MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2strstr1OLD Structured version   Visualization version   GIF version

Theorem 2strstr1OLD 16839
Description: Obsolete version of 2strstr1 16838 as of 27-Oct-2024. A constructed two-slot structure. Version of 2strstr 16835 not depending on the hard-coded index value of the base set. (Contributed by AV, 22-Sep-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
2str1.g 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨𝑁, + ⟩}
2str1.b (Base‘ndx) < 𝑁
2str1.n 𝑁 ∈ ℕ
Assertion
Ref Expression
2strstr1OLD 𝐺 Struct ⟨(Base‘ndx), 𝑁

Proof of Theorem 2strstr1OLD
StepHypRef Expression
1 2str1.g . . . 4 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨𝑁, + ⟩}
2 eqid 2739 . . . . . . . 8 Slot 𝑁 = Slot 𝑁
3 2str1.n . . . . . . . 8 𝑁 ∈ ℕ
42, 3ndxarg 16800 . . . . . . 7 (Slot 𝑁‘ndx) = 𝑁
54eqcomi 2748 . . . . . 6 𝑁 = (Slot 𝑁‘ndx)
65opeq1i 4804 . . . . 5 𝑁, + ⟩ = ⟨(Slot 𝑁‘ndx), +
76preq2i 4670 . . . 4 {⟨(Base‘ndx), 𝐵⟩, ⟨𝑁, + ⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(Slot 𝑁‘ndx), + ⟩}
81, 7eqtri 2767 . . 3 𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Slot 𝑁‘ndx), + ⟩}
9 basendx 16824 . . . 4 (Base‘ndx) = 1
10 2str1.b . . . 4 (Base‘ndx) < 𝑁
119, 10eqbrtrri 5093 . . 3 1 < 𝑁
128, 2, 11, 32strstr 16835 . 2 𝐺 Struct ⟨1, 𝑁
139opeq1i 4804 . 2 ⟨(Base‘ndx), 𝑁⟩ = ⟨1, 𝑁
1412, 13breqtrri 5097 1 𝐺 Struct ⟨(Base‘ndx), 𝑁
Colors of variables: wff setvar class
Syntax hints:   = wceq 1543  wcel 2112  {cpr 4560  cop 4564   class class class wbr 5070  cfv 6415  1c1 10778   < clt 10915  cn 11878   Struct cstr 16750  Slot cslot 16785  ndxcnx 16797  Basecbs 16815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-sep 5216  ax-nul 5223  ax-pow 5282  ax-pr 5346  ax-un 7563  ax-cnex 10833  ax-resscn 10834  ax-1cn 10835  ax-icn 10836  ax-addcl 10837  ax-addrcl 10838  ax-mulcl 10839  ax-mulrcl 10840  ax-mulcom 10841  ax-addass 10842  ax-mulass 10843  ax-distr 10844  ax-i2m1 10845  ax-1ne0 10846  ax-1rid 10847  ax-rnegex 10848  ax-rrecex 10849  ax-cnre 10850  ax-pre-lttri 10851  ax-pre-lttrn 10852  ax-pre-ltadd 10853  ax-pre-mulgt0 10854
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3425  df-sbc 3713  df-csb 3830  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4255  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5153  df-tr 5186  df-id 5479  df-eprel 5485  df-po 5493  df-so 5494  df-fr 5534  df-we 5536  df-xp 5585  df-rel 5586  df-cnv 5587  df-co 5588  df-dm 5589  df-rn 5590  df-res 5591  df-ima 5592  df-pred 6189  df-ord 6251  df-on 6252  df-lim 6253  df-suc 6254  df-iota 6373  df-fun 6417  df-fn 6418  df-f 6419  df-f1 6420  df-fo 6421  df-f1o 6422  df-fv 6423  df-riota 7209  df-ov 7255  df-oprab 7256  df-mpo 7257  df-om 7685  df-1st 7801  df-2nd 7802  df-wrecs 8089  df-recs 8150  df-rdg 8188  df-1o 8244  df-er 8433  df-en 8669  df-dom 8670  df-sdom 8671  df-fin 8672  df-pnf 10917  df-mnf 10918  df-xr 10919  df-ltxr 10920  df-le 10921  df-sub 11112  df-neg 11113  df-nn 11879  df-n0 12139  df-z 12225  df-uz 12487  df-fz 13144  df-struct 16751  df-slot 16786  df-ndx 16798  df-base 16816
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator