MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fz0to3un2pr Structured version   Visualization version   GIF version

Theorem fz0to3un2pr 13666
Description: An integer range from 0 to 3 is the union of two unordered pairs. (Contributed by AV, 7-Feb-2021.)
Assertion
Ref Expression
fz0to3un2pr (0...3) = ({0, 1} ∪ {2, 3})

Proof of Theorem fz0to3un2pr
StepHypRef Expression
1 1nn0 12540 . . . 4 1 ∈ ℕ0
2 3nn0 12542 . . . 4 3 ∈ ℕ0
3 1le3 12476 . . . 4 1 ≤ 3
4 elfz2nn0 13655 . . . 4 (1 ∈ (0...3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 1 ≤ 3))
51, 2, 3, 4mpbir3an 1340 . . 3 1 ∈ (0...3)
6 fzsplit 13587 . . 3 (1 ∈ (0...3) → (0...3) = ((0...1) ∪ ((1 + 1)...3)))
75, 6ax-mp 5 . 2 (0...3) = ((0...1) ∪ ((1 + 1)...3))
8 1e0p1 12773 . . . . 5 1 = (0 + 1)
98oveq2i 7442 . . . 4 (0...1) = (0...(0 + 1))
10 0z 12622 . . . . 5 0 ∈ ℤ
11 fzpr 13616 . . . . 5 (0 ∈ ℤ → (0...(0 + 1)) = {0, (0 + 1)})
1210, 11ax-mp 5 . . . 4 (0...(0 + 1)) = {0, (0 + 1)}
13 0p1e1 12386 . . . . 5 (0 + 1) = 1
1413preq2i 4742 . . . 4 {0, (0 + 1)} = {0, 1}
159, 12, 143eqtri 2767 . . 3 (0...1) = {0, 1}
16 1p1e2 12389 . . . . 5 (1 + 1) = 2
17 df-3 12328 . . . . 5 3 = (2 + 1)
1816, 17oveq12i 7443 . . . 4 ((1 + 1)...3) = (2...(2 + 1))
19 2z 12647 . . . . 5 2 ∈ ℤ
20 fzpr 13616 . . . . 5 (2 ∈ ℤ → (2...(2 + 1)) = {2, (2 + 1)})
2119, 20ax-mp 5 . . . 4 (2...(2 + 1)) = {2, (2 + 1)}
22 2p1e3 12406 . . . . 5 (2 + 1) = 3
2322preq2i 4742 . . . 4 {2, (2 + 1)} = {2, 3}
2418, 21, 233eqtri 2767 . . 3 ((1 + 1)...3) = {2, 3}
2515, 24uneq12i 4176 . 2 ((0...1) ∪ ((1 + 1)...3)) = ({0, 1} ∪ {2, 3})
267, 25eqtri 2763 1 (0...3) = ({0, 1} ∪ {2, 3})
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2106  cun 3961  {cpr 4633   class class class wbr 5148  (class class class)co 7431  0cc0 11153  1c1 11154   + caddc 11156  cle 11294  2c2 12319  3c3 12320  0cn0 12524  cz 12611  ...cfz 13544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545
This theorem is referenced by:  iblcnlem1  25838  3wlkdlem4  30191  ply1dg3rt0irred  33587
  Copyright terms: Public domain W3C validator