![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzo0to42pr | Structured version Visualization version GIF version |
Description: A half-open integer range from 0 to 4 is a union of two unordered pairs. (Contributed by Alexander van der Vekens, 17-Nov-2017.) |
Ref | Expression |
---|---|
fzo0to42pr | ⊢ (0..^4) = ({0, 1} ∪ {2, 3}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn0 12493 | . . . 4 ⊢ 2 ∈ ℕ0 | |
2 | 4nn0 12495 | . . . 4 ⊢ 4 ∈ ℕ0 | |
3 | 2re 12290 | . . . . 5 ⊢ 2 ∈ ℝ | |
4 | 4re 12300 | . . . . 5 ⊢ 4 ∈ ℝ | |
5 | 2lt4 12391 | . . . . 5 ⊢ 2 < 4 | |
6 | 3, 4, 5 | ltleii 11341 | . . . 4 ⊢ 2 ≤ 4 |
7 | elfz2nn0 13598 | . . . 4 ⊢ (2 ∈ (0...4) ↔ (2 ∈ ℕ0 ∧ 4 ∈ ℕ0 ∧ 2 ≤ 4)) | |
8 | 1, 2, 6, 7 | mpbir3an 1338 | . . 3 ⊢ 2 ∈ (0...4) |
9 | fzosplit 13671 | . . 3 ⊢ (2 ∈ (0...4) → (0..^4) = ((0..^2) ∪ (2..^4))) | |
10 | 8, 9 | ax-mp 5 | . 2 ⊢ (0..^4) = ((0..^2) ∪ (2..^4)) |
11 | fzo0to2pr 13723 | . . 3 ⊢ (0..^2) = {0, 1} | |
12 | 4z 12600 | . . . . 5 ⊢ 4 ∈ ℤ | |
13 | fzoval 13639 | . . . . 5 ⊢ (4 ∈ ℤ → (2..^4) = (2...(4 − 1))) | |
14 | 12, 13 | ax-mp 5 | . . . 4 ⊢ (2..^4) = (2...(4 − 1)) |
15 | 4m1e3 12345 | . . . . . . 7 ⊢ (4 − 1) = 3 | |
16 | df-3 12280 | . . . . . . 7 ⊢ 3 = (2 + 1) | |
17 | 15, 16 | eqtri 2754 | . . . . . 6 ⊢ (4 − 1) = (2 + 1) |
18 | 17 | oveq2i 7416 | . . . . 5 ⊢ (2...(4 − 1)) = (2...(2 + 1)) |
19 | 2z 12598 | . . . . . 6 ⊢ 2 ∈ ℤ | |
20 | fzpr 13562 | . . . . . 6 ⊢ (2 ∈ ℤ → (2...(2 + 1)) = {2, (2 + 1)}) | |
21 | 19, 20 | ax-mp 5 | . . . . 5 ⊢ (2...(2 + 1)) = {2, (2 + 1)} |
22 | 18, 21 | eqtri 2754 | . . . 4 ⊢ (2...(4 − 1)) = {2, (2 + 1)} |
23 | 2p1e3 12358 | . . . . 5 ⊢ (2 + 1) = 3 | |
24 | 23 | preq2i 4736 | . . . 4 ⊢ {2, (2 + 1)} = {2, 3} |
25 | 14, 22, 24 | 3eqtri 2758 | . . 3 ⊢ (2..^4) = {2, 3} |
26 | 11, 25 | uneq12i 4156 | . 2 ⊢ ((0..^2) ∪ (2..^4)) = ({0, 1} ∪ {2, 3}) |
27 | 10, 26 | eqtri 2754 | 1 ⊢ (0..^4) = ({0, 1} ∪ {2, 3}) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 ∪ cun 3941 {cpr 4625 class class class wbr 5141 (class class class)co 7405 0cc0 11112 1c1 11113 + caddc 11115 ≤ cle 11253 − cmin 11448 2c2 12271 3c3 12272 4c4 12273 ℕ0cn0 12476 ℤcz 12562 ...cfz 13490 ..^cfzo 13633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13491 df-fzo 13634 |
This theorem is referenced by: 3pthdlem1 29926 upgr4cycl4dv4e 29947 |
Copyright terms: Public domain | W3C validator |