MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrwkspthlem2 Structured version   Visualization version   GIF version

Theorem uhgrwkspthlem2 29657
Description: Lemma 2 for uhgrwkspth 29658. (Contributed by AV, 25-Jan-2021.)
Assertion
Ref Expression
uhgrwkspthlem2 ((𝐹(Walks‘𝐺)𝑃 ∧ ((♯‘𝐹) = 1 ∧ 𝐴𝐵) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → Fun 𝑃)

Proof of Theorem uhgrwkspthlem2
StepHypRef Expression
1 eqid 2729 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
21wlkp 29520 . . 3 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
3 oveq2 7377 . . . . . . . . . . . . 13 ((♯‘𝐹) = 1 → (0...(♯‘𝐹)) = (0...1))
4 1e0p1 12667 . . . . . . . . . . . . . . 15 1 = (0 + 1)
54oveq2i 7380 . . . . . . . . . . . . . 14 (0...1) = (0...(0 + 1))
6 0z 12516 . . . . . . . . . . . . . . 15 0 ∈ ℤ
7 fzpr 13516 . . . . . . . . . . . . . . 15 (0 ∈ ℤ → (0...(0 + 1)) = {0, (0 + 1)})
86, 7ax-mp 5 . . . . . . . . . . . . . 14 (0...(0 + 1)) = {0, (0 + 1)}
9 0p1e1 12279 . . . . . . . . . . . . . . 15 (0 + 1) = 1
109preq2i 4697 . . . . . . . . . . . . . 14 {0, (0 + 1)} = {0, 1}
115, 8, 103eqtri 2756 . . . . . . . . . . . . 13 (0...1) = {0, 1}
123, 11eqtrdi 2780 . . . . . . . . . . . 12 ((♯‘𝐹) = 1 → (0...(♯‘𝐹)) = {0, 1})
1312feq2d 6654 . . . . . . . . . . 11 ((♯‘𝐹) = 1 → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ↔ 𝑃:{0, 1}⟶(Vtx‘𝐺)))
1413adantr 480 . . . . . . . . . 10 (((♯‘𝐹) = 1 ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ↔ 𝑃:{0, 1}⟶(Vtx‘𝐺)))
15 simpl 482 . . . . . . . . . . . . 13 (((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → (𝑃‘0) = 𝐴)
16 simpr 484 . . . . . . . . . . . . 13 (((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → (𝑃‘(♯‘𝐹)) = 𝐵)
1715, 16neeq12d 2986 . . . . . . . . . . . 12 (((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → ((𝑃‘0) ≠ (𝑃‘(♯‘𝐹)) ↔ 𝐴𝐵))
1817bicomd 223 . . . . . . . . . . 11 (((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → (𝐴𝐵 ↔ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))))
19 fveq2 6840 . . . . . . . . . . . 12 ((♯‘𝐹) = 1 → (𝑃‘(♯‘𝐹)) = (𝑃‘1))
2019neeq2d 2985 . . . . . . . . . . 11 ((♯‘𝐹) = 1 → ((𝑃‘0) ≠ (𝑃‘(♯‘𝐹)) ↔ (𝑃‘0) ≠ (𝑃‘1)))
2118, 20sylan9bbr 510 . . . . . . . . . 10 (((♯‘𝐹) = 1 ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → (𝐴𝐵 ↔ (𝑃‘0) ≠ (𝑃‘1)))
2214, 21anbi12d 632 . . . . . . . . 9 (((♯‘𝐹) = 1 ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ 𝐴𝐵) ↔ (𝑃:{0, 1}⟶(Vtx‘𝐺) ∧ (𝑃‘0) ≠ (𝑃‘1))))
23 1z 12539 . . . . . . . . . . . 12 1 ∈ ℤ
24 fpr2g 7167 . . . . . . . . . . . 12 ((0 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑃:{0, 1}⟶(Vtx‘𝐺) ↔ ((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺) ∧ 𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩})))
256, 23, 24mp2an 692 . . . . . . . . . . 11 (𝑃:{0, 1}⟶(Vtx‘𝐺) ↔ ((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺) ∧ 𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩}))
26 funcnvs2 14855 . . . . . . . . . . . . . . . . 17 (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺) ∧ (𝑃‘0) ≠ (𝑃‘1)) → Fun ⟨“(𝑃‘0)(𝑃‘1)”⟩)
27263expa 1118 . . . . . . . . . . . . . . . 16 ((((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘1)) → Fun ⟨“(𝑃‘0)(𝑃‘1)”⟩)
2827adantl 481 . . . . . . . . . . . . . . 15 ((𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩} ∧ (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘1))) → Fun ⟨“(𝑃‘0)(𝑃‘1)”⟩)
29 simpl 482 . . . . . . . . . . . . . . . . . 18 ((𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩} ∧ (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘1))) → 𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩})
30 s2prop 14849 . . . . . . . . . . . . . . . . . . . . 21 (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) → ⟨“(𝑃‘0)(𝑃‘1)”⟩ = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩})
3130eqcomd 2735 . . . . . . . . . . . . . . . . . . . 20 (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) → {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩} = ⟨“(𝑃‘0)(𝑃‘1)”⟩)
3231adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘1)) → {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩} = ⟨“(𝑃‘0)(𝑃‘1)”⟩)
3332adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩} ∧ (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘1))) → {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩} = ⟨“(𝑃‘0)(𝑃‘1)”⟩)
3429, 33eqtrd 2764 . . . . . . . . . . . . . . . . 17 ((𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩} ∧ (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘1))) → 𝑃 = ⟨“(𝑃‘0)(𝑃‘1)”⟩)
3534cnveqd 5829 . . . . . . . . . . . . . . . 16 ((𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩} ∧ (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘1))) → 𝑃 = ⟨“(𝑃‘0)(𝑃‘1)”⟩)
3635funeqd 6522 . . . . . . . . . . . . . . 15 ((𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩} ∧ (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘1))) → (Fun 𝑃 ↔ Fun ⟨“(𝑃‘0)(𝑃‘1)”⟩))
3728, 36mpbird 257 . . . . . . . . . . . . . 14 ((𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩} ∧ (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘1))) → Fun 𝑃)
3837exp32 420 . . . . . . . . . . . . 13 (𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩} → (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) → ((𝑃‘0) ≠ (𝑃‘1) → Fun 𝑃)))
3938impcom 407 . . . . . . . . . . . 12 ((((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) ∧ 𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩}) → ((𝑃‘0) ≠ (𝑃‘1) → Fun 𝑃))
40393impa 1109 . . . . . . . . . . 11 (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺) ∧ 𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩}) → ((𝑃‘0) ≠ (𝑃‘1) → Fun 𝑃))
4125, 40sylbi 217 . . . . . . . . . 10 (𝑃:{0, 1}⟶(Vtx‘𝐺) → ((𝑃‘0) ≠ (𝑃‘1) → Fun 𝑃))
4241imp 406 . . . . . . . . 9 ((𝑃:{0, 1}⟶(Vtx‘𝐺) ∧ (𝑃‘0) ≠ (𝑃‘1)) → Fun 𝑃)
4322, 42biimtrdi 253 . . . . . . . 8 (((♯‘𝐹) = 1 ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ 𝐴𝐵) → Fun 𝑃))
4443expd 415 . . . . . . 7 (((♯‘𝐹) = 1 ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (𝐴𝐵 → Fun 𝑃)))
4544com12 32 . . . . . 6 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((♯‘𝐹) = 1 ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → (𝐴𝐵 → Fun 𝑃)))
4645expd 415 . . . . 5 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((♯‘𝐹) = 1 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → (𝐴𝐵 → Fun 𝑃))))
4746com34 91 . . . 4 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((♯‘𝐹) = 1 → (𝐴𝐵 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → Fun 𝑃))))
4847impd 410 . . 3 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((♯‘𝐹) = 1 ∧ 𝐴𝐵) → (((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → Fun 𝑃)))
492, 48syl 17 . 2 (𝐹(Walks‘𝐺)𝑃 → (((♯‘𝐹) = 1 ∧ 𝐴𝐵) → (((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → Fun 𝑃)))
50493imp 1110 1 ((𝐹(Walks‘𝐺)𝑃 ∧ ((♯‘𝐹) = 1 ∧ 𝐴𝐵) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → Fun 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  {cpr 4587  cop 4591   class class class wbr 5102  ccnv 5630  Fun wfun 6493  wf 6495  cfv 6499  (class class class)co 7369  0cc0 11044  1c1 11045   + caddc 11047  cz 12505  ...cfz 13444  chash 14271  ⟨“cs2 14783  Vtxcvtx 28899  Walkscwlks 29500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-hash 14272  df-word 14455  df-concat 14512  df-s1 14537  df-s2 14790  df-wlks 29503
This theorem is referenced by:  uhgrwkspth  29658
  Copyright terms: Public domain W3C validator