MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgmnsgrpex Structured version   Visualization version   GIF version

Theorem mgmnsgrpex 18805
Description: There is a magma which is not a semigroup. (Contributed by AV, 29-Jan-2020.)
Assertion
Ref Expression
mgmnsgrpex 𝑚 ∈ Mgm 𝑚 ∉ Smgrp

Proof of Theorem mgmnsgrpex
Dummy variables 𝑥 𝑦 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prhash2ex 14306 . 2 (♯‘{0, 1}) = 2
2 c0ex 11109 . . . . 5 0 ∈ V
3 1ex 11111 . . . . 5 1 ∈ V
42, 3pm3.2i 470 . . . 4 (0 ∈ V ∧ 1 ∈ V)
5 eqid 2729 . . . . 5 {0, 1} = {0, 1}
6 prex 5376 . . . . . . 7 {0, 1} ∈ V
7 eqeq1 2733 . . . . . . . . . . . . 13 (𝑥 = 𝑢 → (𝑥 = 0 ↔ 𝑢 = 0))
87anbi1d 631 . . . . . . . . . . . 12 (𝑥 = 𝑢 → ((𝑥 = 0 ∧ 𝑦 = 0) ↔ (𝑢 = 0 ∧ 𝑦 = 0)))
98ifbid 4500 . . . . . . . . . . 11 (𝑥 = 𝑢 → if((𝑥 = 0 ∧ 𝑦 = 0), 1, 0) = if((𝑢 = 0 ∧ 𝑦 = 0), 1, 0))
10 eqeq1 2733 . . . . . . . . . . . . 13 (𝑦 = 𝑣 → (𝑦 = 0 ↔ 𝑣 = 0))
1110anbi2d 630 . . . . . . . . . . . 12 (𝑦 = 𝑣 → ((𝑢 = 0 ∧ 𝑦 = 0) ↔ (𝑢 = 0 ∧ 𝑣 = 0)))
1211ifbid 4500 . . . . . . . . . . 11 (𝑦 = 𝑣 → if((𝑢 = 0 ∧ 𝑦 = 0), 1, 0) = if((𝑢 = 0 ∧ 𝑣 = 0), 1, 0))
139, 12cbvmpov 7444 . . . . . . . . . 10 (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if((𝑥 = 0 ∧ 𝑦 = 0), 1, 0)) = (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if((𝑢 = 0 ∧ 𝑣 = 0), 1, 0))
1413opeq2i 4828 . . . . . . . . 9 ⟨(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if((𝑥 = 0 ∧ 𝑦 = 0), 1, 0))⟩ = ⟨(+g‘ndx), (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if((𝑢 = 0 ∧ 𝑣 = 0), 1, 0))⟩
1514preq2i 4689 . . . . . . . 8 {⟨(Base‘ndx), {0, 1}⟩, ⟨(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if((𝑥 = 0 ∧ 𝑦 = 0), 1, 0))⟩} = {⟨(Base‘ndx), {0, 1}⟩, ⟨(+g‘ndx), (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if((𝑢 = 0 ∧ 𝑣 = 0), 1, 0))⟩}
1615grpbase 17193 . . . . . . 7 ({0, 1} ∈ V → {0, 1} = (Base‘{⟨(Base‘ndx), {0, 1}⟩, ⟨(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if((𝑥 = 0 ∧ 𝑦 = 0), 1, 0))⟩}))
176, 16ax-mp 5 . . . . . 6 {0, 1} = (Base‘{⟨(Base‘ndx), {0, 1}⟩, ⟨(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if((𝑥 = 0 ∧ 𝑦 = 0), 1, 0))⟩})
1817eqcomi 2738 . . . . 5 (Base‘{⟨(Base‘ndx), {0, 1}⟩, ⟨(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if((𝑥 = 0 ∧ 𝑦 = 0), 1, 0))⟩}) = {0, 1}
196, 6mpoex 8014 . . . . . . 7 (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if((𝑢 = 0 ∧ 𝑣 = 0), 1, 0)) ∈ V
2015grpplusg 17194 . . . . . . 7 ((𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if((𝑢 = 0 ∧ 𝑣 = 0), 1, 0)) ∈ V → (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if((𝑢 = 0 ∧ 𝑣 = 0), 1, 0)) = (+g‘{⟨(Base‘ndx), {0, 1}⟩, ⟨(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if((𝑥 = 0 ∧ 𝑦 = 0), 1, 0))⟩}))
2119, 20ax-mp 5 . . . . . 6 (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if((𝑢 = 0 ∧ 𝑣 = 0), 1, 0)) = (+g‘{⟨(Base‘ndx), {0, 1}⟩, ⟨(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if((𝑥 = 0 ∧ 𝑦 = 0), 1, 0))⟩})
2221eqcomi 2738 . . . . 5 (+g‘{⟨(Base‘ndx), {0, 1}⟩, ⟨(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if((𝑥 = 0 ∧ 𝑦 = 0), 1, 0))⟩}) = (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if((𝑢 = 0 ∧ 𝑣 = 0), 1, 0))
235, 18, 22mgm2nsgrplem1 18792 . . . 4 ((0 ∈ V ∧ 1 ∈ V) → {⟨(Base‘ndx), {0, 1}⟩, ⟨(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if((𝑥 = 0 ∧ 𝑦 = 0), 1, 0))⟩} ∈ Mgm)
244, 23mp1i 13 . . 3 ((♯‘{0, 1}) = 2 → {⟨(Base‘ndx), {0, 1}⟩, ⟨(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if((𝑥 = 0 ∧ 𝑦 = 0), 1, 0))⟩} ∈ Mgm)
25 neleq1 3035 . . . 4 (𝑚 = {⟨(Base‘ndx), {0, 1}⟩, ⟨(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if((𝑥 = 0 ∧ 𝑦 = 0), 1, 0))⟩} → (𝑚 ∉ Smgrp ↔ {⟨(Base‘ndx), {0, 1}⟩, ⟨(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if((𝑥 = 0 ∧ 𝑦 = 0), 1, 0))⟩} ∉ Smgrp))
2625adantl 481 . . 3 (((♯‘{0, 1}) = 2 ∧ 𝑚 = {⟨(Base‘ndx), {0, 1}⟩, ⟨(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if((𝑥 = 0 ∧ 𝑦 = 0), 1, 0))⟩}) → (𝑚 ∉ Smgrp ↔ {⟨(Base‘ndx), {0, 1}⟩, ⟨(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if((𝑥 = 0 ∧ 𝑦 = 0), 1, 0))⟩} ∉ Smgrp))
275, 18, 22mgm2nsgrplem4 18795 . . 3 ((♯‘{0, 1}) = 2 → {⟨(Base‘ndx), {0, 1}⟩, ⟨(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if((𝑥 = 0 ∧ 𝑦 = 0), 1, 0))⟩} ∉ Smgrp)
2824, 26, 27rspcedvd 3579 . 2 ((♯‘{0, 1}) = 2 → ∃𝑚 ∈ Mgm 𝑚 ∉ Smgrp)
291, 28ax-mp 5 1 𝑚 ∈ Mgm 𝑚 ∉ Smgrp
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wnel 3029  wrex 3053  Vcvv 3436  ifcif 4476  {cpr 4579  cop 4583  cfv 6482  cmpo 7351  0cc0 11009  1c1 11010  2c2 12183  chash 14237  ndxcnx 17104  Basecbs 17120  +gcplusg 17161  Mgmcmgm 18512  Smgrpcsgrp 18592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-oadd 8392  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-hash 14238  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mgm 18514  df-sgrp 18593
This theorem is referenced by:  sgrpssmgm  18807
  Copyright terms: Public domain W3C validator