎𝑏𝜒) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥𝑦𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏}))))
15 df-3an 1088 . . . . 5 ((𝑎𝑏𝜒 ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥𝑦𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏})) ↔ ((𝑎𝑏𝜒) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥𝑦𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏})))
1615bicomi 224 . . . 4 (((𝑎𝑏𝜒) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥𝑦𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏})) ↔ (𝑎𝑏𝜒 ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥𝑦𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏})))
1716a1i 11 . . 3 (𝑋𝑉 → (((𝑎𝑏𝜒) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥𝑦𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏})) ↔ (𝑎𝑏𝜒 ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥𝑦𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏}))))
18172rexbidv 3197 . 2 (𝑋𝑉 → (∃𝑎𝑋𝑏𝑋 ((𝑎𝑏𝜒) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥𝑦𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏})) ↔ ∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝜒 ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥𝑦𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏}))))
191, 14, 183bitrd 305 1 (𝑋𝑉 → (∃!𝑝 ∈ (Pairsproper𝑋)𝜓 ↔ ∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝜒 ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥𝑦𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  ∃!wreu 3344  Vcvv 3436  {cpr 4575  cfv 6481  2c2 12180  chash 14237  Pairscspr 47576  Pairspropercprpr 47611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-hash 14238  df-spr 47577  df-prpr 47612
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator