![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > setsvtx | Structured version Visualization version GIF version |
Description: The vertices of a structure with a base set and an inserted resp. replaced slot for the edge function. (Contributed by AV, 18-Jan-2020.) (Revised by AV, 16-Nov-2021.) |
Ref | Expression |
---|---|
setsvtx.i | ⊢ 𝐼 = (.ef‘ndx) |
setsvtx.s | ⊢ (𝜑 → 𝐺 Struct 𝑋) |
setsvtx.b | ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝐺) |
setsvtx.e | ⊢ (𝜑 → 𝐸 ∈ 𝑊) |
Ref | Expression |
---|---|
setsvtx | ⊢ (𝜑 → (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = (Base‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsvtx.s | . . . 4 ⊢ (𝜑 → 𝐺 Struct 𝑋) | |
2 | setsvtx.i | . . . . . 6 ⊢ 𝐼 = (.ef‘ndx) | |
3 | 2 | fvexi 6895 | . . . . 5 ⊢ 𝐼 ∈ V |
4 | 3 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ V) |
5 | setsvtx.e | . . . 4 ⊢ (𝜑 → 𝐸 ∈ 𝑊) | |
6 | 1, 4, 5 | setsn0fun 17102 | . . 3 ⊢ (𝜑 → Fun ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∖ {∅})) |
7 | 2 | eqcomi 2733 | . . . . 5 ⊢ (.ef‘ndx) = 𝐼 |
8 | 7 | preq2i 4733 | . . . 4 ⊢ {(Base‘ndx), (.ef‘ndx)} = {(Base‘ndx), 𝐼} |
9 | setsvtx.b | . . . . 5 ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝐺) | |
10 | 1, 4, 5, 9 | basprssdmsets 17153 | . . . 4 ⊢ (𝜑 → {(Base‘ndx), 𝐼} ⊆ dom (𝐺 sSet ⟨𝐼, 𝐸⟩)) |
11 | 8, 10 | eqsstrid 4022 | . . 3 ⊢ (𝜑 → {(Base‘ndx), (.ef‘ndx)} ⊆ dom (𝐺 sSet ⟨𝐼, 𝐸⟩)) |
12 | funvtxval 28702 | . . 3 ⊢ ((Fun ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∖ {∅}) ∧ {(Base‘ndx), (.ef‘ndx)} ⊆ dom (𝐺 sSet ⟨𝐼, 𝐸⟩)) → (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = (Base‘(𝐺 sSet ⟨𝐼, 𝐸⟩))) | |
13 | 6, 11, 12 | syl2anc 583 | . 2 ⊢ (𝜑 → (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = (Base‘(𝐺 sSet ⟨𝐼, 𝐸⟩))) |
14 | baseid 17143 | . . 3 ⊢ Base = Slot (Base‘ndx) | |
15 | basendxnedgfndx 28679 | . . . 4 ⊢ (Base‘ndx) ≠ (.ef‘ndx) | |
16 | 15, 2 | neeqtrri 3006 | . . 3 ⊢ (Base‘ndx) ≠ 𝐼 |
17 | 14, 16 | setsnid 17138 | . 2 ⊢ (Base‘𝐺) = (Base‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) |
18 | 13, 17 | eqtr4di 2782 | 1 ⊢ (𝜑 → (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = (Base‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 Vcvv 3466 ∖ cdif 3937 ⊆ wss 3940 ∅c0 4314 {csn 4620 {cpr 4622 ⟨cop 4626 class class class wbr 5138 dom cdm 5666 Fun wfun 6527 ‘cfv 6533 (class class class)co 7401 Struct cstr 17075 sSet csts 17092 ndxcnx 17122 Basecbs 17140 .efcedgf 28670 Vtxcvtx 28680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-oadd 8465 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-dju 9891 df-card 9929 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-xnn0 12541 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-hash 14287 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-edgf 28671 df-vtx 28682 |
This theorem is referenced by: uhgrstrrepe 28762 usgrstrrepe 28916 structtocusgr 29127 |
Copyright terms: Public domain | W3C validator |