|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > fz0to4untppr | Structured version Visualization version GIF version | ||
| Description: An integer range from 0 to 4 is the union of a triple and a pair. (Contributed by Alexander van der Vekens, 13-Aug-2017.) (Proof shortened by AV, 7-Aug-2025.) | 
| Ref | Expression | 
|---|---|
| fz0to4untppr | ⊢ (0...4) = ({0, 1, 2} ∪ {3, 4}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 2p1e3 12408 | . . . 4 ⊢ (2 + 1) = 3 | |
| 2 | 0z 12624 | . . . . 5 ⊢ 0 ∈ ℤ | |
| 3 | 3z 12650 | . . . . 5 ⊢ 3 ∈ ℤ | |
| 4 | 0re 11263 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 5 | 3re 12346 | . . . . . 6 ⊢ 3 ∈ ℝ | |
| 6 | 3pos 12371 | . . . . . 6 ⊢ 0 < 3 | |
| 7 | 4, 5, 6 | ltleii 11384 | . . . . 5 ⊢ 0 ≤ 3 | 
| 8 | eluz2 12884 | . . . . 5 ⊢ (3 ∈ (ℤ≥‘0) ↔ (0 ∈ ℤ ∧ 3 ∈ ℤ ∧ 0 ≤ 3)) | |
| 9 | 2, 3, 7, 8 | mpbir3an 1342 | . . . 4 ⊢ 3 ∈ (ℤ≥‘0) | 
| 10 | 1, 9 | eqeltri 2837 | . . 3 ⊢ (2 + 1) ∈ (ℤ≥‘0) | 
| 11 | 2z 12649 | . . . 4 ⊢ 2 ∈ ℤ | |
| 12 | 4z 12651 | . . . 4 ⊢ 4 ∈ ℤ | |
| 13 | 2re 12340 | . . . . 5 ⊢ 2 ∈ ℝ | |
| 14 | 4re 12350 | . . . . 5 ⊢ 4 ∈ ℝ | |
| 15 | 2lt4 12441 | . . . . 5 ⊢ 2 < 4 | |
| 16 | 13, 14, 15 | ltleii 11384 | . . . 4 ⊢ 2 ≤ 4 | 
| 17 | eluz2 12884 | . . . 4 ⊢ (4 ∈ (ℤ≥‘2) ↔ (2 ∈ ℤ ∧ 4 ∈ ℤ ∧ 2 ≤ 4)) | |
| 18 | 11, 12, 16, 17 | mpbir3an 1342 | . . 3 ⊢ 4 ∈ (ℤ≥‘2) | 
| 19 | fzsplit2 13589 | . . 3 ⊢ (((2 + 1) ∈ (ℤ≥‘0) ∧ 4 ∈ (ℤ≥‘2)) → (0...4) = ((0...2) ∪ ((2 + 1)...4))) | |
| 20 | 10, 18, 19 | mp2an 692 | . 2 ⊢ (0...4) = ((0...2) ∪ ((2 + 1)...4)) | 
| 21 | fz0tp 13668 | . . 3 ⊢ (0...2) = {0, 1, 2} | |
| 22 | 1 | oveq1i 7441 | . . . 4 ⊢ ((2 + 1)...4) = (3...4) | 
| 23 | df-4 12331 | . . . . . 6 ⊢ 4 = (3 + 1) | |
| 24 | 23 | oveq2i 7442 | . . . . 5 ⊢ (3...4) = (3...(3 + 1)) | 
| 25 | fzpr 13619 | . . . . . 6 ⊢ (3 ∈ ℤ → (3...(3 + 1)) = {3, (3 + 1)}) | |
| 26 | 3, 25 | ax-mp 5 | . . . . 5 ⊢ (3...(3 + 1)) = {3, (3 + 1)} | 
| 27 | 3p1e4 12411 | . . . . . 6 ⊢ (3 + 1) = 4 | |
| 28 | 27 | preq2i 4737 | . . . . 5 ⊢ {3, (3 + 1)} = {3, 4} | 
| 29 | 24, 26, 28 | 3eqtri 2769 | . . . 4 ⊢ (3...4) = {3, 4} | 
| 30 | 22, 29 | eqtri 2765 | . . 3 ⊢ ((2 + 1)...4) = {3, 4} | 
| 31 | 21, 30 | uneq12i 4166 | . 2 ⊢ ((0...2) ∪ ((2 + 1)...4)) = ({0, 1, 2} ∪ {3, 4}) | 
| 32 | 20, 31 | eqtri 2765 | 1 ⊢ (0...4) = ({0, 1, 2} ∪ {3, 4}) | 
| Colors of variables: wff setvar class | 
| Syntax hints: = wceq 1540 ∈ wcel 2108 ∪ cun 3949 {cpr 4628 {ctp 4630 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 0cc0 11155 1c1 11156 + caddc 11158 ≤ cle 11296 2c2 12321 3c3 12322 4c4 12323 ℤcz 12613 ℤ≥cuz 12878 ...cfz 13547 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-n0 12527 df-z 12614 df-uz 12879 df-fz 13548 | 
| This theorem is referenced by: prm23lt5 16852 usgrexmplvtx 29278 | 
| Copyright terms: Public domain | W3C validator |