| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > m2detleiblem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for m2detleib 22556. (Contributed by AV, 16-Dec-2018.) (Proof shortened by AV, 1-Jan-2019.) |
| Ref | Expression |
|---|---|
| m2detleiblem2.n | ⊢ 𝑁 = {1, 2} |
| m2detleiblem2.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
| m2detleiblem2.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| m2detleiblem2.b | ⊢ 𝐵 = (Base‘𝐴) |
| m2detleiblem2.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
| Ref | Expression |
|---|---|
| m2detleiblem2 | ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵) → (𝐺 Σg (𝑛 ∈ 𝑁 ↦ ((𝑄‘𝑛)𝑀𝑛))) ∈ (Base‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | m2detleiblem2.g | . . 3 ⊢ 𝐺 = (mulGrp‘𝑅) | |
| 2 | eqid 2734 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | 1, 2 | mgpbas 20092 | . 2 ⊢ (Base‘𝑅) = (Base‘𝐺) |
| 4 | 1 | ringmgp 20186 | . . 3 ⊢ (𝑅 ∈ Ring → 𝐺 ∈ Mnd) |
| 5 | 4 | 3ad2ant1 1133 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵) → 𝐺 ∈ Mnd) |
| 6 | 2eluzge1 12903 | . . 3 ⊢ 2 ∈ (ℤ≥‘1) | |
| 7 | 6 | a1i 11 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵) → 2 ∈ (ℤ≥‘1)) |
| 8 | 1z 12615 | . . . . . 6 ⊢ 1 ∈ ℤ | |
| 9 | fzpr 13586 | . . . . . 6 ⊢ (1 ∈ ℤ → (1...(1 + 1)) = {1, (1 + 1)}) | |
| 10 | 8, 9 | ax-mp 5 | . . . . 5 ⊢ (1...(1 + 1)) = {1, (1 + 1)} |
| 11 | 1p1e2 12358 | . . . . . 6 ⊢ (1 + 1) = 2 | |
| 12 | 11 | preq2i 4711 | . . . . 5 ⊢ {1, (1 + 1)} = {1, 2} |
| 13 | 10, 12 | eqtri 2757 | . . . 4 ⊢ (1...(1 + 1)) = {1, 2} |
| 14 | df-2 12296 | . . . . 5 ⊢ 2 = (1 + 1) | |
| 15 | 14 | oveq2i 7411 | . . . 4 ⊢ (1...2) = (1...(1 + 1)) |
| 16 | m2detleiblem2.n | . . . 4 ⊢ 𝑁 = {1, 2} | |
| 17 | 13, 15, 16 | 3eqtr4ri 2768 | . . 3 ⊢ 𝑁 = (1...2) |
| 18 | 17 | a1i 11 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵) → 𝑁 = (1...2)) |
| 19 | m2detleiblem2.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 20 | m2detleiblem2.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
| 21 | m2detleiblem2.p | . . 3 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
| 22 | 19, 20, 21 | matepmcl 22387 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵) → ∀𝑛 ∈ 𝑁 ((𝑄‘𝑛)𝑀𝑛) ∈ (Base‘𝑅)) |
| 23 | 3, 5, 7, 18, 22 | gsummptfzcl 19937 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵) → (𝐺 Σg (𝑛 ∈ 𝑁 ↦ ((𝑄‘𝑛)𝑀𝑛))) ∈ (Base‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 {cpr 4601 ↦ cmpt 5199 ‘cfv 6528 (class class class)co 7400 1c1 11123 + caddc 11125 2c2 12288 ℤcz 12581 ℤ≥cuz 12845 ...cfz 13514 Basecbs 17215 Σg cgsu 17441 Mndcmnd 18699 SymGrpcsymg 19337 mulGrpcmgp 20087 Ringcrg 20180 Mat cmat 22332 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-cnex 11178 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 ax-pre-mulgt0 11199 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-ot 4608 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-om 7857 df-1st 7983 df-2nd 7984 df-supp 8155 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-1o 8475 df-er 8714 df-map 8837 df-ixp 8907 df-en 8955 df-dom 8956 df-sdom 8957 df-fin 8958 df-fsupp 9369 df-sup 9449 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-sub 11461 df-neg 11462 df-nn 12234 df-2 12296 df-3 12297 df-4 12298 df-5 12299 df-6 12300 df-7 12301 df-8 12302 df-9 12303 df-n0 12495 df-z 12582 df-dec 12702 df-uz 12846 df-fz 13515 df-seq 14010 df-struct 17153 df-sets 17170 df-slot 17188 df-ndx 17200 df-base 17216 df-ress 17239 df-plusg 17271 df-mulr 17272 df-sca 17274 df-vsca 17275 df-ip 17276 df-tset 17277 df-ple 17278 df-ds 17280 df-hom 17282 df-cco 17283 df-0g 17442 df-gsum 17443 df-prds 17448 df-pws 17450 df-mgm 18605 df-sgrp 18684 df-mnd 18700 df-efmnd 18834 df-symg 19338 df-mgp 20088 df-ring 20182 df-sra 21118 df-rgmod 21119 df-dsmm 21679 df-frlm 21694 df-mat 22333 |
| This theorem is referenced by: m2detleib 22556 |
| Copyright terms: Public domain | W3C validator |