Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnsum3primes4 Structured version   Visualization version   GIF version

Theorem nnsum3primes4 47775
Description: 4 is the sum of at most 3 (actually 2) primes. (Contributed by AV, 2-Aug-2020.)
Assertion
Ref Expression
nnsum3primes4 𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))
Distinct variable group:   𝑓,𝑑,𝑘

Proof of Theorem nnsum3primes4
StepHypRef Expression
1 2nn 12339 . 2 2 ∈ ℕ
2 1ne2 12474 . . . . 5 1 ≠ 2
3 1ex 11257 . . . . . 6 1 ∈ V
4 2ex 12343 . . . . . 6 2 ∈ V
53, 4, 4, 4fpr 7174 . . . . 5 (1 ≠ 2 → {⟨1, 2⟩, ⟨2, 2⟩}:{1, 2}⟶{2, 2})
6 2prm 16729 . . . . . . . 8 2 ∈ ℙ
76, 6pm3.2i 470 . . . . . . 7 (2 ∈ ℙ ∧ 2 ∈ ℙ)
84, 4prss 4820 . . . . . . 7 ((2 ∈ ℙ ∧ 2 ∈ ℙ) ↔ {2, 2} ⊆ ℙ)
97, 8mpbi 230 . . . . . 6 {2, 2} ⊆ ℙ
10 fss 6752 . . . . . 6 (({⟨1, 2⟩, ⟨2, 2⟩}:{1, 2}⟶{2, 2} ∧ {2, 2} ⊆ ℙ) → {⟨1, 2⟩, ⟨2, 2⟩}:{1, 2}⟶ℙ)
119, 10mpan2 691 . . . . 5 ({⟨1, 2⟩, ⟨2, 2⟩}:{1, 2}⟶{2, 2} → {⟨1, 2⟩, ⟨2, 2⟩}:{1, 2}⟶ℙ)
122, 5, 11mp2b 10 . . . 4 {⟨1, 2⟩, ⟨2, 2⟩}:{1, 2}⟶ℙ
13 prmex 16714 . . . . 5 ℙ ∈ V
14 prex 5437 . . . . 5 {1, 2} ∈ V
1513, 14elmap 8911 . . . 4 ({⟨1, 2⟩, ⟨2, 2⟩} ∈ (ℙ ↑m {1, 2}) ↔ {⟨1, 2⟩, ⟨2, 2⟩}:{1, 2}⟶ℙ)
1612, 15mpbir 231 . . 3 {⟨1, 2⟩, ⟨2, 2⟩} ∈ (ℙ ↑m {1, 2})
17 2re 12340 . . . . 5 2 ∈ ℝ
18 3re 12346 . . . . 5 3 ∈ ℝ
19 2lt3 12438 . . . . 5 2 < 3
2017, 18, 19ltleii 11384 . . . 4 2 ≤ 3
21 2cn 12341 . . . . . 6 2 ∈ ℂ
22 fveq2 6906 . . . . . . . 8 (𝑘 = 1 → ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘) = ({⟨1, 2⟩, ⟨2, 2⟩}‘1))
233, 4fvpr1 7212 . . . . . . . . 9 (1 ≠ 2 → ({⟨1, 2⟩, ⟨2, 2⟩}‘1) = 2)
242, 23ax-mp 5 . . . . . . . 8 ({⟨1, 2⟩, ⟨2, 2⟩}‘1) = 2
2522, 24eqtrdi 2793 . . . . . . 7 (𝑘 = 1 → ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘) = 2)
26 fveq2 6906 . . . . . . . 8 (𝑘 = 2 → ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘) = ({⟨1, 2⟩, ⟨2, 2⟩}‘2))
274, 4fvpr2 7213 . . . . . . . . 9 (1 ≠ 2 → ({⟨1, 2⟩, ⟨2, 2⟩}‘2) = 2)
282, 27ax-mp 5 . . . . . . . 8 ({⟨1, 2⟩, ⟨2, 2⟩}‘2) = 2
2926, 28eqtrdi 2793 . . . . . . 7 (𝑘 = 2 → ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘) = 2)
30 id 22 . . . . . . . 8 (2 ∈ ℂ → 2 ∈ ℂ)
3130ancri 549 . . . . . . 7 (2 ∈ ℂ → (2 ∈ ℂ ∧ 2 ∈ ℂ))
323jctl 523 . . . . . . 7 (2 ∈ ℂ → (1 ∈ V ∧ 2 ∈ ℂ))
332a1i 11 . . . . . . 7 (2 ∈ ℂ → 1 ≠ 2)
3425, 29, 31, 32, 33sumpr 15784 . . . . . 6 (2 ∈ ℂ → Σ𝑘 ∈ {1, 2} ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘) = (2 + 2))
3521, 34ax-mp 5 . . . . 5 Σ𝑘 ∈ {1, 2} ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘) = (2 + 2)
36 2p2e4 12401 . . . . 5 (2 + 2) = 4
3735, 36eqtr2i 2766 . . . 4 4 = Σ𝑘 ∈ {1, 2} ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘)
3820, 37pm3.2i 470 . . 3 (2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘))
39 fveq1 6905 . . . . . . 7 (𝑓 = {⟨1, 2⟩, ⟨2, 2⟩} → (𝑓𝑘) = ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘))
4039sumeq2sdv 15739 . . . . . 6 (𝑓 = {⟨1, 2⟩, ⟨2, 2⟩} → Σ𝑘 ∈ {1, 2} (𝑓𝑘) = Σ𝑘 ∈ {1, 2} ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘))
4140eqeq2d 2748 . . . . 5 (𝑓 = {⟨1, 2⟩, ⟨2, 2⟩} → (4 = Σ𝑘 ∈ {1, 2} (𝑓𝑘) ↔ 4 = Σ𝑘 ∈ {1, 2} ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘)))
4241anbi2d 630 . . . 4 (𝑓 = {⟨1, 2⟩, ⟨2, 2⟩} → ((2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} (𝑓𝑘)) ↔ (2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘))))
4342rspcev 3622 . . 3 (({⟨1, 2⟩, ⟨2, 2⟩} ∈ (ℙ ↑m {1, 2}) ∧ (2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘))) → ∃𝑓 ∈ (ℙ ↑m {1, 2})(2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} (𝑓𝑘)))
4416, 38, 43mp2an 692 . 2 𝑓 ∈ (ℙ ↑m {1, 2})(2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} (𝑓𝑘))
45 oveq2 7439 . . . . . 6 (𝑑 = 2 → (1...𝑑) = (1...2))
46 df-2 12329 . . . . . . . 8 2 = (1 + 1)
4746oveq2i 7442 . . . . . . 7 (1...2) = (1...(1 + 1))
48 1z 12647 . . . . . . . . 9 1 ∈ ℤ
49 fzpr 13619 . . . . . . . . 9 (1 ∈ ℤ → (1...(1 + 1)) = {1, (1 + 1)})
5048, 49ax-mp 5 . . . . . . . 8 (1...(1 + 1)) = {1, (1 + 1)}
51 1p1e2 12391 . . . . . . . . 9 (1 + 1) = 2
5251preq2i 4737 . . . . . . . 8 {1, (1 + 1)} = {1, 2}
5350, 52eqtri 2765 . . . . . . 7 (1...(1 + 1)) = {1, 2}
5447, 53eqtri 2765 . . . . . 6 (1...2) = {1, 2}
5545, 54eqtrdi 2793 . . . . 5 (𝑑 = 2 → (1...𝑑) = {1, 2})
5655oveq2d 7447 . . . 4 (𝑑 = 2 → (ℙ ↑m (1...𝑑)) = (ℙ ↑m {1, 2}))
57 breq1 5146 . . . . 5 (𝑑 = 2 → (𝑑 ≤ 3 ↔ 2 ≤ 3))
5855sumeq1d 15736 . . . . . 6 (𝑑 = 2 → Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) = Σ𝑘 ∈ {1, 2} (𝑓𝑘))
5958eqeq2d 2748 . . . . 5 (𝑑 = 2 → (4 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) ↔ 4 = Σ𝑘 ∈ {1, 2} (𝑓𝑘)))
6057, 59anbi12d 632 . . . 4 (𝑑 = 2 → ((𝑑 ≤ 3 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ (2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} (𝑓𝑘))))
6156, 60rexeqbidv 3347 . . 3 (𝑑 = 2 → (∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑m {1, 2})(2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} (𝑓𝑘))))
6261rspcev 3622 . 2 ((2 ∈ ℕ ∧ ∃𝑓 ∈ (ℙ ↑m {1, 2})(2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} (𝑓𝑘))) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
631, 44, 62mp2an 692 1 𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2108  wne 2940  wrex 3070  Vcvv 3480  wss 3951  {cpr 4628  cop 4632   class class class wbr 5143  wf 6557  cfv 6561  (class class class)co 7431  m cmap 8866  cc 11153  1c1 11156   + caddc 11158  cle 11296  cn 12266  2c2 12321  3c3 12322  4c4 12323  cz 12613  ...cfz 13547  Σcsu 15722  cprime 16708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-dvds 16291  df-prm 16709
This theorem is referenced by:  nnsum4primes4  47776  nnsum3primesle9  47781
  Copyright terms: Public domain W3C validator