Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnsum3primes4 Structured version   Visualization version   GIF version

Theorem nnsum3primes4 43947
Description: 4 is the sum of at most 3 (actually 2) primes. (Contributed by AV, 2-Aug-2020.)
Assertion
Ref Expression
nnsum3primes4 𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))
Distinct variable group:   𝑓,𝑑,𝑘

Proof of Theorem nnsum3primes4
StepHypRef Expression
1 2nn 11704 . 2 2 ∈ ℕ
2 1ne2 11839 . . . . 5 1 ≠ 2
3 1ex 10631 . . . . . 6 1 ∈ V
4 2ex 11708 . . . . . 6 2 ∈ V
53, 4, 4, 4fpr 6910 . . . . 5 (1 ≠ 2 → {⟨1, 2⟩, ⟨2, 2⟩}:{1, 2}⟶{2, 2})
6 2prm 16030 . . . . . . . 8 2 ∈ ℙ
76, 6pm3.2i 473 . . . . . . 7 (2 ∈ ℙ ∧ 2 ∈ ℙ)
84, 4prss 4746 . . . . . . 7 ((2 ∈ ℙ ∧ 2 ∈ ℙ) ↔ {2, 2} ⊆ ℙ)
97, 8mpbi 232 . . . . . 6 {2, 2} ⊆ ℙ
10 fss 6521 . . . . . 6 (({⟨1, 2⟩, ⟨2, 2⟩}:{1, 2}⟶{2, 2} ∧ {2, 2} ⊆ ℙ) → {⟨1, 2⟩, ⟨2, 2⟩}:{1, 2}⟶ℙ)
119, 10mpan2 689 . . . . 5 ({⟨1, 2⟩, ⟨2, 2⟩}:{1, 2}⟶{2, 2} → {⟨1, 2⟩, ⟨2, 2⟩}:{1, 2}⟶ℙ)
122, 5, 11mp2b 10 . . . 4 {⟨1, 2⟩, ⟨2, 2⟩}:{1, 2}⟶ℙ
13 prmex 16015 . . . . 5 ℙ ∈ V
14 prex 5324 . . . . 5 {1, 2} ∈ V
1513, 14elmap 8429 . . . 4 ({⟨1, 2⟩, ⟨2, 2⟩} ∈ (ℙ ↑m {1, 2}) ↔ {⟨1, 2⟩, ⟨2, 2⟩}:{1, 2}⟶ℙ)
1612, 15mpbir 233 . . 3 {⟨1, 2⟩, ⟨2, 2⟩} ∈ (ℙ ↑m {1, 2})
17 2re 11705 . . . . 5 2 ∈ ℝ
18 3re 11711 . . . . 5 3 ∈ ℝ
19 2lt3 11803 . . . . 5 2 < 3
2017, 18, 19ltleii 10757 . . . 4 2 ≤ 3
21 2cn 11706 . . . . . 6 2 ∈ ℂ
22 fveq2 6664 . . . . . . . 8 (𝑘 = 1 → ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘) = ({⟨1, 2⟩, ⟨2, 2⟩}‘1))
233, 4fvpr1 6946 . . . . . . . . 9 (1 ≠ 2 → ({⟨1, 2⟩, ⟨2, 2⟩}‘1) = 2)
242, 23ax-mp 5 . . . . . . . 8 ({⟨1, 2⟩, ⟨2, 2⟩}‘1) = 2
2522, 24syl6eq 2872 . . . . . . 7 (𝑘 = 1 → ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘) = 2)
26 fveq2 6664 . . . . . . . 8 (𝑘 = 2 → ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘) = ({⟨1, 2⟩, ⟨2, 2⟩}‘2))
274, 4fvpr2 6947 . . . . . . . . 9 (1 ≠ 2 → ({⟨1, 2⟩, ⟨2, 2⟩}‘2) = 2)
282, 27ax-mp 5 . . . . . . . 8 ({⟨1, 2⟩, ⟨2, 2⟩}‘2) = 2
2926, 28syl6eq 2872 . . . . . . 7 (𝑘 = 2 → ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘) = 2)
30 id 22 . . . . . . . 8 (2 ∈ ℂ → 2 ∈ ℂ)
3130ancri 552 . . . . . . 7 (2 ∈ ℂ → (2 ∈ ℂ ∧ 2 ∈ ℂ))
323jctl 526 . . . . . . 7 (2 ∈ ℂ → (1 ∈ V ∧ 2 ∈ ℂ))
332a1i 11 . . . . . . 7 (2 ∈ ℂ → 1 ≠ 2)
3425, 29, 31, 32, 33sumpr 15097 . . . . . 6 (2 ∈ ℂ → Σ𝑘 ∈ {1, 2} ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘) = (2 + 2))
3521, 34ax-mp 5 . . . . 5 Σ𝑘 ∈ {1, 2} ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘) = (2 + 2)
36 2p2e4 11766 . . . . 5 (2 + 2) = 4
3735, 36eqtr2i 2845 . . . 4 4 = Σ𝑘 ∈ {1, 2} ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘)
3820, 37pm3.2i 473 . . 3 (2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘))
39 fveq1 6663 . . . . . . 7 (𝑓 = {⟨1, 2⟩, ⟨2, 2⟩} → (𝑓𝑘) = ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘))
4039sumeq2sdv 15055 . . . . . 6 (𝑓 = {⟨1, 2⟩, ⟨2, 2⟩} → Σ𝑘 ∈ {1, 2} (𝑓𝑘) = Σ𝑘 ∈ {1, 2} ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘))
4140eqeq2d 2832 . . . . 5 (𝑓 = {⟨1, 2⟩, ⟨2, 2⟩} → (4 = Σ𝑘 ∈ {1, 2} (𝑓𝑘) ↔ 4 = Σ𝑘 ∈ {1, 2} ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘)))
4241anbi2d 630 . . . 4 (𝑓 = {⟨1, 2⟩, ⟨2, 2⟩} → ((2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} (𝑓𝑘)) ↔ (2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘))))
4342rspcev 3622 . . 3 (({⟨1, 2⟩, ⟨2, 2⟩} ∈ (ℙ ↑m {1, 2}) ∧ (2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} ({⟨1, 2⟩, ⟨2, 2⟩}‘𝑘))) → ∃𝑓 ∈ (ℙ ↑m {1, 2})(2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} (𝑓𝑘)))
4416, 38, 43mp2an 690 . 2 𝑓 ∈ (ℙ ↑m {1, 2})(2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} (𝑓𝑘))
45 oveq2 7158 . . . . . 6 (𝑑 = 2 → (1...𝑑) = (1...2))
46 df-2 11694 . . . . . . . 8 2 = (1 + 1)
4746oveq2i 7161 . . . . . . 7 (1...2) = (1...(1 + 1))
48 1z 12006 . . . . . . . . 9 1 ∈ ℤ
49 fzpr 12956 . . . . . . . . 9 (1 ∈ ℤ → (1...(1 + 1)) = {1, (1 + 1)})
5048, 49ax-mp 5 . . . . . . . 8 (1...(1 + 1)) = {1, (1 + 1)}
51 1p1e2 11756 . . . . . . . . 9 (1 + 1) = 2
5251preq2i 4666 . . . . . . . 8 {1, (1 + 1)} = {1, 2}
5350, 52eqtri 2844 . . . . . . 7 (1...(1 + 1)) = {1, 2}
5447, 53eqtri 2844 . . . . . 6 (1...2) = {1, 2}
5545, 54syl6eq 2872 . . . . 5 (𝑑 = 2 → (1...𝑑) = {1, 2})
5655oveq2d 7166 . . . 4 (𝑑 = 2 → (ℙ ↑m (1...𝑑)) = (ℙ ↑m {1, 2}))
57 breq1 5061 . . . . 5 (𝑑 = 2 → (𝑑 ≤ 3 ↔ 2 ≤ 3))
5855sumeq1d 15052 . . . . . 6 (𝑑 = 2 → Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) = Σ𝑘 ∈ {1, 2} (𝑓𝑘))
5958eqeq2d 2832 . . . . 5 (𝑑 = 2 → (4 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) ↔ 4 = Σ𝑘 ∈ {1, 2} (𝑓𝑘)))
6057, 59anbi12d 632 . . . 4 (𝑑 = 2 → ((𝑑 ≤ 3 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ (2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} (𝑓𝑘))))
6156, 60rexeqbidv 3402 . . 3 (𝑑 = 2 → (∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑m {1, 2})(2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} (𝑓𝑘))))
6261rspcev 3622 . 2 ((2 ∈ ℕ ∧ ∃𝑓 ∈ (ℙ ↑m {1, 2})(2 ≤ 3 ∧ 4 = Σ𝑘 ∈ {1, 2} (𝑓𝑘))) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
631, 44, 62mp2an 690 1 𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))
Colors of variables: wff setvar class
Syntax hints:  wa 398   = wceq 1533  wcel 2110  wne 3016  wrex 3139  Vcvv 3494  wss 3935  {cpr 4562  cop 4566   class class class wbr 5058  wf 6345  cfv 6349  (class class class)co 7150  m cmap 8400  cc 10529  1c1 10532   + caddc 10534  cle 10670  cn 11632  2c2 11686  3c3 11687  4c4 11688  cz 11975  ...cfz 12886  Σcsu 15036  cprime 16009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-fz 12887  df-fzo 13028  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-sum 15037  df-dvds 15602  df-prm 16010
This theorem is referenced by:  nnsum4primes4  43948  nnsum3primesle9  43953
  Copyright terms: Public domain W3C validator