| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fz0to4untppr | Structured version Visualization version GIF version | ||
| Description: An integer range from 0 to 4 is the union of a triple and a pair. (Contributed by Alexander van der Vekens, 13-Aug-2017.) (Proof shortened by AV, 7-Aug-2025.) |
| Ref | Expression |
|---|---|
| fz0to4untppr | ⊢ (0...4) = ({0, 1, 2} ∪ {3, 4}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2p1e3 12387 | . . . 4 ⊢ (2 + 1) = 3 | |
| 2 | 0z 12604 | . . . . 5 ⊢ 0 ∈ ℤ | |
| 3 | 3z 12630 | . . . . 5 ⊢ 3 ∈ ℤ | |
| 4 | 0re 11242 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 5 | 3re 12325 | . . . . . 6 ⊢ 3 ∈ ℝ | |
| 6 | 3pos 12350 | . . . . . 6 ⊢ 0 < 3 | |
| 7 | 4, 5, 6 | ltleii 11363 | . . . . 5 ⊢ 0 ≤ 3 |
| 8 | eluz2 12863 | . . . . 5 ⊢ (3 ∈ (ℤ≥‘0) ↔ (0 ∈ ℤ ∧ 3 ∈ ℤ ∧ 0 ≤ 3)) | |
| 9 | 2, 3, 7, 8 | mpbir3an 1342 | . . . 4 ⊢ 3 ∈ (ℤ≥‘0) |
| 10 | 1, 9 | eqeltri 2831 | . . 3 ⊢ (2 + 1) ∈ (ℤ≥‘0) |
| 11 | 2z 12629 | . . . 4 ⊢ 2 ∈ ℤ | |
| 12 | 4z 12631 | . . . 4 ⊢ 4 ∈ ℤ | |
| 13 | 2re 12319 | . . . . 5 ⊢ 2 ∈ ℝ | |
| 14 | 4re 12329 | . . . . 5 ⊢ 4 ∈ ℝ | |
| 15 | 2lt4 12420 | . . . . 5 ⊢ 2 < 4 | |
| 16 | 13, 14, 15 | ltleii 11363 | . . . 4 ⊢ 2 ≤ 4 |
| 17 | eluz2 12863 | . . . 4 ⊢ (4 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ 4 ∈ ℤ ∧ 2 ≤ 4)) | |
| 18 | 11, 12, 16, 17 | mpbir3an 1342 | . . 3 ⊢ 4 ∈ (ℤ≥‘2) |
| 19 | fzsplit2 13571 | . . 3 ⊢ (((2 + 1) ∈ (ℤ≥‘0) ∧ 4 ∈ (ℤ≥‘2)) → (0...4) = ((0...2) ∪ ((2 + 1)...4))) | |
| 20 | 10, 18, 19 | mp2an 692 | . 2 ⊢ (0...4) = ((0...2) ∪ ((2 + 1)...4)) |
| 21 | fz0tp 13650 | . . 3 ⊢ (0...2) = {0, 1, 2} | |
| 22 | 1 | oveq1i 7420 | . . . 4 ⊢ ((2 + 1)...4) = (3...4) |
| 23 | df-4 12310 | . . . . . 6 ⊢ 4 = (3 + 1) | |
| 24 | 23 | oveq2i 7421 | . . . . 5 ⊢ (3...4) = (3...(3 + 1)) |
| 25 | fzpr 13601 | . . . . . 6 ⊢ (3 ∈ ℤ → (3...(3 + 1)) = {3, (3 + 1)}) | |
| 26 | 3, 25 | ax-mp 5 | . . . . 5 ⊢ (3...(3 + 1)) = {3, (3 + 1)} |
| 27 | 3p1e4 12390 | . . . . . 6 ⊢ (3 + 1) = 4 | |
| 28 | 27 | preq2i 4718 | . . . . 5 ⊢ {3, (3 + 1)} = {3, 4} |
| 29 | 24, 26, 28 | 3eqtri 2763 | . . . 4 ⊢ (3...4) = {3, 4} |
| 30 | 22, 29 | eqtri 2759 | . . 3 ⊢ ((2 + 1)...4) = {3, 4} |
| 31 | 21, 30 | uneq12i 4146 | . 2 ⊢ ((0...2) ∪ ((2 + 1)...4)) = ({0, 1, 2} ∪ {3, 4}) |
| 32 | 20, 31 | eqtri 2759 | 1 ⊢ (0...4) = ({0, 1, 2} ∪ {3, 4}) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∪ cun 3929 {cpr 4608 {ctp 4610 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 0cc0 11134 1c1 11135 + caddc 11137 ≤ cle 11275 2c2 12300 3c3 12301 4c4 12302 ℤcz 12593 ℤ≥cuz 12857 ...cfz 13529 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 |
| This theorem is referenced by: prm23lt5 16839 usgrexmplvtx 29245 |
| Copyright terms: Public domain | W3C validator |