| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fz0to3un2pr | Structured version Visualization version GIF version | ||
| Description: An integer range from 0 to 3 is the union of two unordered pairs. (Contributed by AV, 7-Feb-2021.) |
| Ref | Expression |
|---|---|
| fz0to3un2pr | ⊢ (0...3) = ({0, 1} ∪ {2, 3}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn0 12400 | . . . 4 ⊢ 1 ∈ ℕ0 | |
| 2 | 3nn0 12402 | . . . 4 ⊢ 3 ∈ ℕ0 | |
| 3 | 1le3 12335 | . . . 4 ⊢ 1 ≤ 3 | |
| 4 | elfz2nn0 13521 | . . . 4 ⊢ (1 ∈ (0...3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 1 ≤ 3)) | |
| 5 | 1, 2, 3, 4 | mpbir3an 1342 | . . 3 ⊢ 1 ∈ (0...3) |
| 6 | fzsplit 13453 | . . 3 ⊢ (1 ∈ (0...3) → (0...3) = ((0...1) ∪ ((1 + 1)...3))) | |
| 7 | 5, 6 | ax-mp 5 | . 2 ⊢ (0...3) = ((0...1) ∪ ((1 + 1)...3)) |
| 8 | 1e0p1 12633 | . . . . 5 ⊢ 1 = (0 + 1) | |
| 9 | 8 | oveq2i 7360 | . . . 4 ⊢ (0...1) = (0...(0 + 1)) |
| 10 | 0z 12482 | . . . . 5 ⊢ 0 ∈ ℤ | |
| 11 | fzpr 13482 | . . . . 5 ⊢ (0 ∈ ℤ → (0...(0 + 1)) = {0, (0 + 1)}) | |
| 12 | 10, 11 | ax-mp 5 | . . . 4 ⊢ (0...(0 + 1)) = {0, (0 + 1)} |
| 13 | 0p1e1 12245 | . . . . 5 ⊢ (0 + 1) = 1 | |
| 14 | 13 | preq2i 4689 | . . . 4 ⊢ {0, (0 + 1)} = {0, 1} |
| 15 | 9, 12, 14 | 3eqtri 2756 | . . 3 ⊢ (0...1) = {0, 1} |
| 16 | 1p1e2 12248 | . . . . 5 ⊢ (1 + 1) = 2 | |
| 17 | df-3 12192 | . . . . 5 ⊢ 3 = (2 + 1) | |
| 18 | 16, 17 | oveq12i 7361 | . . . 4 ⊢ ((1 + 1)...3) = (2...(2 + 1)) |
| 19 | 2z 12507 | . . . . 5 ⊢ 2 ∈ ℤ | |
| 20 | fzpr 13482 | . . . . 5 ⊢ (2 ∈ ℤ → (2...(2 + 1)) = {2, (2 + 1)}) | |
| 21 | 19, 20 | ax-mp 5 | . . . 4 ⊢ (2...(2 + 1)) = {2, (2 + 1)} |
| 22 | 2p1e3 12265 | . . . . 5 ⊢ (2 + 1) = 3 | |
| 23 | 22 | preq2i 4689 | . . . 4 ⊢ {2, (2 + 1)} = {2, 3} |
| 24 | 18, 21, 23 | 3eqtri 2756 | . . 3 ⊢ ((1 + 1)...3) = {2, 3} |
| 25 | 15, 24 | uneq12i 4117 | . 2 ⊢ ((0...1) ∪ ((1 + 1)...3)) = ({0, 1} ∪ {2, 3}) |
| 26 | 7, 25 | eqtri 2752 | 1 ⊢ (0...3) = ({0, 1} ∪ {2, 3}) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∪ cun 3901 {cpr 4579 class class class wbr 5092 (class class class)co 7349 0cc0 11009 1c1 11010 + caddc 11012 ≤ cle 11150 2c2 12183 3c3 12184 ℕ0cn0 12384 ℤcz 12471 ...cfz 13410 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-fz 13411 |
| This theorem is referenced by: iblcnlem1 25687 3wlkdlem4 30106 ply1dg3rt0irred 33519 |
| Copyright terms: Public domain | W3C validator |