![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > m2detleiblem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for m2detleib 22520. (Contributed by AV, 16-Dec-2018.) (Proof shortened by AV, 1-Jan-2019.) |
Ref | Expression |
---|---|
m2detleiblem2.n | ⊢ 𝑁 = {1, 2} |
m2detleiblem2.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
m2detleiblem2.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
m2detleiblem2.b | ⊢ 𝐵 = (Base‘𝐴) |
m2detleiblem2.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
Ref | Expression |
---|---|
m2detleiblem2 | ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵) → (𝐺 Σg (𝑛 ∈ 𝑁 ↦ ((𝑄‘𝑛)𝑀𝑛))) ∈ (Base‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | m2detleiblem2.g | . . 3 ⊢ 𝐺 = (mulGrp‘𝑅) | |
2 | eqid 2727 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | 1, 2 | mgpbas 20071 | . 2 ⊢ (Base‘𝑅) = (Base‘𝐺) |
4 | 1 | ringmgp 20170 | . . 3 ⊢ (𝑅 ∈ Ring → 𝐺 ∈ Mnd) |
5 | 4 | 3ad2ant1 1131 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵) → 𝐺 ∈ Mnd) |
6 | 2eluzge1 12900 | . . 3 ⊢ 2 ∈ (ℤ≥‘1) | |
7 | 6 | a1i 11 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵) → 2 ∈ (ℤ≥‘1)) |
8 | 1z 12614 | . . . . . 6 ⊢ 1 ∈ ℤ | |
9 | fzpr 13580 | . . . . . 6 ⊢ (1 ∈ ℤ → (1...(1 + 1)) = {1, (1 + 1)}) | |
10 | 8, 9 | ax-mp 5 | . . . . 5 ⊢ (1...(1 + 1)) = {1, (1 + 1)} |
11 | 1p1e2 12359 | . . . . . 6 ⊢ (1 + 1) = 2 | |
12 | 11 | preq2i 4737 | . . . . 5 ⊢ {1, (1 + 1)} = {1, 2} |
13 | 10, 12 | eqtri 2755 | . . . 4 ⊢ (1...(1 + 1)) = {1, 2} |
14 | df-2 12297 | . . . . 5 ⊢ 2 = (1 + 1) | |
15 | 14 | oveq2i 7425 | . . . 4 ⊢ (1...2) = (1...(1 + 1)) |
16 | m2detleiblem2.n | . . . 4 ⊢ 𝑁 = {1, 2} | |
17 | 13, 15, 16 | 3eqtr4ri 2766 | . . 3 ⊢ 𝑁 = (1...2) |
18 | 17 | a1i 11 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵) → 𝑁 = (1...2)) |
19 | m2detleiblem2.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
20 | m2detleiblem2.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
21 | m2detleiblem2.p | . . 3 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
22 | 19, 20, 21 | matepmcl 22351 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵) → ∀𝑛 ∈ 𝑁 ((𝑄‘𝑛)𝑀𝑛) ∈ (Base‘𝑅)) |
23 | 3, 5, 7, 18, 22 | gsummptfzcl 19915 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵) → (𝐺 Σg (𝑛 ∈ 𝑁 ↦ ((𝑄‘𝑛)𝑀𝑛))) ∈ (Base‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 {cpr 4626 ↦ cmpt 5225 ‘cfv 6542 (class class class)co 7414 1c1 11131 + caddc 11133 2c2 12289 ℤcz 12580 ℤ≥cuz 12844 ...cfz 13508 Basecbs 17171 Σg cgsu 17413 Mndcmnd 18685 SymGrpcsymg 19312 mulGrpcmgp 20065 Ringcrg 20164 Mat cmat 22294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-ot 4633 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8838 df-ixp 8908 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-fsupp 9378 df-sup 9457 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-nn 12235 df-2 12297 df-3 12298 df-4 12299 df-5 12300 df-6 12301 df-7 12302 df-8 12303 df-9 12304 df-n0 12495 df-z 12581 df-dec 12700 df-uz 12845 df-fz 13509 df-seq 13991 df-struct 17107 df-sets 17124 df-slot 17142 df-ndx 17154 df-base 17172 df-ress 17201 df-plusg 17237 df-mulr 17238 df-sca 17240 df-vsca 17241 df-ip 17242 df-tset 17243 df-ple 17244 df-ds 17246 df-hom 17248 df-cco 17249 df-0g 17414 df-gsum 17415 df-prds 17420 df-pws 17422 df-mgm 18591 df-sgrp 18670 df-mnd 18686 df-efmnd 18812 df-symg 19313 df-mgp 20066 df-ring 20166 df-sra 21047 df-rgmod 21048 df-dsmm 21653 df-frlm 21668 df-mat 22295 |
This theorem is referenced by: m2detleib 22520 |
Copyright terms: Public domain | W3C validator |