| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > m2detleiblem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for m2detleib 22567. (Contributed by AV, 16-Dec-2018.) (Proof shortened by AV, 1-Jan-2019.) |
| Ref | Expression |
|---|---|
| m2detleiblem2.n | ⊢ 𝑁 = {1, 2} |
| m2detleiblem2.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
| m2detleiblem2.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| m2detleiblem2.b | ⊢ 𝐵 = (Base‘𝐴) |
| m2detleiblem2.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
| Ref | Expression |
|---|---|
| m2detleiblem2 | ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵) → (𝐺 Σg (𝑛 ∈ 𝑁 ↦ ((𝑄‘𝑛)𝑀𝑛))) ∈ (Base‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | m2detleiblem2.g | . . 3 ⊢ 𝐺 = (mulGrp‘𝑅) | |
| 2 | eqid 2735 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | 1, 2 | mgpbas 20103 | . 2 ⊢ (Base‘𝑅) = (Base‘𝐺) |
| 4 | 1 | ringmgp 20197 | . . 3 ⊢ (𝑅 ∈ Ring → 𝐺 ∈ Mnd) |
| 5 | 4 | 3ad2ant1 1133 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵) → 𝐺 ∈ Mnd) |
| 6 | 2eluzge1 12908 | . . 3 ⊢ 2 ∈ (ℤ≥‘1) | |
| 7 | 6 | a1i 11 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵) → 2 ∈ (ℤ≥‘1)) |
| 8 | 1z 12620 | . . . . . 6 ⊢ 1 ∈ ℤ | |
| 9 | fzpr 13594 | . . . . . 6 ⊢ (1 ∈ ℤ → (1...(1 + 1)) = {1, (1 + 1)}) | |
| 10 | 8, 9 | ax-mp 5 | . . . . 5 ⊢ (1...(1 + 1)) = {1, (1 + 1)} |
| 11 | 1p1e2 12363 | . . . . . 6 ⊢ (1 + 1) = 2 | |
| 12 | 11 | preq2i 4713 | . . . . 5 ⊢ {1, (1 + 1)} = {1, 2} |
| 13 | 10, 12 | eqtri 2758 | . . . 4 ⊢ (1...(1 + 1)) = {1, 2} |
| 14 | df-2 12301 | . . . . 5 ⊢ 2 = (1 + 1) | |
| 15 | 14 | oveq2i 7414 | . . . 4 ⊢ (1...2) = (1...(1 + 1)) |
| 16 | m2detleiblem2.n | . . . 4 ⊢ 𝑁 = {1, 2} | |
| 17 | 13, 15, 16 | 3eqtr4ri 2769 | . . 3 ⊢ 𝑁 = (1...2) |
| 18 | 17 | a1i 11 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵) → 𝑁 = (1...2)) |
| 19 | m2detleiblem2.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 20 | m2detleiblem2.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
| 21 | m2detleiblem2.p | . . 3 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
| 22 | 19, 20, 21 | matepmcl 22398 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵) → ∀𝑛 ∈ 𝑁 ((𝑄‘𝑛)𝑀𝑛) ∈ (Base‘𝑅)) |
| 23 | 3, 5, 7, 18, 22 | gsummptfzcl 19948 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵) → (𝐺 Σg (𝑛 ∈ 𝑁 ↦ ((𝑄‘𝑛)𝑀𝑛))) ∈ (Base‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 {cpr 4603 ↦ cmpt 5201 ‘cfv 6530 (class class class)co 7403 1c1 11128 + caddc 11130 2c2 12293 ℤcz 12586 ℤ≥cuz 12850 ...cfz 13522 Basecbs 17226 Σg cgsu 17452 Mndcmnd 18710 SymGrpcsymg 19348 mulGrpcmgp 20098 Ringcrg 20191 Mat cmat 22343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-ot 4610 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-supp 8158 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8717 df-map 8840 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9372 df-sup 9452 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-fz 13523 df-seq 14018 df-struct 17164 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulr 17283 df-sca 17285 df-vsca 17286 df-ip 17287 df-tset 17288 df-ple 17289 df-ds 17291 df-hom 17293 df-cco 17294 df-0g 17453 df-gsum 17454 df-prds 17459 df-pws 17461 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-efmnd 18845 df-symg 19349 df-mgp 20099 df-ring 20193 df-sra 21129 df-rgmod 21130 df-dsmm 21690 df-frlm 21705 df-mat 22344 |
| This theorem is referenced by: m2detleib 22567 |
| Copyright terms: Public domain | W3C validator |