Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrwkspthlem2 Structured version   Visualization version   GIF version

Theorem uhgrwkspthlem2 27642
 Description: Lemma 2 for uhgrwkspth 27643. (Contributed by AV, 25-Jan-2021.)
Assertion
Ref Expression
uhgrwkspthlem2 ((𝐹(Walks‘𝐺)𝑃 ∧ ((♯‘𝐹) = 1 ∧ 𝐴𝐵) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → Fun 𝑃)

Proof of Theorem uhgrwkspthlem2
StepHypRef Expression
1 eqid 2758 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
21wlkp 27505 . . 3 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
3 oveq2 7158 . . . . . . . . . . . . 13 ((♯‘𝐹) = 1 → (0...(♯‘𝐹)) = (0...1))
4 1e0p1 12179 . . . . . . . . . . . . . . 15 1 = (0 + 1)
54oveq2i 7161 . . . . . . . . . . . . . 14 (0...1) = (0...(0 + 1))
6 0z 12031 . . . . . . . . . . . . . . 15 0 ∈ ℤ
7 fzpr 13011 . . . . . . . . . . . . . . 15 (0 ∈ ℤ → (0...(0 + 1)) = {0, (0 + 1)})
86, 7ax-mp 5 . . . . . . . . . . . . . 14 (0...(0 + 1)) = {0, (0 + 1)}
9 0p1e1 11796 . . . . . . . . . . . . . . 15 (0 + 1) = 1
109preq2i 4630 . . . . . . . . . . . . . 14 {0, (0 + 1)} = {0, 1}
115, 8, 103eqtri 2785 . . . . . . . . . . . . 13 (0...1) = {0, 1}
123, 11eqtrdi 2809 . . . . . . . . . . . 12 ((♯‘𝐹) = 1 → (0...(♯‘𝐹)) = {0, 1})
1312feq2d 6484 . . . . . . . . . . 11 ((♯‘𝐹) = 1 → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ↔ 𝑃:{0, 1}⟶(Vtx‘𝐺)))
1413adantr 484 . . . . . . . . . 10 (((♯‘𝐹) = 1 ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ↔ 𝑃:{0, 1}⟶(Vtx‘𝐺)))
15 simpl 486 . . . . . . . . . . . . 13 (((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → (𝑃‘0) = 𝐴)
16 simpr 488 . . . . . . . . . . . . 13 (((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → (𝑃‘(♯‘𝐹)) = 𝐵)
1715, 16neeq12d 3012 . . . . . . . . . . . 12 (((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → ((𝑃‘0) ≠ (𝑃‘(♯‘𝐹)) ↔ 𝐴𝐵))
1817bicomd 226 . . . . . . . . . . 11 (((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → (𝐴𝐵 ↔ (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))))
19 fveq2 6658 . . . . . . . . . . . 12 ((♯‘𝐹) = 1 → (𝑃‘(♯‘𝐹)) = (𝑃‘1))
2019neeq2d 3011 . . . . . . . . . . 11 ((♯‘𝐹) = 1 → ((𝑃‘0) ≠ (𝑃‘(♯‘𝐹)) ↔ (𝑃‘0) ≠ (𝑃‘1)))
2118, 20sylan9bbr 514 . . . . . . . . . 10 (((♯‘𝐹) = 1 ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → (𝐴𝐵 ↔ (𝑃‘0) ≠ (𝑃‘1)))
2214, 21anbi12d 633 . . . . . . . . 9 (((♯‘𝐹) = 1 ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ 𝐴𝐵) ↔ (𝑃:{0, 1}⟶(Vtx‘𝐺) ∧ (𝑃‘0) ≠ (𝑃‘1))))
23 1z 12051 . . . . . . . . . . . 12 1 ∈ ℤ
24 fpr2g 6965 . . . . . . . . . . . 12 ((0 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑃:{0, 1}⟶(Vtx‘𝐺) ↔ ((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺) ∧ 𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩})))
256, 23, 24mp2an 691 . . . . . . . . . . 11 (𝑃:{0, 1}⟶(Vtx‘𝐺) ↔ ((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺) ∧ 𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩}))
26 funcnvs2 14322 . . . . . . . . . . . . . . . . 17 (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺) ∧ (𝑃‘0) ≠ (𝑃‘1)) → Fun ⟨“(𝑃‘0)(𝑃‘1)”⟩)
27263expa 1115 . . . . . . . . . . . . . . . 16 ((((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘1)) → Fun ⟨“(𝑃‘0)(𝑃‘1)”⟩)
2827adantl 485 . . . . . . . . . . . . . . 15 ((𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩} ∧ (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘1))) → Fun ⟨“(𝑃‘0)(𝑃‘1)”⟩)
29 simpl 486 . . . . . . . . . . . . . . . . . 18 ((𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩} ∧ (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘1))) → 𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩})
30 s2prop 14316 . . . . . . . . . . . . . . . . . . . . 21 (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) → ⟨“(𝑃‘0)(𝑃‘1)”⟩ = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩})
3130eqcomd 2764 . . . . . . . . . . . . . . . . . . . 20 (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) → {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩} = ⟨“(𝑃‘0)(𝑃‘1)”⟩)
3231adantr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘1)) → {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩} = ⟨“(𝑃‘0)(𝑃‘1)”⟩)
3332adantl 485 . . . . . . . . . . . . . . . . . 18 ((𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩} ∧ (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘1))) → {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩} = ⟨“(𝑃‘0)(𝑃‘1)”⟩)
3429, 33eqtrd 2793 . . . . . . . . . . . . . . . . 17 ((𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩} ∧ (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘1))) → 𝑃 = ⟨“(𝑃‘0)(𝑃‘1)”⟩)
3534cnveqd 5715 . . . . . . . . . . . . . . . 16 ((𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩} ∧ (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘1))) → 𝑃 = ⟨“(𝑃‘0)(𝑃‘1)”⟩)
3635funeqd 6357 . . . . . . . . . . . . . . 15 ((𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩} ∧ (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘1))) → (Fun 𝑃 ↔ Fun ⟨“(𝑃‘0)(𝑃‘1)”⟩))
3728, 36mpbird 260 . . . . . . . . . . . . . 14 ((𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩} ∧ (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) ∧ (𝑃‘0) ≠ (𝑃‘1))) → Fun 𝑃)
3837exp32 424 . . . . . . . . . . . . 13 (𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩} → (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) → ((𝑃‘0) ≠ (𝑃‘1) → Fun 𝑃)))
3938impcom 411 . . . . . . . . . . . 12 ((((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺)) ∧ 𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩}) → ((𝑃‘0) ≠ (𝑃‘1) → Fun 𝑃))
40393impa 1107 . . . . . . . . . . 11 (((𝑃‘0) ∈ (Vtx‘𝐺) ∧ (𝑃‘1) ∈ (Vtx‘𝐺) ∧ 𝑃 = {⟨0, (𝑃‘0)⟩, ⟨1, (𝑃‘1)⟩}) → ((𝑃‘0) ≠ (𝑃‘1) → Fun 𝑃))
4125, 40sylbi 220 . . . . . . . . . 10 (𝑃:{0, 1}⟶(Vtx‘𝐺) → ((𝑃‘0) ≠ (𝑃‘1) → Fun 𝑃))
4241imp 410 . . . . . . . . 9 ((𝑃:{0, 1}⟶(Vtx‘𝐺) ∧ (𝑃‘0) ≠ (𝑃‘1)) → Fun 𝑃)
4322, 42syl6bi 256 . . . . . . . 8 (((♯‘𝐹) = 1 ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ 𝐴𝐵) → Fun 𝑃))
4443expd 419 . . . . . . 7 (((♯‘𝐹) = 1 ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (𝐴𝐵 → Fun 𝑃)))
4544com12 32 . . . . . 6 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((♯‘𝐹) = 1 ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → (𝐴𝐵 → Fun 𝑃)))
4645expd 419 . . . . 5 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((♯‘𝐹) = 1 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → (𝐴𝐵 → Fun 𝑃))))
4746com34 91 . . . 4 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((♯‘𝐹) = 1 → (𝐴𝐵 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → Fun 𝑃))))
4847impd 414 . . 3 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((♯‘𝐹) = 1 ∧ 𝐴𝐵) → (((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → Fun 𝑃)))
492, 48syl 17 . 2 (𝐹(Walks‘𝐺)𝑃 → (((♯‘𝐹) = 1 ∧ 𝐴𝐵) → (((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → Fun 𝑃)))
50493imp 1108 1 ((𝐹(Walks‘𝐺)𝑃 ∧ ((♯‘𝐹) = 1 ∧ 𝐴𝐵) ∧ ((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → Fun 𝑃)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2951  {cpr 4524  ⟨cop 4528   class class class wbr 5032  ◡ccnv 5523  Fun wfun 6329  ⟶wf 6331  ‘cfv 6335  (class class class)co 7150  0cc0 10575  1c1 10576   + caddc 10578  ℤcz 12020  ...cfz 12939  ♯chash 13740  ⟨“cs2 14250  Vtxcvtx 26888  Walkscwlks 27485 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-1o 8112  df-er 8299  df-map 8418  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-card 9401  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-n0 11935  df-z 12021  df-uz 12283  df-fz 12940  df-fzo 13083  df-hash 13741  df-word 13914  df-concat 13970  df-s1 13997  df-s2 14257  df-wlks 27488 This theorem is referenced by:  uhgrwkspth  27643
 Copyright terms: Public domain W3C validator