MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fz0to3un2pr Structured version   Visualization version   GIF version

Theorem fz0to3un2pr 13529
Description: An integer range from 0 to 3 is the union of two unordered pairs. (Contributed by AV, 7-Feb-2021.)
Assertion
Ref Expression
fz0to3un2pr (0...3) = ({0, 1} ∪ {2, 3})

Proof of Theorem fz0to3un2pr
StepHypRef Expression
1 1nn0 12397 . . . 4 1 ∈ ℕ0
2 3nn0 12399 . . . 4 3 ∈ ℕ0
3 1le3 12332 . . . 4 1 ≤ 3
4 elfz2nn0 13518 . . . 4 (1 ∈ (0...3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 1 ≤ 3))
51, 2, 3, 4mpbir3an 1342 . . 3 1 ∈ (0...3)
6 fzsplit 13450 . . 3 (1 ∈ (0...3) → (0...3) = ((0...1) ∪ ((1 + 1)...3)))
75, 6ax-mp 5 . 2 (0...3) = ((0...1) ∪ ((1 + 1)...3))
8 1e0p1 12630 . . . . 5 1 = (0 + 1)
98oveq2i 7357 . . . 4 (0...1) = (0...(0 + 1))
10 0z 12479 . . . . 5 0 ∈ ℤ
11 fzpr 13479 . . . . 5 (0 ∈ ℤ → (0...(0 + 1)) = {0, (0 + 1)})
1210, 11ax-mp 5 . . . 4 (0...(0 + 1)) = {0, (0 + 1)}
13 0p1e1 12242 . . . . 5 (0 + 1) = 1
1413preq2i 4687 . . . 4 {0, (0 + 1)} = {0, 1}
159, 12, 143eqtri 2758 . . 3 (0...1) = {0, 1}
16 1p1e2 12245 . . . . 5 (1 + 1) = 2
17 df-3 12189 . . . . 5 3 = (2 + 1)
1816, 17oveq12i 7358 . . . 4 ((1 + 1)...3) = (2...(2 + 1))
19 2z 12504 . . . . 5 2 ∈ ℤ
20 fzpr 13479 . . . . 5 (2 ∈ ℤ → (2...(2 + 1)) = {2, (2 + 1)})
2119, 20ax-mp 5 . . . 4 (2...(2 + 1)) = {2, (2 + 1)}
22 2p1e3 12262 . . . . 5 (2 + 1) = 3
2322preq2i 4687 . . . 4 {2, (2 + 1)} = {2, 3}
2418, 21, 233eqtri 2758 . . 3 ((1 + 1)...3) = {2, 3}
2515, 24uneq12i 4113 . 2 ((0...1) ∪ ((1 + 1)...3)) = ({0, 1} ∪ {2, 3})
267, 25eqtri 2754 1 (0...3) = ({0, 1} ∪ {2, 3})
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  cun 3895  {cpr 4575   class class class wbr 5089  (class class class)co 7346  0cc0 11006  1c1 11007   + caddc 11009  cle 11147  2c2 12180  3c3 12181  0cn0 12381  cz 12468  ...cfz 13407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408
This theorem is referenced by:  iblcnlem1  25716  3wlkdlem4  30142  ply1dg3rt0irred  33546
  Copyright terms: Public domain W3C validator