![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fz0to3un2pr | Structured version Visualization version GIF version |
Description: An integer range from 0 to 3 is the union of two unordered pairs. (Contributed by AV, 7-Feb-2021.) |
Ref | Expression |
---|---|
fz0to3un2pr | ⊢ (0...3) = ({0, 1} ∪ {2, 3}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn0 12516 | . . . 4 ⊢ 1 ∈ ℕ0 | |
2 | 3nn0 12518 | . . . 4 ⊢ 3 ∈ ℕ0 | |
3 | 1le3 12452 | . . . 4 ⊢ 1 ≤ 3 | |
4 | elfz2nn0 13622 | . . . 4 ⊢ (1 ∈ (0...3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 1 ≤ 3)) | |
5 | 1, 2, 3, 4 | mpbir3an 1338 | . . 3 ⊢ 1 ∈ (0...3) |
6 | fzsplit 13557 | . . 3 ⊢ (1 ∈ (0...3) → (0...3) = ((0...1) ∪ ((1 + 1)...3))) | |
7 | 5, 6 | ax-mp 5 | . 2 ⊢ (0...3) = ((0...1) ∪ ((1 + 1)...3)) |
8 | 1e0p1 12747 | . . . . 5 ⊢ 1 = (0 + 1) | |
9 | 8 | oveq2i 7426 | . . . 4 ⊢ (0...1) = (0...(0 + 1)) |
10 | 0z 12597 | . . . . 5 ⊢ 0 ∈ ℤ | |
11 | fzpr 13586 | . . . . 5 ⊢ (0 ∈ ℤ → (0...(0 + 1)) = {0, (0 + 1)}) | |
12 | 10, 11 | ax-mp 5 | . . . 4 ⊢ (0...(0 + 1)) = {0, (0 + 1)} |
13 | 0p1e1 12362 | . . . . 5 ⊢ (0 + 1) = 1 | |
14 | 13 | preq2i 4737 | . . . 4 ⊢ {0, (0 + 1)} = {0, 1} |
15 | 9, 12, 14 | 3eqtri 2757 | . . 3 ⊢ (0...1) = {0, 1} |
16 | 1p1e2 12365 | . . . . 5 ⊢ (1 + 1) = 2 | |
17 | df-3 12304 | . . . . 5 ⊢ 3 = (2 + 1) | |
18 | 16, 17 | oveq12i 7427 | . . . 4 ⊢ ((1 + 1)...3) = (2...(2 + 1)) |
19 | 2z 12622 | . . . . 5 ⊢ 2 ∈ ℤ | |
20 | fzpr 13586 | . . . . 5 ⊢ (2 ∈ ℤ → (2...(2 + 1)) = {2, (2 + 1)}) | |
21 | 19, 20 | ax-mp 5 | . . . 4 ⊢ (2...(2 + 1)) = {2, (2 + 1)} |
22 | 2p1e3 12382 | . . . . 5 ⊢ (2 + 1) = 3 | |
23 | 22 | preq2i 4737 | . . . 4 ⊢ {2, (2 + 1)} = {2, 3} |
24 | 18, 21, 23 | 3eqtri 2757 | . . 3 ⊢ ((1 + 1)...3) = {2, 3} |
25 | 15, 24 | uneq12i 4154 | . 2 ⊢ ((0...1) ∪ ((1 + 1)...3)) = ({0, 1} ∪ {2, 3}) |
26 | 7, 25 | eqtri 2753 | 1 ⊢ (0...3) = ({0, 1} ∪ {2, 3}) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 ∪ cun 3938 {cpr 4626 class class class wbr 5143 (class class class)co 7415 0cc0 11136 1c1 11137 + caddc 11139 ≤ cle 11277 2c2 12295 3c3 12296 ℕ0cn0 12500 ℤcz 12586 ...cfz 13514 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-1st 7989 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-2 12303 df-3 12304 df-n0 12501 df-z 12587 df-uz 12851 df-fz 13515 |
This theorem is referenced by: iblcnlem1 25733 3wlkdlem4 30014 |
Copyright terms: Public domain | W3C validator |