| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fz0to3un2pr | Structured version Visualization version GIF version | ||
| Description: An integer range from 0 to 3 is the union of two unordered pairs. (Contributed by AV, 7-Feb-2021.) |
| Ref | Expression |
|---|---|
| fz0to3un2pr | ⊢ (0...3) = ({0, 1} ∪ {2, 3}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn0 12397 | . . . 4 ⊢ 1 ∈ ℕ0 | |
| 2 | 3nn0 12399 | . . . 4 ⊢ 3 ∈ ℕ0 | |
| 3 | 1le3 12332 | . . . 4 ⊢ 1 ≤ 3 | |
| 4 | elfz2nn0 13518 | . . . 4 ⊢ (1 ∈ (0...3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 1 ≤ 3)) | |
| 5 | 1, 2, 3, 4 | mpbir3an 1342 | . . 3 ⊢ 1 ∈ (0...3) |
| 6 | fzsplit 13450 | . . 3 ⊢ (1 ∈ (0...3) → (0...3) = ((0...1) ∪ ((1 + 1)...3))) | |
| 7 | 5, 6 | ax-mp 5 | . 2 ⊢ (0...3) = ((0...1) ∪ ((1 + 1)...3)) |
| 8 | 1e0p1 12630 | . . . . 5 ⊢ 1 = (0 + 1) | |
| 9 | 8 | oveq2i 7357 | . . . 4 ⊢ (0...1) = (0...(0 + 1)) |
| 10 | 0z 12479 | . . . . 5 ⊢ 0 ∈ ℤ | |
| 11 | fzpr 13479 | . . . . 5 ⊢ (0 ∈ ℤ → (0...(0 + 1)) = {0, (0 + 1)}) | |
| 12 | 10, 11 | ax-mp 5 | . . . 4 ⊢ (0...(0 + 1)) = {0, (0 + 1)} |
| 13 | 0p1e1 12242 | . . . . 5 ⊢ (0 + 1) = 1 | |
| 14 | 13 | preq2i 4687 | . . . 4 ⊢ {0, (0 + 1)} = {0, 1} |
| 15 | 9, 12, 14 | 3eqtri 2758 | . . 3 ⊢ (0...1) = {0, 1} |
| 16 | 1p1e2 12245 | . . . . 5 ⊢ (1 + 1) = 2 | |
| 17 | df-3 12189 | . . . . 5 ⊢ 3 = (2 + 1) | |
| 18 | 16, 17 | oveq12i 7358 | . . . 4 ⊢ ((1 + 1)...3) = (2...(2 + 1)) |
| 19 | 2z 12504 | . . . . 5 ⊢ 2 ∈ ℤ | |
| 20 | fzpr 13479 | . . . . 5 ⊢ (2 ∈ ℤ → (2...(2 + 1)) = {2, (2 + 1)}) | |
| 21 | 19, 20 | ax-mp 5 | . . . 4 ⊢ (2...(2 + 1)) = {2, (2 + 1)} |
| 22 | 2p1e3 12262 | . . . . 5 ⊢ (2 + 1) = 3 | |
| 23 | 22 | preq2i 4687 | . . . 4 ⊢ {2, (2 + 1)} = {2, 3} |
| 24 | 18, 21, 23 | 3eqtri 2758 | . . 3 ⊢ ((1 + 1)...3) = {2, 3} |
| 25 | 15, 24 | uneq12i 4113 | . 2 ⊢ ((0...1) ∪ ((1 + 1)...3)) = ({0, 1} ∪ {2, 3}) |
| 26 | 7, 25 | eqtri 2754 | 1 ⊢ (0...3) = ({0, 1} ∪ {2, 3}) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ∪ cun 3895 {cpr 4575 class class class wbr 5089 (class class class)co 7346 0cc0 11006 1c1 11007 + caddc 11009 ≤ cle 11147 2c2 12180 3c3 12181 ℕ0cn0 12381 ℤcz 12468 ...cfz 13407 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 |
| This theorem is referenced by: iblcnlem1 25716 3wlkdlem4 30142 ply1dg3rt0irred 33546 |
| Copyright terms: Public domain | W3C validator |