Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnsum3primes4 Structured version   Visualization version   GIF version

Theorem nnsum3primes4 47662
Description: 4 is the sum of at most 3 (actually 2) primes. (Contributed by AV, 2-Aug-2020.)
Assertion
Ref Expression
nnsum3primes4 𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))
Distinct variable group:   𝑓,𝑑,𝑘

Proof of Theorem nnsum3primes4
StepHypRef Expression
1 2nn 12366 . 2 2 ∈ ℕ
2 1ne2 12501 . . . . 5 1 ≠ 2
3 1ex 11286 . . . . . 6 1 ∈ V
4 2ex 12370 . . . . . 6 2 ∈ V
53, 4, 4, 4fpr 7188 . . . . 5 (1 ≠ 2 → {⟨1, 2⟩, ⟨2, 2⟩}:{1, 2}⟶{2, 2})
6 2prm 16739 . . . . . . . 8 2 ∈ ℙ
76, 6pm3.2i 470 . . . . . . 7 (2 ∈ ℙ ∧ 2 ∈ ℙ)
84, 4prss 4845 . . . . . . 7 ((2 ∈ ℙ ∧ 2 ∈ ℙ) ↔ {2, 2} ⊆ ℙ)
97, 8mpbi 230 . . . . . 6 {2, 2} ⊆ ℙ
10 fss 6763 . . . . . 6 (({⟨1, 2⟩, ⟨2, 2⟩}:{1, 2}⟶{2, 2} ∧ {2, 2} ⊆ ℙ) → {⟨1, 2⟩, ⟨2, 2⟩}:{1, 2}⟶ℙ)
119, 10mpan2 690 . . . . 5 ({⟨1, 2⟩, ⟨2, 2⟩}:{1, 2}⟶{2, 2} → {⟨1, 2⟩, ⟨2, 2⟩}:{1, 2}⟶ℙ)
122, 5, 11mp2b 10 . . . 4 {⟨1, 2⟩, ⟨2, 2⟩}:{1, 2}⟶ℙ
13 prmex 16724 . . . . 5 ℙ ∈ V
14 prex 5452 . . . . 5 {1, 2} ∈ V
1513, 14elmap 8929 . . . 4 ({⟨1, 2⟩, ⟨2, 2⟩} ∈ (ℙ ↑m {1, 2}) ↔ {⟨1, 2⟩, ⟨2, 2⟩}:{1, 2}⟶ℙ)
1612, 15mpbir 231 . . 3 {⟨1, 2⟩, ⟨2, 2⟩} ∈ (ℙ ↑m {1, 2})
17 2re 12367 . . . . 5 2 ∈ ℝ
18 3re 12373 . . . . 5 3 ∈ ℝ
19 2lt3 12465 . . . . 5 2 < 3
2017, 18, 19ltleii 11413 . . . 4 2 ≤ 3
21 2cn 12368 . . . . . 6 2 ∈ ℂ
22 fveq2 6920 . . . . . . . 8 (𝑘 = 1 → ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘) = ({⟨1, 2⟩, ⟨2, 2⟩}‘1))
233, 4fvpr1 7227 . . . . . . . . 9 (1 ≠ 2 → ({⟨1, 2⟩, ⟨2, 2⟩}‘1) = 2)
242, 23ax-mp 5 . . . . . . . 8 ({⟨1, 2⟩, ⟨2, 2⟩}‘1) = 2
2522, 24eqtrdi 2796 . . . . . . 7 (𝑘 = 1 → ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘) = 2)
26 fveq2 6920 . . . . . . . 8 (𝑘 = 2 → ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘) = ({⟨1, 2⟩, ⟨2, 2⟩}‘2))
274, 4fvpr2 7229 . . . . . . . . 9 (1 ≠ 2 → ({⟨1, 2⟩, ⟨2, 2⟩}‘2) = 2)
282, 27ax-mp 5 . . . . . . . 8 ({⟨1, 2⟩, ⟨2, 2⟩}‘2) = 2
2926, 28eqtrdi 2796 . . . . . . 7 (𝑘 = 2 → ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘) = 2)
30 id 22 . . . . . . . 8 (2 ∈ ℂ → 2 ∈ ℂ)
3130ancri 549 . . . . . . 7 (2 ∈ ℂ → (2 ∈ ℂ ∧ 2 ∈ ℂ))
323jctl 523 . . . . . . 7 (2 ∈ ℂ → (1 ∈ V ∧ 2 ∈ ℂ))
332a1i 11 . . . . . . 7 (2 ∈ ℂ → 1 ≠ 2)
3425, 29, 31, 32, 33sumpr 15796 . . . . . 6 (2 ∈ ℂ → Σ𝑘 ∈ {1, 2} ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘) = (2 + 2))
3521, 34ax-mp 5 . . . . 5 Σ𝑘 ∈ {1, 2} ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘) = (2 + 2)
36 2p2e4 12428 . . . . 5 (2 + 2) = 4
3735, 36eqtr2i 2769 . . . 4 4 = Σ𝑘 ∈ {1, 2} ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘)
3820, 37pm3.2i 470 . . 3 (2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘))
39 fveq1 6919 . . . . . . 7 (𝑓 = {⟨1, 2⟩, ⟨2, 2⟩} → (𝑓𝑘) = ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘))
4039sumeq2sdv 15751 . . . . . 6 (𝑓 = {⟨1, 2⟩, ⟨2, 2⟩} → Σ𝑘 ∈ {1, 2} (𝑓𝑘) = Σ𝑘 ∈ {1, 2} ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘))
4140eqeq2d 2751 . . . . 5 (𝑓 = {⟨1, 2⟩, ⟨2, 2⟩} → (4 = Σ𝑘 ∈ {1, 2} (𝑓𝑘) ↔ 4 = Σ𝑘 ∈ {1, 2} ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘)))
4241anbi2d 629 . . . 4 (𝑓 = {⟨1, 2⟩, ⟨2, 2⟩} → ((2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} (𝑓𝑘)) ↔ (2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘))))
4342rspcev 3635 . . 3 (({⟨1, 2⟩, ⟨2, 2⟩} ∈ (ℙ ↑m {1, 2}) ∧ (2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘))) → ∃𝑓 ∈ (ℙ ↑m {1, 2})(2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} (𝑓𝑘)))
4416, 38, 43mp2an 691 . 2 𝑓 ∈ (ℙ ↑m {1, 2})(2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} (𝑓𝑘))
45 oveq2 7456 . . . . . 6 (𝑑 = 2 → (1...𝑑) = (1...2))
46 df-2 12356 . . . . . . . 8 2 = (1 + 1)
4746oveq2i 7459 . . . . . . 7 (1...2) = (1...(1 + 1))
48 1z 12673 . . . . . . . . 9 1 ∈ ℤ
49 fzpr 13639 . . . . . . . . 9 (1 ∈ ℤ → (1...(1 + 1)) = {1, (1 + 1)})
5048, 49ax-mp 5 . . . . . . . 8 (1...(1 + 1)) = {1, (1 + 1)}
51 1p1e2 12418 . . . . . . . . 9 (1 + 1) = 2
5251preq2i 4762 . . . . . . . 8 {1, (1 + 1)} = {1, 2}
5350, 52eqtri 2768 . . . . . . 7 (1...(1 + 1)) = {1, 2}
5447, 53eqtri 2768 . . . . . 6 (1...2) = {1, 2}
5545, 54eqtrdi 2796 . . . . 5 (𝑑 = 2 → (1...𝑑) = {1, 2})
5655oveq2d 7464 . . . 4 (𝑑 = 2 → (ℙ ↑m (1...𝑑)) = (ℙ ↑m {1, 2}))
57 breq1 5169 . . . . 5 (𝑑 = 2 → (𝑑 ≤ 3 ↔ 2 ≤ 3))
5855sumeq1d 15748 . . . . . 6 (𝑑 = 2 → Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) = Σ𝑘 ∈ {1, 2} (𝑓𝑘))
5958eqeq2d 2751 . . . . 5 (𝑑 = 2 → (4 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) ↔ 4 = Σ𝑘 ∈ {1, 2} (𝑓𝑘)))
6057, 59anbi12d 631 . . . 4 (𝑑 = 2 → ((𝑑 ≤ 3 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ (2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} (𝑓𝑘))))
6156, 60rexeqbidv 3355 . . 3 (𝑑 = 2 → (∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑m {1, 2})(2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} (𝑓𝑘))))
6261rspcev 3635 . 2 ((2 ∈ ℕ ∧ ∃𝑓 ∈ (ℙ ↑m {1, 2})(2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} (𝑓𝑘))) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
631, 44, 62mp2an 691 1 𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wcel 2108  wne 2946  wrex 3076  Vcvv 3488  wss 3976  {cpr 4650  cop 4654   class class class wbr 5166  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  cc 11182  1c1 11185   + caddc 11187  cle 11325  cn 12293  2c2 12348  3c3 12349  4c4 12350  cz 12639  ...cfz 13567  Σcsu 15734  cprime 16718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-dvds 16303  df-prm 16719
This theorem is referenced by:  nnsum4primes4  47663  nnsum3primesle9  47668
  Copyright terms: Public domain W3C validator