MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fz0to3un2pr Structured version   Visualization version   GIF version

Theorem fz0to3un2pr 13602
Description: An integer range from 0 to 3 is the union of two unordered pairs. (Contributed by AV, 7-Feb-2021.)
Assertion
Ref Expression
fz0to3un2pr (0...3) = ({0, 1} ∪ {2, 3})

Proof of Theorem fz0to3un2pr
StepHypRef Expression
1 1nn0 12487 . . . 4 1 ∈ ℕ0
2 3nn0 12489 . . . 4 3 ∈ ℕ0
3 1le3 12423 . . . 4 1 ≤ 3
4 elfz2nn0 13591 . . . 4 (1 ∈ (0...3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 1 ≤ 3))
51, 2, 3, 4mpbir3an 1341 . . 3 1 ∈ (0...3)
6 fzsplit 13526 . . 3 (1 ∈ (0...3) → (0...3) = ((0...1) ∪ ((1 + 1)...3)))
75, 6ax-mp 5 . 2 (0...3) = ((0...1) ∪ ((1 + 1)...3))
8 1e0p1 12718 . . . . 5 1 = (0 + 1)
98oveq2i 7419 . . . 4 (0...1) = (0...(0 + 1))
10 0z 12568 . . . . 5 0 ∈ ℤ
11 fzpr 13555 . . . . 5 (0 ∈ ℤ → (0...(0 + 1)) = {0, (0 + 1)})
1210, 11ax-mp 5 . . . 4 (0...(0 + 1)) = {0, (0 + 1)}
13 0p1e1 12333 . . . . 5 (0 + 1) = 1
1413preq2i 4741 . . . 4 {0, (0 + 1)} = {0, 1}
159, 12, 143eqtri 2764 . . 3 (0...1) = {0, 1}
16 1p1e2 12336 . . . . 5 (1 + 1) = 2
17 df-3 12275 . . . . 5 3 = (2 + 1)
1816, 17oveq12i 7420 . . . 4 ((1 + 1)...3) = (2...(2 + 1))
19 2z 12593 . . . . 5 2 ∈ ℤ
20 fzpr 13555 . . . . 5 (2 ∈ ℤ → (2...(2 + 1)) = {2, (2 + 1)})
2119, 20ax-mp 5 . . . 4 (2...(2 + 1)) = {2, (2 + 1)}
22 2p1e3 12353 . . . . 5 (2 + 1) = 3
2322preq2i 4741 . . . 4 {2, (2 + 1)} = {2, 3}
2418, 21, 233eqtri 2764 . . 3 ((1 + 1)...3) = {2, 3}
2515, 24uneq12i 4161 . 2 ((0...1) ∪ ((1 + 1)...3)) = ({0, 1} ∪ {2, 3})
267, 25eqtri 2760 1 (0...3) = ({0, 1} ∪ {2, 3})
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2106  cun 3946  {cpr 4630   class class class wbr 5148  (class class class)co 7408  0cc0 11109  1c1 11110   + caddc 11112  cle 11248  2c2 12266  3c3 12267  0cn0 12471  cz 12557  ...cfz 13483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-3 12275  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13484
This theorem is referenced by:  iblcnlem1  25304  3wlkdlem4  29412
  Copyright terms: Public domain W3C validator