| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzo0to42pr | Structured version Visualization version GIF version | ||
| Description: A half-open integer range from 0 to 4 is a union of two unordered pairs. (Contributed by Alexander van der Vekens, 17-Nov-2017.) |
| Ref | Expression |
|---|---|
| fzo0to42pr | ⊢ (0..^4) = ({0, 1} ∪ {2, 3}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn0 12543 | . . . 4 ⊢ 2 ∈ ℕ0 | |
| 2 | 4nn0 12545 | . . . 4 ⊢ 4 ∈ ℕ0 | |
| 3 | 2re 12340 | . . . . 5 ⊢ 2 ∈ ℝ | |
| 4 | 4re 12350 | . . . . 5 ⊢ 4 ∈ ℝ | |
| 5 | 2lt4 12441 | . . . . 5 ⊢ 2 < 4 | |
| 6 | 3, 4, 5 | ltleii 11384 | . . . 4 ⊢ 2 ≤ 4 |
| 7 | elfz2nn0 13658 | . . . 4 ⊢ (2 ∈ (0...4) ↔ (2 ∈ ℕ0 ∧ 4 ∈ ℕ0 ∧ 2 ≤ 4)) | |
| 8 | 1, 2, 6, 7 | mpbir3an 1342 | . . 3 ⊢ 2 ∈ (0...4) |
| 9 | fzosplit 13732 | . . 3 ⊢ (2 ∈ (0...4) → (0..^4) = ((0..^2) ∪ (2..^4))) | |
| 10 | 8, 9 | ax-mp 5 | . 2 ⊢ (0..^4) = ((0..^2) ∪ (2..^4)) |
| 11 | fzo0to2pr 13789 | . . 3 ⊢ (0..^2) = {0, 1} | |
| 12 | 4z 12651 | . . . . 5 ⊢ 4 ∈ ℤ | |
| 13 | fzoval 13700 | . . . . 5 ⊢ (4 ∈ ℤ → (2..^4) = (2...(4 − 1))) | |
| 14 | 12, 13 | ax-mp 5 | . . . 4 ⊢ (2..^4) = (2...(4 − 1)) |
| 15 | 4m1e3 12395 | . . . . . . 7 ⊢ (4 − 1) = 3 | |
| 16 | df-3 12330 | . . . . . . 7 ⊢ 3 = (2 + 1) | |
| 17 | 15, 16 | eqtri 2765 | . . . . . 6 ⊢ (4 − 1) = (2 + 1) |
| 18 | 17 | oveq2i 7442 | . . . . 5 ⊢ (2...(4 − 1)) = (2...(2 + 1)) |
| 19 | 2z 12649 | . . . . . 6 ⊢ 2 ∈ ℤ | |
| 20 | fzpr 13619 | . . . . . 6 ⊢ (2 ∈ ℤ → (2...(2 + 1)) = {2, (2 + 1)}) | |
| 21 | 19, 20 | ax-mp 5 | . . . . 5 ⊢ (2...(2 + 1)) = {2, (2 + 1)} |
| 22 | 18, 21 | eqtri 2765 | . . . 4 ⊢ (2...(4 − 1)) = {2, (2 + 1)} |
| 23 | 2p1e3 12408 | . . . . 5 ⊢ (2 + 1) = 3 | |
| 24 | 23 | preq2i 4737 | . . . 4 ⊢ {2, (2 + 1)} = {2, 3} |
| 25 | 14, 22, 24 | 3eqtri 2769 | . . 3 ⊢ (2..^4) = {2, 3} |
| 26 | 11, 25 | uneq12i 4166 | . 2 ⊢ ((0..^2) ∪ (2..^4)) = ({0, 1} ∪ {2, 3}) |
| 27 | 10, 26 | eqtri 2765 | 1 ⊢ (0..^4) = ({0, 1} ∪ {2, 3}) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 ∪ cun 3949 {cpr 4628 class class class wbr 5143 (class class class)co 7431 0cc0 11155 1c1 11156 + caddc 11158 ≤ cle 11296 − cmin 11492 2c2 12321 3c3 12322 4c4 12323 ℕ0cn0 12526 ℤcz 12613 ...cfz 13547 ..^cfzo 13694 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-n0 12527 df-z 12614 df-uz 12879 df-fz 13548 df-fzo 13695 |
| This theorem is referenced by: 3pthdlem1 30183 upgr4cycl4dv4e 30204 evl1deg3 33603 |
| Copyright terms: Public domain | W3C validator |