Proof of Theorem 31prm
Step | Hyp | Ref
| Expression |
1 | | 2z 12282 |
. . 3
⊢ 2 ∈
ℤ |
2 | | 3nn0 12181 |
. . . . 5
⊢ 3 ∈
ℕ0 |
3 | | 1nn0 12179 |
. . . . 5
⊢ 1 ∈
ℕ0 |
4 | 2, 3 | deccl 12381 |
. . . 4
⊢ ;31 ∈
ℕ0 |
5 | 4 | nn0zi 12275 |
. . 3
⊢ ;31 ∈ ℤ |
6 | | 3nn 11982 |
. . . 4
⊢ 3 ∈
ℕ |
7 | | 2nn0 12180 |
. . . 4
⊢ 2 ∈
ℕ0 |
8 | | 2re 11977 |
. . . . 5
⊢ 2 ∈
ℝ |
9 | | 9re 12002 |
. . . . 5
⊢ 9 ∈
ℝ |
10 | | 2lt9 12108 |
. . . . 5
⊢ 2 <
9 |
11 | 8, 9, 10 | ltleii 11028 |
. . . 4
⊢ 2 ≤
9 |
12 | 6, 3, 7, 11 | declei 12402 |
. . 3
⊢ 2 ≤
;31 |
13 | | eluz2 12517 |
. . 3
⊢ (;31 ∈
(ℤ≥‘2) ↔ (2 ∈ ℤ ∧ ;31 ∈ ℤ ∧ 2 ≤ ;31)) |
14 | 1, 5, 12, 13 | mpbir3an 1339 |
. 2
⊢ ;31 ∈
(ℤ≥‘2) |
15 | | elun 4079 |
. . . . . 6
⊢ (𝑛 ∈ (({2, 3} ∩ ℙ)
∪ ({4, 5} ∩ ℙ)) ↔ (𝑛 ∈ ({2, 3} ∩ ℙ) ∨ 𝑛 ∈ ({4, 5} ∩
ℙ))) |
16 | | elin 3899 |
. . . . . . . 8
⊢ (𝑛 ∈ ({2, 3} ∩ ℙ)
↔ (𝑛 ∈ {2, 3}
∧ 𝑛 ∈
ℙ)) |
17 | | vex 3426 |
. . . . . . . . . . 11
⊢ 𝑛 ∈ V |
18 | 17 | elpr 4581 |
. . . . . . . . . 10
⊢ (𝑛 ∈ {2, 3} ↔ (𝑛 = 2 ∨ 𝑛 = 3)) |
19 | | 0nn0 12178 |
. . . . . . . . . . . . 13
⊢ 0 ∈
ℕ0 |
20 | | 2cn 11978 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
ℂ |
21 | 20 | mul02i 11094 |
. . . . . . . . . . . . 13
⊢ (0
· 2) = 0 |
22 | | 1e0p1 12408 |
. . . . . . . . . . . . 13
⊢ 1 = (0 +
1) |
23 | 2, 19, 21, 22 | dec2dvds 16692 |
. . . . . . . . . . . 12
⊢ ¬ 2
∥ ;31 |
24 | | breq1 5073 |
. . . . . . . . . . . 12
⊢ (𝑛 = 2 → (𝑛 ∥ ;31 ↔ 2 ∥ ;31)) |
25 | 23, 24 | mtbiri 326 |
. . . . . . . . . . 11
⊢ (𝑛 = 2 → ¬ 𝑛 ∥ ;31) |
26 | | 3ndvds4 44935 |
. . . . . . . . . . . . 13
⊢ ¬ 3
∥ 4 |
27 | 2, 3 | 3dvdsdec 15969 |
. . . . . . . . . . . . . 14
⊢ (3
∥ ;31 ↔ 3 ∥ (3 +
1)) |
28 | | 3p1e4 12048 |
. . . . . . . . . . . . . . 15
⊢ (3 + 1) =
4 |
29 | 28 | breq2i 5078 |
. . . . . . . . . . . . . 14
⊢ (3
∥ (3 + 1) ↔ 3 ∥ 4) |
30 | 27, 29 | bitri 274 |
. . . . . . . . . . . . 13
⊢ (3
∥ ;31 ↔ 3 ∥
4) |
31 | 26, 30 | mtbir 322 |
. . . . . . . . . . . 12
⊢ ¬ 3
∥ ;31 |
32 | | breq1 5073 |
. . . . . . . . . . . 12
⊢ (𝑛 = 3 → (𝑛 ∥ ;31 ↔ 3 ∥ ;31)) |
33 | 31, 32 | mtbiri 326 |
. . . . . . . . . . 11
⊢ (𝑛 = 3 → ¬ 𝑛 ∥ ;31) |
34 | 25, 33 | jaoi 853 |
. . . . . . . . . 10
⊢ ((𝑛 = 2 ∨ 𝑛 = 3) → ¬ 𝑛 ∥ ;31) |
35 | 18, 34 | sylbi 216 |
. . . . . . . . 9
⊢ (𝑛 ∈ {2, 3} → ¬
𝑛 ∥ ;31) |
36 | 35 | adantr 480 |
. . . . . . . 8
⊢ ((𝑛 ∈ {2, 3} ∧ 𝑛 ∈ ℙ) → ¬
𝑛 ∥ ;31) |
37 | 16, 36 | sylbi 216 |
. . . . . . 7
⊢ (𝑛 ∈ ({2, 3} ∩ ℙ)
→ ¬ 𝑛 ∥
;31) |
38 | | elin 3899 |
. . . . . . . 8
⊢ (𝑛 ∈ ({4, 5} ∩ ℙ)
↔ (𝑛 ∈ {4, 5}
∧ 𝑛 ∈
ℙ)) |
39 | 17 | elpr 4581 |
. . . . . . . . . 10
⊢ (𝑛 ∈ {4, 5} ↔ (𝑛 = 4 ∨ 𝑛 = 5)) |
40 | | eleq1 2826 |
. . . . . . . . . . . 12
⊢ (𝑛 = 4 → (𝑛 ∈ ℙ ↔ 4 ∈
ℙ)) |
41 | | 4nprm 16328 |
. . . . . . . . . . . . 13
⊢ ¬ 4
∈ ℙ |
42 | 41 | pm2.21i 119 |
. . . . . . . . . . . 12
⊢ (4 ∈
ℙ → ¬ 𝑛
∥ ;31) |
43 | 40, 42 | syl6bi 252 |
. . . . . . . . . . 11
⊢ (𝑛 = 4 → (𝑛 ∈ ℙ → ¬ 𝑛 ∥ ;31)) |
44 | | 1nn 11914 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℕ |
45 | | 1lt5 12083 |
. . . . . . . . . . . . . 14
⊢ 1 <
5 |
46 | 2, 44, 45 | dec5dvds 16693 |
. . . . . . . . . . . . 13
⊢ ¬ 5
∥ ;31 |
47 | | breq1 5073 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 5 → (𝑛 ∥ ;31 ↔ 5 ∥ ;31)) |
48 | 46, 47 | mtbiri 326 |
. . . . . . . . . . . 12
⊢ (𝑛 = 5 → ¬ 𝑛 ∥ ;31) |
49 | 48 | a1d 25 |
. . . . . . . . . . 11
⊢ (𝑛 = 5 → (𝑛 ∈ ℙ → ¬ 𝑛 ∥ ;31)) |
50 | 43, 49 | jaoi 853 |
. . . . . . . . . 10
⊢ ((𝑛 = 4 ∨ 𝑛 = 5) → (𝑛 ∈ ℙ → ¬ 𝑛 ∥ ;31)) |
51 | 39, 50 | sylbi 216 |
. . . . . . . . 9
⊢ (𝑛 ∈ {4, 5} → (𝑛 ∈ ℙ → ¬
𝑛 ∥ ;31)) |
52 | 51 | imp 406 |
. . . . . . . 8
⊢ ((𝑛 ∈ {4, 5} ∧ 𝑛 ∈ ℙ) → ¬
𝑛 ∥ ;31) |
53 | 38, 52 | sylbi 216 |
. . . . . . 7
⊢ (𝑛 ∈ ({4, 5} ∩ ℙ)
→ ¬ 𝑛 ∥
;31) |
54 | 37, 53 | jaoi 853 |
. . . . . 6
⊢ ((𝑛 ∈ ({2, 3} ∩ ℙ)
∨ 𝑛 ∈ ({4, 5} ∩
ℙ)) → ¬ 𝑛
∥ ;31) |
55 | 15, 54 | sylbi 216 |
. . . . 5
⊢ (𝑛 ∈ (({2, 3} ∩ ℙ)
∪ ({4, 5} ∩ ℙ)) → ¬ 𝑛 ∥ ;31) |
56 | | indir 4206 |
. . . . 5
⊢ (({2, 3}
∪ {4, 5}) ∩ ℙ) = (({2, 3} ∩ ℙ) ∪ ({4, 5} ∩
ℙ)) |
57 | 55, 56 | eleq2s 2857 |
. . . 4
⊢ (𝑛 ∈ (({2, 3} ∪ {4, 5})
∩ ℙ) → ¬ 𝑛 ∥ ;31) |
58 | | 5nn0 12183 |
. . . . . . . . 9
⊢ 5 ∈
ℕ0 |
59 | | 5re 11990 |
. . . . . . . . . 10
⊢ 5 ∈
ℝ |
60 | | 5lt9 12105 |
. . . . . . . . . 10
⊢ 5 <
9 |
61 | 59, 9, 60 | ltleii 11028 |
. . . . . . . . 9
⊢ 5 ≤
9 |
62 | | 2lt3 12075 |
. . . . . . . . 9
⊢ 2 <
3 |
63 | 7, 2, 58, 3, 61, 62 | decleh 12401 |
. . . . . . . 8
⊢ ;25 ≤ ;31 |
64 | | 6nn 11992 |
. . . . . . . . 9
⊢ 6 ∈
ℕ |
65 | | 1lt6 12088 |
. . . . . . . . 9
⊢ 1 <
6 |
66 | 2, 3, 64, 65 | declt 12394 |
. . . . . . . 8
⊢ ;31 < ;36 |
67 | 4 | nn0rei 12174 |
. . . . . . . . . 10
⊢ ;31 ∈ ℝ |
68 | | 0re 10908 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℝ |
69 | | 9pos 12016 |
. . . . . . . . . . . 12
⊢ 0 <
9 |
70 | 68, 9, 69 | ltleii 11028 |
. . . . . . . . . . 11
⊢ 0 ≤
9 |
71 | 6, 3, 19, 70 | declei 12402 |
. . . . . . . . . 10
⊢ 0 ≤
;31 |
72 | 67, 71 | pm3.2i 470 |
. . . . . . . . 9
⊢ (;31 ∈ ℝ ∧ 0 ≤ ;31) |
73 | | flsqrt5 44934 |
. . . . . . . . . 10
⊢ ((;31 ∈ ℝ ∧ 0 ≤ ;31) → ((;25 ≤ ;31 ∧ ;31 < ;36) ↔ (⌊‘(√‘;31)) = 5)) |
74 | 73 | bicomd 222 |
. . . . . . . . 9
⊢ ((;31 ∈ ℝ ∧ 0 ≤ ;31) →
((⌊‘(√‘;31)) = 5 ↔ (;25 ≤ ;31 ∧ ;31 < ;36))) |
75 | 72, 74 | ax-mp 5 |
. . . . . . . 8
⊢
((⌊‘(√‘;31)) = 5 ↔ (;25 ≤ ;31 ∧ ;31 < ;36)) |
76 | 63, 66, 75 | mpbir2an 707 |
. . . . . . 7
⊢
(⌊‘(√‘;31)) = 5 |
77 | 76 | oveq2i 7266 |
. . . . . 6
⊢
(2...(⌊‘(√‘;31))) = (2...5) |
78 | | 5nn 11989 |
. . . . . . . . . 10
⊢ 5 ∈
ℕ |
79 | 78 | nnzi 12274 |
. . . . . . . . 9
⊢ 5 ∈
ℤ |
80 | | 3z 12283 |
. . . . . . . . 9
⊢ 3 ∈
ℤ |
81 | 1, 79, 80 | 3pm3.2i 1337 |
. . . . . . . 8
⊢ (2 ∈
ℤ ∧ 5 ∈ ℤ ∧ 3 ∈ ℤ) |
82 | | 3re 11983 |
. . . . . . . . . 10
⊢ 3 ∈
ℝ |
83 | 8, 82, 62 | ltleii 11028 |
. . . . . . . . 9
⊢ 2 ≤
3 |
84 | | 3lt5 12081 |
. . . . . . . . . 10
⊢ 3 <
5 |
85 | 82, 59, 84 | ltleii 11028 |
. . . . . . . . 9
⊢ 3 ≤
5 |
86 | 83, 85 | pm3.2i 470 |
. . . . . . . 8
⊢ (2 ≤ 3
∧ 3 ≤ 5) |
87 | | elfz2 13175 |
. . . . . . . 8
⊢ (3 ∈
(2...5) ↔ ((2 ∈ ℤ ∧ 5 ∈ ℤ ∧ 3 ∈
ℤ) ∧ (2 ≤ 3 ∧ 3 ≤ 5))) |
88 | 81, 86, 87 | mpbir2an 707 |
. . . . . . 7
⊢ 3 ∈
(2...5) |
89 | | fzsplit 13211 |
. . . . . . 7
⊢ (3 ∈
(2...5) → (2...5) = ((2...3) ∪ ((3 + 1)...5))) |
90 | 88, 89 | ax-mp 5 |
. . . . . 6
⊢ (2...5) =
((2...3) ∪ ((3 + 1)...5)) |
91 | | df-3 11967 |
. . . . . . . . 9
⊢ 3 = (2 +
1) |
92 | 91 | oveq2i 7266 |
. . . . . . . 8
⊢ (2...3) =
(2...(2 + 1)) |
93 | | fzpr 13240 |
. . . . . . . . 9
⊢ (2 ∈
ℤ → (2...(2 + 1)) = {2, (2 + 1)}) |
94 | 1, 93 | ax-mp 5 |
. . . . . . . 8
⊢ (2...(2 +
1)) = {2, (2 + 1)} |
95 | | 2p1e3 12045 |
. . . . . . . . 9
⊢ (2 + 1) =
3 |
96 | 95 | preq2i 4670 |
. . . . . . . 8
⊢ {2, (2 +
1)} = {2, 3} |
97 | 92, 94, 96 | 3eqtri 2770 |
. . . . . . 7
⊢ (2...3) =
{2, 3} |
98 | 28 | oveq1i 7265 |
. . . . . . . 8
⊢ ((3 +
1)...5) = (4...5) |
99 | | df-5 11969 |
. . . . . . . . 9
⊢ 5 = (4 +
1) |
100 | 99 | oveq2i 7266 |
. . . . . . . 8
⊢ (4...5) =
(4...(4 + 1)) |
101 | | 4z 12284 |
. . . . . . . . . 10
⊢ 4 ∈
ℤ |
102 | | fzpr 13240 |
. . . . . . . . . 10
⊢ (4 ∈
ℤ → (4...(4 + 1)) = {4, (4 + 1)}) |
103 | 101, 102 | ax-mp 5 |
. . . . . . . . 9
⊢ (4...(4 +
1)) = {4, (4 + 1)} |
104 | | 4p1e5 12049 |
. . . . . . . . . 10
⊢ (4 + 1) =
5 |
105 | 104 | preq2i 4670 |
. . . . . . . . 9
⊢ {4, (4 +
1)} = {4, 5} |
106 | 103, 105 | eqtri 2766 |
. . . . . . . 8
⊢ (4...(4 +
1)) = {4, 5} |
107 | 98, 100, 106 | 3eqtri 2770 |
. . . . . . 7
⊢ ((3 +
1)...5) = {4, 5} |
108 | 97, 107 | uneq12i 4091 |
. . . . . 6
⊢ ((2...3)
∪ ((3 + 1)...5)) = ({2, 3} ∪ {4, 5}) |
109 | 77, 90, 108 | 3eqtri 2770 |
. . . . 5
⊢
(2...(⌊‘(√‘;31))) = ({2, 3} ∪ {4, 5}) |
110 | 109 | ineq1i 4139 |
. . . 4
⊢
((2...(⌊‘(√‘;31))) ∩ ℙ) = (({2, 3} ∪ {4, 5}) ∩
ℙ) |
111 | 57, 110 | eleq2s 2857 |
. . 3
⊢ (𝑛 ∈
((2...(⌊‘(√‘;31))) ∩ ℙ) → ¬ 𝑛 ∥ ;31) |
112 | 111 | rgen 3073 |
. 2
⊢
∀𝑛 ∈
((2...(⌊‘(√‘;31))) ∩ ℙ) ¬ 𝑛 ∥ ;31 |
113 | | isprm7 16341 |
. 2
⊢ (;31 ∈ ℙ ↔ (;31 ∈
(ℤ≥‘2) ∧ ∀𝑛 ∈
((2...(⌊‘(√‘;31))) ∩ ℙ) ¬ 𝑛 ∥ ;31)) |
114 | 14, 112, 113 | mpbir2an 707 |
1
⊢ ;31 ∈ ℙ |