MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m2detleiblem2 Structured version   Visualization version   GIF version

Theorem m2detleiblem2 22564
Description: Lemma 2 for m2detleib 22567. (Contributed by AV, 16-Dec-2018.) (Proof shortened by AV, 1-Jan-2019.)
Hypotheses
Ref Expression
m2detleiblem2.n 𝑁 = {1, 2}
m2detleiblem2.p 𝑃 = (Base‘(SymGrp‘𝑁))
m2detleiblem2.a 𝐴 = (𝑁 Mat 𝑅)
m2detleiblem2.b 𝐵 = (Base‘𝐴)
m2detleiblem2.g 𝐺 = (mulGrp‘𝑅)
Assertion
Ref Expression
m2detleiblem2 ((𝑅 ∈ Ring ∧ 𝑄𝑃𝑀𝐵) → (𝐺 Σg (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))) ∈ (Base‘𝑅))
Distinct variable groups:   𝐵,𝑛   𝑛,𝑀   𝑛,𝑁   𝑃,𝑛   𝑄,𝑛   𝑅,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝐺(𝑛)

Proof of Theorem m2detleiblem2
StepHypRef Expression
1 m2detleiblem2.g . . 3 𝐺 = (mulGrp‘𝑅)
2 eqid 2735 . . 3 (Base‘𝑅) = (Base‘𝑅)
31, 2mgpbas 20103 . 2 (Base‘𝑅) = (Base‘𝐺)
41ringmgp 20197 . . 3 (𝑅 ∈ Ring → 𝐺 ∈ Mnd)
543ad2ant1 1133 . 2 ((𝑅 ∈ Ring ∧ 𝑄𝑃𝑀𝐵) → 𝐺 ∈ Mnd)
6 2eluzge1 12908 . . 3 2 ∈ (ℤ‘1)
76a1i 11 . 2 ((𝑅 ∈ Ring ∧ 𝑄𝑃𝑀𝐵) → 2 ∈ (ℤ‘1))
8 1z 12620 . . . . . 6 1 ∈ ℤ
9 fzpr 13594 . . . . . 6 (1 ∈ ℤ → (1...(1 + 1)) = {1, (1 + 1)})
108, 9ax-mp 5 . . . . 5 (1...(1 + 1)) = {1, (1 + 1)}
11 1p1e2 12363 . . . . . 6 (1 + 1) = 2
1211preq2i 4713 . . . . 5 {1, (1 + 1)} = {1, 2}
1310, 12eqtri 2758 . . . 4 (1...(1 + 1)) = {1, 2}
14 df-2 12301 . . . . 5 2 = (1 + 1)
1514oveq2i 7414 . . . 4 (1...2) = (1...(1 + 1))
16 m2detleiblem2.n . . . 4 𝑁 = {1, 2}
1713, 15, 163eqtr4ri 2769 . . 3 𝑁 = (1...2)
1817a1i 11 . 2 ((𝑅 ∈ Ring ∧ 𝑄𝑃𝑀𝐵) → 𝑁 = (1...2))
19 m2detleiblem2.a . . 3 𝐴 = (𝑁 Mat 𝑅)
20 m2detleiblem2.b . . 3 𝐵 = (Base‘𝐴)
21 m2detleiblem2.p . . 3 𝑃 = (Base‘(SymGrp‘𝑁))
2219, 20, 21matepmcl 22398 . 2 ((𝑅 ∈ Ring ∧ 𝑄𝑃𝑀𝐵) → ∀𝑛𝑁 ((𝑄𝑛)𝑀𝑛) ∈ (Base‘𝑅))
233, 5, 7, 18, 22gsummptfzcl 19948 1 ((𝑅 ∈ Ring ∧ 𝑄𝑃𝑀𝐵) → (𝐺 Σg (𝑛𝑁 ↦ ((𝑄𝑛)𝑀𝑛))) ∈ (Base‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2108  {cpr 4603  cmpt 5201  cfv 6530  (class class class)co 7403  1c1 11128   + caddc 11130  2c2 12293  cz 12586  cuz 12850  ...cfz 13522  Basecbs 17226   Σg cgsu 17452  Mndcmnd 18710  SymGrpcsymg 19348  mulGrpcmgp 20098  Ringcrg 20191   Mat cmat 22343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-ot 4610  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8717  df-map 8840  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-sup 9452  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-fz 13523  df-seq 14018  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-hom 17293  df-cco 17294  df-0g 17453  df-gsum 17454  df-prds 17459  df-pws 17461  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-efmnd 18845  df-symg 19349  df-mgp 20099  df-ring 20193  df-sra 21129  df-rgmod 21130  df-dsmm 21690  df-frlm 21705  df-mat 22344
This theorem is referenced by:  m2detleib  22567
  Copyright terms: Public domain W3C validator