![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fz0to3un2pr | Structured version Visualization version GIF version |
Description: An integer range from 0 to 3 is the union of two unordered pairs. (Contributed by AV, 7-Feb-2021.) |
Ref | Expression |
---|---|
fz0to3un2pr | ⊢ (0...3) = ({0, 1} ∪ {2, 3}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn0 12487 | . . . 4 ⊢ 1 ∈ ℕ0 | |
2 | 3nn0 12489 | . . . 4 ⊢ 3 ∈ ℕ0 | |
3 | 1le3 12423 | . . . 4 ⊢ 1 ≤ 3 | |
4 | elfz2nn0 13591 | . . . 4 ⊢ (1 ∈ (0...3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 1 ≤ 3)) | |
5 | 1, 2, 3, 4 | mpbir3an 1341 | . . 3 ⊢ 1 ∈ (0...3) |
6 | fzsplit 13526 | . . 3 ⊢ (1 ∈ (0...3) → (0...3) = ((0...1) ∪ ((1 + 1)...3))) | |
7 | 5, 6 | ax-mp 5 | . 2 ⊢ (0...3) = ((0...1) ∪ ((1 + 1)...3)) |
8 | 1e0p1 12718 | . . . . 5 ⊢ 1 = (0 + 1) | |
9 | 8 | oveq2i 7419 | . . . 4 ⊢ (0...1) = (0...(0 + 1)) |
10 | 0z 12568 | . . . . 5 ⊢ 0 ∈ ℤ | |
11 | fzpr 13555 | . . . . 5 ⊢ (0 ∈ ℤ → (0...(0 + 1)) = {0, (0 + 1)}) | |
12 | 10, 11 | ax-mp 5 | . . . 4 ⊢ (0...(0 + 1)) = {0, (0 + 1)} |
13 | 0p1e1 12333 | . . . . 5 ⊢ (0 + 1) = 1 | |
14 | 13 | preq2i 4741 | . . . 4 ⊢ {0, (0 + 1)} = {0, 1} |
15 | 9, 12, 14 | 3eqtri 2764 | . . 3 ⊢ (0...1) = {0, 1} |
16 | 1p1e2 12336 | . . . . 5 ⊢ (1 + 1) = 2 | |
17 | df-3 12275 | . . . . 5 ⊢ 3 = (2 + 1) | |
18 | 16, 17 | oveq12i 7420 | . . . 4 ⊢ ((1 + 1)...3) = (2...(2 + 1)) |
19 | 2z 12593 | . . . . 5 ⊢ 2 ∈ ℤ | |
20 | fzpr 13555 | . . . . 5 ⊢ (2 ∈ ℤ → (2...(2 + 1)) = {2, (2 + 1)}) | |
21 | 19, 20 | ax-mp 5 | . . . 4 ⊢ (2...(2 + 1)) = {2, (2 + 1)} |
22 | 2p1e3 12353 | . . . . 5 ⊢ (2 + 1) = 3 | |
23 | 22 | preq2i 4741 | . . . 4 ⊢ {2, (2 + 1)} = {2, 3} |
24 | 18, 21, 23 | 3eqtri 2764 | . . 3 ⊢ ((1 + 1)...3) = {2, 3} |
25 | 15, 24 | uneq12i 4161 | . 2 ⊢ ((0...1) ∪ ((1 + 1)...3)) = ({0, 1} ∪ {2, 3}) |
26 | 7, 25 | eqtri 2760 | 1 ⊢ (0...3) = ({0, 1} ∪ {2, 3}) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 ∪ cun 3946 {cpr 4630 class class class wbr 5148 (class class class)co 7408 0cc0 11109 1c1 11110 + caddc 11112 ≤ cle 11248 2c2 12266 3c3 12267 ℕ0cn0 12471 ℤcz 12557 ...cfz 13483 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-n0 12472 df-z 12558 df-uz 12822 df-fz 13484 |
This theorem is referenced by: iblcnlem1 25304 3wlkdlem4 29412 |
Copyright terms: Public domain | W3C validator |