MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzo0to42pr Structured version   Visualization version   GIF version

Theorem fzo0to42pr 13719
Description: A half-open integer range from 0 to 4 is a union of two unordered pairs. (Contributed by Alexander van der Vekens, 17-Nov-2017.)
Assertion
Ref Expression
fzo0to42pr (0..^4) = ({0, 1} ∪ {2, 3})

Proof of Theorem fzo0to42pr
StepHypRef Expression
1 2nn0 12489 . . . 4 2 ∈ ℕ0
2 4nn0 12491 . . . 4 4 ∈ ℕ0
3 2re 12286 . . . . 5 2 ∈ ℝ
4 4re 12296 . . . . 5 4 ∈ ℝ
5 2lt4 12387 . . . . 5 2 < 4
63, 4, 5ltleii 11337 . . . 4 2 ≤ 4
7 elfz2nn0 13592 . . . 4 (2 ∈ (0...4) ↔ (2 ∈ ℕ0 ∧ 4 ∈ ℕ0 ∧ 2 ≤ 4))
81, 2, 6, 7mpbir3an 1342 . . 3 2 ∈ (0...4)
9 fzosplit 13665 . . 3 (2 ∈ (0...4) → (0..^4) = ((0..^2) ∪ (2..^4)))
108, 9ax-mp 5 . 2 (0..^4) = ((0..^2) ∪ (2..^4))
11 fzo0to2pr 13717 . . 3 (0..^2) = {0, 1}
12 4z 12596 . . . . 5 4 ∈ ℤ
13 fzoval 13633 . . . . 5 (4 ∈ ℤ → (2..^4) = (2...(4 − 1)))
1412, 13ax-mp 5 . . . 4 (2..^4) = (2...(4 − 1))
15 4m1e3 12341 . . . . . . 7 (4 − 1) = 3
16 df-3 12276 . . . . . . 7 3 = (2 + 1)
1715, 16eqtri 2761 . . . . . 6 (4 − 1) = (2 + 1)
1817oveq2i 7420 . . . . 5 (2...(4 − 1)) = (2...(2 + 1))
19 2z 12594 . . . . . 6 2 ∈ ℤ
20 fzpr 13556 . . . . . 6 (2 ∈ ℤ → (2...(2 + 1)) = {2, (2 + 1)})
2119, 20ax-mp 5 . . . . 5 (2...(2 + 1)) = {2, (2 + 1)}
2218, 21eqtri 2761 . . . 4 (2...(4 − 1)) = {2, (2 + 1)}
23 2p1e3 12354 . . . . 5 (2 + 1) = 3
2423preq2i 4742 . . . 4 {2, (2 + 1)} = {2, 3}
2514, 22, 243eqtri 2765 . . 3 (2..^4) = {2, 3}
2611, 25uneq12i 4162 . 2 ((0..^2) ∪ (2..^4)) = ({0, 1} ∪ {2, 3})
2710, 26eqtri 2761 1 (0..^4) = ({0, 1} ∪ {2, 3})
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wcel 2107  cun 3947  {cpr 4631   class class class wbr 5149  (class class class)co 7409  0cc0 11110  1c1 11111   + caddc 11113  cle 11249  cmin 11444  2c2 12267  3c3 12268  4c4 12269  0cn0 12472  cz 12558  ...cfz 13484  ..^cfzo 13627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-n0 12473  df-z 12559  df-uz 12823  df-fz 13485  df-fzo 13628
This theorem is referenced by:  3pthdlem1  29417  upgr4cycl4dv4e  29438
  Copyright terms: Public domain W3C validator