Proof of Theorem nnsum3primes4
Step | Hyp | Ref
| Expression |
1 | | 2nn 12029 |
. 2
⊢ 2 ∈
ℕ |
2 | | 1ne2 12164 |
. . . . 5
⊢ 1 ≠
2 |
3 | | 1ex 10955 |
. . . . . 6
⊢ 1 ∈
V |
4 | | 2ex 12033 |
. . . . . 6
⊢ 2 ∈
V |
5 | 3, 4, 4, 4 | fpr 7020 |
. . . . 5
⊢ (1 ≠ 2
→ {〈1, 2〉, 〈2, 2〉}:{1, 2}⟶{2,
2}) |
6 | | 2prm 16378 |
. . . . . . . 8
⊢ 2 ∈
ℙ |
7 | 6, 6 | pm3.2i 470 |
. . . . . . 7
⊢ (2 ∈
ℙ ∧ 2 ∈ ℙ) |
8 | 4, 4 | prss 4758 |
. . . . . . 7
⊢ ((2
∈ ℙ ∧ 2 ∈ ℙ) ↔ {2, 2} ⊆
ℙ) |
9 | 7, 8 | mpbi 229 |
. . . . . 6
⊢ {2, 2}
⊆ ℙ |
10 | | fss 6613 |
. . . . . 6
⊢
(({〈1, 2〉, 〈2, 2〉}:{1, 2}⟶{2, 2} ∧ {2, 2}
⊆ ℙ) → {〈1, 2〉, 〈2, 2〉}:{1,
2}⟶ℙ) |
11 | 9, 10 | mpan2 687 |
. . . . 5
⊢
({〈1, 2〉, 〈2, 2〉}:{1, 2}⟶{2, 2} →
{〈1, 2〉, 〈2, 2〉}:{1, 2}⟶ℙ) |
12 | 2, 5, 11 | mp2b 10 |
. . . 4
⊢ {〈1,
2〉, 〈2, 2〉}:{1, 2}⟶ℙ |
13 | | prmex 16363 |
. . . . 5
⊢ ℙ
∈ V |
14 | | prex 5358 |
. . . . 5
⊢ {1, 2}
∈ V |
15 | 13, 14 | elmap 8633 |
. . . 4
⊢
({〈1, 2〉, 〈2, 2〉} ∈ (ℙ ↑m
{1, 2}) ↔ {〈1, 2〉, 〈2, 2〉}:{1,
2}⟶ℙ) |
16 | 12, 15 | mpbir 230 |
. . 3
⊢ {〈1,
2〉, 〈2, 2〉} ∈ (ℙ ↑m {1,
2}) |
17 | | 2re 12030 |
. . . . 5
⊢ 2 ∈
ℝ |
18 | | 3re 12036 |
. . . . 5
⊢ 3 ∈
ℝ |
19 | | 2lt3 12128 |
. . . . 5
⊢ 2 <
3 |
20 | 17, 18, 19 | ltleii 11081 |
. . . 4
⊢ 2 ≤
3 |
21 | | 2cn 12031 |
. . . . . 6
⊢ 2 ∈
ℂ |
22 | | fveq2 6768 |
. . . . . . . 8
⊢ (𝑘 = 1 → ({〈1, 2〉,
〈2, 2〉}‘𝑘)
= ({〈1, 2〉, 〈2, 2〉}‘1)) |
23 | 3, 4 | fvpr1 7059 |
. . . . . . . . 9
⊢ (1 ≠ 2
→ ({〈1, 2〉, 〈2, 2〉}‘1) = 2) |
24 | 2, 23 | ax-mp 5 |
. . . . . . . 8
⊢
({〈1, 2〉, 〈2, 2〉}‘1) = 2 |
25 | 22, 24 | eqtrdi 2795 |
. . . . . . 7
⊢ (𝑘 = 1 → ({〈1, 2〉,
〈2, 2〉}‘𝑘)
= 2) |
26 | | fveq2 6768 |
. . . . . . . 8
⊢ (𝑘 = 2 → ({〈1, 2〉,
〈2, 2〉}‘𝑘)
= ({〈1, 2〉, 〈2, 2〉}‘2)) |
27 | 4, 4 | fvpr2 7061 |
. . . . . . . . 9
⊢ (1 ≠ 2
→ ({〈1, 2〉, 〈2, 2〉}‘2) = 2) |
28 | 2, 27 | ax-mp 5 |
. . . . . . . 8
⊢
({〈1, 2〉, 〈2, 2〉}‘2) = 2 |
29 | 26, 28 | eqtrdi 2795 |
. . . . . . 7
⊢ (𝑘 = 2 → ({〈1, 2〉,
〈2, 2〉}‘𝑘)
= 2) |
30 | | id 22 |
. . . . . . . 8
⊢ (2 ∈
ℂ → 2 ∈ ℂ) |
31 | 30 | ancri 549 |
. . . . . . 7
⊢ (2 ∈
ℂ → (2 ∈ ℂ ∧ 2 ∈ ℂ)) |
32 | 3 | jctl 523 |
. . . . . . 7
⊢ (2 ∈
ℂ → (1 ∈ V ∧ 2 ∈ ℂ)) |
33 | 2 | a1i 11 |
. . . . . . 7
⊢ (2 ∈
ℂ → 1 ≠ 2) |
34 | 25, 29, 31, 32, 33 | sumpr 15441 |
. . . . . 6
⊢ (2 ∈
ℂ → Σ𝑘
∈ {1, 2} ({〈1, 2〉, 〈2, 2〉}‘𝑘) = (2 + 2)) |
35 | 21, 34 | ax-mp 5 |
. . . . 5
⊢
Σ𝑘 ∈ {1,
2} ({〈1, 2〉, 〈2, 2〉}‘𝑘) = (2 + 2) |
36 | | 2p2e4 12091 |
. . . . 5
⊢ (2 + 2) =
4 |
37 | 35, 36 | eqtr2i 2768 |
. . . 4
⊢ 4 =
Σ𝑘 ∈ {1, 2}
({〈1, 2〉, 〈2, 2〉}‘𝑘) |
38 | 20, 37 | pm3.2i 470 |
. . 3
⊢ (2 ≤ 3
∧ 4 = Σ𝑘 ∈
{1, 2} ({〈1, 2〉, 〈2, 2〉}‘𝑘)) |
39 | | fveq1 6767 |
. . . . . . 7
⊢ (𝑓 = {〈1, 2〉, 〈2,
2〉} → (𝑓‘𝑘) = ({〈1, 2〉, 〈2,
2〉}‘𝑘)) |
40 | 39 | sumeq2sdv 15397 |
. . . . . 6
⊢ (𝑓 = {〈1, 2〉, 〈2,
2〉} → Σ𝑘
∈ {1, 2} (𝑓‘𝑘) = Σ𝑘 ∈ {1, 2} ({〈1, 2〉, 〈2,
2〉}‘𝑘)) |
41 | 40 | eqeq2d 2750 |
. . . . 5
⊢ (𝑓 = {〈1, 2〉, 〈2,
2〉} → (4 = Σ𝑘 ∈ {1, 2} (𝑓‘𝑘) ↔ 4 = Σ𝑘 ∈ {1, 2} ({〈1, 2〉, 〈2,
2〉}‘𝑘))) |
42 | 41 | anbi2d 628 |
. . . 4
⊢ (𝑓 = {〈1, 2〉, 〈2,
2〉} → ((2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} (𝑓‘𝑘)) ↔ (2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} ({〈1,
2〉, 〈2, 2〉}‘𝑘)))) |
43 | 42 | rspcev 3560 |
. . 3
⊢
(({〈1, 2〉, 〈2, 2〉} ∈ (ℙ
↑m {1, 2}) ∧ (2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} ({〈1, 2〉, 〈2,
2〉}‘𝑘))) →
∃𝑓 ∈ (ℙ
↑m {1, 2})(2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} (𝑓‘𝑘))) |
44 | 16, 38, 43 | mp2an 688 |
. 2
⊢
∃𝑓 ∈
(ℙ ↑m {1, 2})(2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} (𝑓‘𝑘)) |
45 | | oveq2 7276 |
. . . . . 6
⊢ (𝑑 = 2 → (1...𝑑) = (1...2)) |
46 | | df-2 12019 |
. . . . . . . 8
⊢ 2 = (1 +
1) |
47 | 46 | oveq2i 7279 |
. . . . . . 7
⊢ (1...2) =
(1...(1 + 1)) |
48 | | 1z 12333 |
. . . . . . . . 9
⊢ 1 ∈
ℤ |
49 | | fzpr 13293 |
. . . . . . . . 9
⊢ (1 ∈
ℤ → (1...(1 + 1)) = {1, (1 + 1)}) |
50 | 48, 49 | ax-mp 5 |
. . . . . . . 8
⊢ (1...(1 +
1)) = {1, (1 + 1)} |
51 | | 1p1e2 12081 |
. . . . . . . . 9
⊢ (1 + 1) =
2 |
52 | 51 | preq2i 4678 |
. . . . . . . 8
⊢ {1, (1 +
1)} = {1, 2} |
53 | 50, 52 | eqtri 2767 |
. . . . . . 7
⊢ (1...(1 +
1)) = {1, 2} |
54 | 47, 53 | eqtri 2767 |
. . . . . 6
⊢ (1...2) =
{1, 2} |
55 | 45, 54 | eqtrdi 2795 |
. . . . 5
⊢ (𝑑 = 2 → (1...𝑑) = {1, 2}) |
56 | 55 | oveq2d 7284 |
. . . 4
⊢ (𝑑 = 2 → (ℙ
↑m (1...𝑑))
= (ℙ ↑m {1, 2})) |
57 | | breq1 5081 |
. . . . 5
⊢ (𝑑 = 2 → (𝑑 ≤ 3 ↔ 2 ≤ 3)) |
58 | 55 | sumeq1d 15394 |
. . . . . 6
⊢ (𝑑 = 2 → Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘) = Σ𝑘 ∈ {1, 2} (𝑓‘𝑘)) |
59 | 58 | eqeq2d 2750 |
. . . . 5
⊢ (𝑑 = 2 → (4 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘) ↔ 4 = Σ𝑘 ∈ {1, 2} (𝑓‘𝑘))) |
60 | 57, 59 | anbi12d 630 |
. . . 4
⊢ (𝑑 = 2 → ((𝑑 ≤ 3 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘)) ↔ (2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} (𝑓‘𝑘)))) |
61 | 56, 60 | rexeqbidv 3335 |
. . 3
⊢ (𝑑 = 2 → (∃𝑓 ∈ (ℙ
↑m (1...𝑑))(𝑑 ≤ 3 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑m {1, 2})(2
≤ 3 ∧ 4 = Σ𝑘
∈ {1, 2} (𝑓‘𝑘)))) |
62 | 61 | rspcev 3560 |
. 2
⊢ ((2
∈ ℕ ∧ ∃𝑓 ∈ (ℙ ↑m {1, 2})(2
≤ 3 ∧ 4 = Σ𝑘
∈ {1, 2} (𝑓‘𝑘))) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m
(1...𝑑))(𝑑 ≤ 3 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) |
63 | 1, 44, 62 | mp2an 688 |
1
⊢
∃𝑑 ∈
ℕ ∃𝑓 ∈
(ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘)) |