Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reuprpr Structured version   Visualization version   GIF version

Theorem reuprpr 46064
Description: There is a unique proper unordered pair fulfilling a wff iff there are uniquely two different sets fulfilling a corresponding wff. (Contributed by AV, 30-Apr-2023.)
Hypotheses
Ref Expression
reupr.a (𝑝 = {𝑎, 𝑏} → (𝜓𝜒))
reupr.x (𝑝 = {𝑥, 𝑦} → (𝜓𝜃))
Assertion
Ref Expression
reuprpr (𝑋𝑉 → (∃!𝑝 ∈ (Pairsproper𝑋)𝜓 ↔ ∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝜒 ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥𝑦𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏}))))
Distinct variable groups:   𝑉,𝑎,𝑏,𝑝,𝑥,𝑦   𝑋,𝑎,𝑏,𝑝,𝑥,𝑦   𝜓,𝑎,𝑏,𝑥,𝑦   𝜃,𝑝   𝜒,𝑝
Allowed substitution hints:   𝜓(𝑝)   𝜒(𝑥,𝑦,𝑎,𝑏)   𝜃(𝑥,𝑦,𝑎,𝑏)

Proof of Theorem reuprpr
StepHypRef Expression
1 prprsprreu 46060 . 2 (𝑋𝑉 → (∃!𝑝 ∈ (Pairsproper𝑋)𝜓 ↔ ∃!𝑝 ∈ (Pairs‘𝑋)((♯‘𝑝) = 2 ∧ 𝜓)))
2 fveqeq2 6890 . . . . 5 (𝑝 = {𝑎, 𝑏} → ((♯‘𝑝) = 2 ↔ (♯‘{𝑎, 𝑏}) = 2))
3 hashprg 14342 . . . . . 6 ((𝑎 ∈ V ∧ 𝑏 ∈ V) → (𝑎𝑏 ↔ (♯‘{𝑎, 𝑏}) = 2))
43el2v 3483 . . . . 5 (𝑎𝑏 ↔ (♯‘{𝑎, 𝑏}) = 2)
52, 4bitr4di 289 . . . 4 (𝑝 = {𝑎, 𝑏} → ((♯‘𝑝) = 2 ↔ 𝑎𝑏))
6 reupr.a . . . 4 (𝑝 = {𝑎, 𝑏} → (𝜓𝜒))
75, 6anbi12d 632 . . 3 (𝑝 = {𝑎, 𝑏} → (((♯‘𝑝) = 2 ∧ 𝜓) ↔ (𝑎𝑏𝜒)))
8 fveqeq2 6890 . . . . 5 (𝑝 = {𝑥, 𝑦} → ((♯‘𝑝) = 2 ↔ (♯‘{𝑥, 𝑦}) = 2))
9 hashprg 14342 . . . . . 6 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥𝑦 ↔ (♯‘{𝑥, 𝑦}) = 2))
109el2v 3483 . . . . 5 (𝑥𝑦 ↔ (♯‘{𝑥, 𝑦}) = 2)
118, 10bitr4di 289 . . . 4 (𝑝 = {𝑥, 𝑦} → ((♯‘𝑝) = 2 ↔ 𝑥𝑦))
12 reupr.x . . . 4 (𝑝 = {𝑥, 𝑦} → (𝜓𝜃))
1311, 12anbi12d 632 . . 3 (𝑝 = {𝑥, 𝑦} → (((♯‘𝑝) = 2 ∧ 𝜓) ↔ (𝑥𝑦𝜃)))
147, 13reupr 46063 . 2 (𝑋𝑉 → (∃!𝑝 ∈ (Pairs‘𝑋)((♯‘𝑝) = 2 ∧ 𝜓) ↔ ∃𝑎𝑋𝑏𝑋 ((𝑎𝑏𝜒) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥𝑦𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏}))))
15 df-3an 1090 . . . . 5 ((𝑎𝑏𝜒 ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥𝑦𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏})) ↔ ((𝑎𝑏𝜒) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥𝑦𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏})))
1615bicomi 223 . . . 4 (((𝑎𝑏𝜒) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥𝑦𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏})) ↔ (𝑎𝑏𝜒 ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥𝑦𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏})))
1716a1i 11 . . 3 (𝑋𝑉 → (((𝑎𝑏𝜒) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥𝑦𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏})) ↔ (𝑎𝑏𝜒 ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥𝑦𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏}))))
18172rexbidv 3220 . 2 (𝑋𝑉 → (∃𝑎𝑋𝑏𝑋 ((𝑎𝑏𝜒) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥𝑦𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏})) ↔ ∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝜒 ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥𝑦𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏}))))
191, 14, 183bitrd 305 1 (𝑋𝑉 → (∃!𝑝 ∈ (Pairsproper𝑋)𝜓 ↔ ∃𝑎𝑋𝑏𝑋 (𝑎𝑏𝜒 ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥𝑦𝜃) → {𝑥, 𝑦} = {𝑎, 𝑏}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2941  wral 3062  wrex 3071  ∃!wreu 3375  Vcvv 3475  {cpr 4626  cfv 6535  2c2 12254  chash 14277  Pairscspr 46018  Pairspropercprpr 46053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712  ax-cnex 11153  ax-resscn 11154  ax-1cn 11155  ax-icn 11156  ax-addcl 11157  ax-addrcl 11158  ax-mulcl 11159  ax-mulrcl 11160  ax-mulcom 11161  ax-addass 11162  ax-mulass 11163  ax-distr 11164  ax-i2m1 11165  ax-1ne0 11166  ax-1rid 11167  ax-rnegex 11168  ax-rrecex 11169  ax-cnre 11170  ax-pre-lttri 11171  ax-pre-lttrn 11172  ax-pre-ltadd 11173  ax-pre-mulgt0 11174
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4905  df-int 4947  df-iun 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6292  df-ord 6359  df-on 6360  df-lim 6361  df-suc 6362  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-riota 7352  df-ov 7399  df-oprab 7400  df-mpo 7401  df-om 7843  df-1st 7962  df-2nd 7963  df-frecs 8253  df-wrecs 8284  df-recs 8358  df-rdg 8397  df-1o 8453  df-oadd 8457  df-er 8691  df-en 8928  df-dom 8929  df-sdom 8930  df-fin 8931  df-dju 9883  df-card 9921  df-pnf 11237  df-mnf 11238  df-xr 11239  df-ltxr 11240  df-le 11241  df-sub 11433  df-neg 11434  df-nn 12200  df-2 12262  df-n0 12460  df-z 12546  df-uz 12810  df-fz 13472  df-hash 14278  df-spr 46019  df-prpr 46054
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator