MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m2detleiblem2 Structured version   Visualization version   GIF version

Theorem m2detleiblem2 22553
Description: Lemma 2 for m2detleib 22556. (Contributed by AV, 16-Dec-2018.) (Proof shortened by AV, 1-Jan-2019.)
Hypotheses
Ref Expression
m2detleiblem2.n 𝑁 = {1, 2}
m2detleiblem2.p 𝑃 = (Base‘(SymGrp‘𝑁))
m2detleiblem2.a 𝐴 = (𝑁 Mat 𝑅)
m2detleiblem2.b 𝐵 = (Base‘𝐴)
m2detleiblem2.g 𝐺 = (mulGrp‘𝑅)
Assertion
Ref Expression
m2detleiblem2 ((𝑅 ∈ Ring ∧ 𝑄𝑃𝑀𝐵) → (𝐺 Σg (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))) ∈ (Base‘𝑅))
Distinct variable groups:   𝐵,𝑛   𝑛,𝑀   𝑛,𝑁   𝑃,𝑛   𝑄,𝑛   𝑅,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝐺(𝑛)

Proof of Theorem m2detleiblem2
StepHypRef Expression
1 m2detleiblem2.g . . 3 𝐺 = (mulGrp‘𝑅)
2 eqid 2734 . . 3 (Base‘𝑅) = (Base‘𝑅)
31, 2mgpbas 20092 . 2 (Base‘𝑅) = (Base‘𝐺)
41ringmgp 20186 . . 3 (𝑅 ∈ Ring → 𝐺 ∈ Mnd)
543ad2ant1 1133 . 2 ((𝑅 ∈ Ring ∧ 𝑄𝑃𝑀𝐵) → 𝐺 ∈ Mnd)
6 2eluzge1 12903 . . 3 2 ∈ (ℤ‘1)
76a1i 11 . 2 ((𝑅 ∈ Ring ∧ 𝑄𝑃𝑀𝐵) → 2 ∈ (ℤ‘1))
8 1z 12615 . . . . . 6 1 ∈ ℤ
9 fzpr 13586 . . . . . 6 (1 ∈ ℤ → (1...(1 + 1)) = {1, (1 + 1)})
108, 9ax-mp 5 . . . . 5 (1...(1 + 1)) = {1, (1 + 1)}
11 1p1e2 12358 . . . . . 6 (1 + 1) = 2
1211preq2i 4711 . . . . 5 {1, (1 + 1)} = {1, 2}
1310, 12eqtri 2757 . . . 4 (1...(1 + 1)) = {1, 2}
14 df-2 12296 . . . . 5 2 = (1 + 1)
1514oveq2i 7411 . . . 4 (1...2) = (1...(1 + 1))
16 m2detleiblem2.n . . . 4 𝑁 = {1, 2}
1713, 15, 163eqtr4ri 2768 . . 3 𝑁 = (1...2)
1817a1i 11 . 2 ((𝑅 ∈ Ring ∧ 𝑄𝑃𝑀𝐵) → 𝑁 = (1...2))
19 m2detleiblem2.a . . 3 𝐴 = (𝑁 Mat 𝑅)
20 m2detleiblem2.b . . 3 𝐵 = (Base‘𝐴)
21 m2detleiblem2.p . . 3 𝑃 = (Base‘(SymGrp‘𝑁))
2219, 20, 21matepmcl 22387 . 2 ((𝑅 ∈ Ring ∧ 𝑄𝑃𝑀𝐵) → ∀𝑛𝑁 ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅))
233, 5, 7, 18, 22gsummptfzcl 19937 1 ((𝑅 ∈ Ring ∧ 𝑄𝑃𝑀𝐵) → (𝐺 Σg (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))) ∈ (Base‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2107  {cpr 4601  cmpt 5199  cfv 6528  (class class class)co 7400  1c1 11123   + caddc 11125  2c2 12288  cz 12581  cuz 12845  ...cfz 13514  Basecbs 17215   Σg cgsu 17441  Mndcmnd 18699  SymGrpcsymg 19337  mulGrpcmgp 20087  Ringcrg 20180   Mat cmat 22332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-cnex 11178  ax-resscn 11179  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-addrcl 11183  ax-mulcl 11184  ax-mulrcl 11185  ax-mulcom 11186  ax-addass 11187  ax-mulass 11188  ax-distr 11189  ax-i2m1 11190  ax-1ne0 11191  ax-1rid 11192  ax-rnegex 11193  ax-rrecex 11194  ax-cnre 11195  ax-pre-lttri 11196  ax-pre-lttrn 11197  ax-pre-ltadd 11198  ax-pre-mulgt0 11199
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-tp 4604  df-op 4606  df-ot 4608  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-om 7857  df-1st 7983  df-2nd 7984  df-supp 8155  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-1o 8475  df-er 8714  df-map 8837  df-ixp 8907  df-en 8955  df-dom 8956  df-sdom 8957  df-fin 8958  df-fsupp 9369  df-sup 9449  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-sub 11461  df-neg 11462  df-nn 12234  df-2 12296  df-3 12297  df-4 12298  df-5 12299  df-6 12300  df-7 12301  df-8 12302  df-9 12303  df-n0 12495  df-z 12582  df-dec 12702  df-uz 12846  df-fz 13515  df-seq 14010  df-struct 17153  df-sets 17170  df-slot 17188  df-ndx 17200  df-base 17216  df-ress 17239  df-plusg 17271  df-mulr 17272  df-sca 17274  df-vsca 17275  df-ip 17276  df-tset 17277  df-ple 17278  df-ds 17280  df-hom 17282  df-cco 17283  df-0g 17442  df-gsum 17443  df-prds 17448  df-pws 17450  df-mgm 18605  df-sgrp 18684  df-mnd 18700  df-efmnd 18834  df-symg 19338  df-mgp 20088  df-ring 20182  df-sra 21118  df-rgmod 21119  df-dsmm 21679  df-frlm 21694  df-mat 22333
This theorem is referenced by:  m2detleib  22556
  Copyright terms: Public domain W3C validator