MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmreclem2 Structured version   Visualization version   GIF version

Theorem prmreclem2 16852
Description: Lemma for prmrec 16857. There are at most 2↑𝐾 squarefree numbers which divide no primes larger than 𝐾. (We could strengthen this to 2↑♯(ℙ ∩ (1...𝐾)) but there's no reason to.) We establish the inequality by showing that the prime counts of the number up to 𝐾 completely determine it because all higher prime counts are zero, and they are all at most 1 because no square divides the number, so there are at most 2↑𝐾 possibilities. (Contributed by Mario Carneiro, 5-Aug-2014.)
Hypotheses
Ref Expression
prmrec.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (1 / 𝑛), 0))
prmrec.2 (𝜑𝐾 ∈ ℕ)
prmrec.3 (𝜑𝑁 ∈ ℕ)
prmrec.4 𝑀 = {𝑛 ∈ (1...𝑁) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛}
prmreclem2.5 𝑄 = (𝑛 ∈ ℕ ↦ sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛}, ℝ, < ))
Assertion
Ref Expression
prmreclem2 (𝜑 → (♯‘{𝑥𝑀 ∣ (𝑄𝑥) = 1}) ≤ (2↑𝐾))
Distinct variable groups:   𝑛,𝑝,𝑟,𝑥,𝐹   𝑛,𝐾,𝑝,𝑥   𝑛,𝑀,𝑝,𝑥   𝜑,𝑛,𝑝,𝑥   𝑄,𝑛,𝑝,𝑟,𝑥   𝑛,𝑁,𝑝,𝑥
Allowed substitution hints:   𝜑(𝑟)   𝐾(𝑟)   𝑀(𝑟)   𝑁(𝑟)

Proof of Theorem prmreclem2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7444 . . . 4 ({0, 1} ↑m (1...𝐾)) ∈ V
2 fveqeq2 6900 . . . . . . 7 (𝑥 = 𝑦 → ((𝑄𝑥) = 1 ↔ (𝑄𝑦) = 1))
32elrab 3683 . . . . . 6 (𝑦 ∈ {𝑥𝑀 ∣ (𝑄𝑥) = 1} ↔ (𝑦𝑀 ∧ (𝑄𝑦) = 1))
4 prmrec.4 . . . . . . . . . . . . . . . . . . . 20 𝑀 = {𝑛 ∈ (1...𝑁) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛}
54ssrab3 4080 . . . . . . . . . . . . . . . . . . 19 𝑀 ⊆ (1...𝑁)
6 simprl 769 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) → 𝑦𝑀)
76ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → 𝑦𝑀)
85, 7sselid 3980 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → 𝑦 ∈ (1...𝑁))
9 elfznn 13532 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (1...𝑁) → 𝑦 ∈ ℕ)
108, 9syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → 𝑦 ∈ ℕ)
11 simpr 485 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → 𝑛 ∈ ℙ)
12 prmuz2 16635 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℙ → 𝑛 ∈ (ℤ‘2))
1311, 12syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → 𝑛 ∈ (ℤ‘2))
14 prmreclem2.5 . . . . . . . . . . . . . . . . . . 19 𝑄 = (𝑛 ∈ ℕ ↦ sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛}, ℝ, < ))
1514prmreclem1 16851 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℕ → ((𝑄𝑦) ∈ ℕ ∧ ((𝑄𝑦)↑2) ∥ 𝑦 ∧ (𝑛 ∈ (ℤ‘2) → ¬ (𝑛↑2) ∥ (𝑦 / ((𝑄𝑦)↑2)))))
1615simp3d 1144 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ → (𝑛 ∈ (ℤ‘2) → ¬ (𝑛↑2) ∥ (𝑦 / ((𝑄𝑦)↑2))))
1710, 13, 16sylc 65 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → ¬ (𝑛↑2) ∥ (𝑦 / ((𝑄𝑦)↑2)))
18 simprr 771 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) → (𝑄𝑦) = 1)
1918ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑄𝑦) = 1)
2019oveq1d 7426 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → ((𝑄𝑦)↑2) = (1↑2))
21 sq1 14161 . . . . . . . . . . . . . . . . . . . . 21 (1↑2) = 1
2220, 21eqtrdi 2788 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → ((𝑄𝑦)↑2) = 1)
2322oveq2d 7427 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑦 / ((𝑄𝑦)↑2)) = (𝑦 / 1))
2410nncnd 12230 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → 𝑦 ∈ ℂ)
2524div1d 11984 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑦 / 1) = 𝑦)
2623, 25eqtrd 2772 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑦 / ((𝑄𝑦)↑2)) = 𝑦)
2726breq2d 5160 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → ((𝑛↑2) ∥ (𝑦 / ((𝑄𝑦)↑2)) ↔ (𝑛↑2) ∥ 𝑦))
2810nnzd 12587 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → 𝑦 ∈ ℤ)
29 2nn0 12491 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℕ0
3029a1i 11 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → 2 ∈ ℕ0)
31 pcdvdsb 16804 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℙ ∧ 𝑦 ∈ ℤ ∧ 2 ∈ ℕ0) → (2 ≤ (𝑛 pCnt 𝑦) ↔ (𝑛↑2) ∥ 𝑦))
3211, 28, 30, 31syl3anc 1371 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (2 ≤ (𝑛 pCnt 𝑦) ↔ (𝑛↑2) ∥ 𝑦))
3327, 32bitr4d 281 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → ((𝑛↑2) ∥ (𝑦 / ((𝑄𝑦)↑2)) ↔ 2 ≤ (𝑛 pCnt 𝑦)))
3417, 33mtbid 323 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → ¬ 2 ≤ (𝑛 pCnt 𝑦))
3511, 10pccld 16785 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑦) ∈ ℕ0)
3635nn0red 12535 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑦) ∈ ℝ)
37 2re 12288 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
38 ltnle 11295 . . . . . . . . . . . . . . . 16 (((𝑛 pCnt 𝑦) ∈ ℝ ∧ 2 ∈ ℝ) → ((𝑛 pCnt 𝑦) < 2 ↔ ¬ 2 ≤ (𝑛 pCnt 𝑦)))
3936, 37, 38sylancl 586 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → ((𝑛 pCnt 𝑦) < 2 ↔ ¬ 2 ≤ (𝑛 pCnt 𝑦)))
4034, 39mpbird 256 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑦) < 2)
41 df-2 12277 . . . . . . . . . . . . . 14 2 = (1 + 1)
4240, 41breqtrdi 5189 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑦) < (1 + 1))
4335nn0zd 12586 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑦) ∈ ℤ)
44 1z 12594 . . . . . . . . . . . . . 14 1 ∈ ℤ
45 zleltp1 12615 . . . . . . . . . . . . . 14 (((𝑛 pCnt 𝑦) ∈ ℤ ∧ 1 ∈ ℤ) → ((𝑛 pCnt 𝑦) ≤ 1 ↔ (𝑛 pCnt 𝑦) < (1 + 1)))
4643, 44, 45sylancl 586 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → ((𝑛 pCnt 𝑦) ≤ 1 ↔ (𝑛 pCnt 𝑦) < (1 + 1)))
4742, 46mpbird 256 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑦) ≤ 1)
48 nn0uz 12866 . . . . . . . . . . . . . 14 0 = (ℤ‘0)
4935, 48eleqtrdi 2843 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑦) ∈ (ℤ‘0))
50 elfz5 13495 . . . . . . . . . . . . 13 (((𝑛 pCnt 𝑦) ∈ (ℤ‘0) ∧ 1 ∈ ℤ) → ((𝑛 pCnt 𝑦) ∈ (0...1) ↔ (𝑛 pCnt 𝑦) ≤ 1))
5149, 44, 50sylancl 586 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → ((𝑛 pCnt 𝑦) ∈ (0...1) ↔ (𝑛 pCnt 𝑦) ≤ 1))
5247, 51mpbird 256 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑦) ∈ (0...1))
53 0z 12571 . . . . . . . . . . . . 13 0 ∈ ℤ
54 fzpr 13558 . . . . . . . . . . . . 13 (0 ∈ ℤ → (0...(0 + 1)) = {0, (0 + 1)})
5553, 54ax-mp 5 . . . . . . . . . . . 12 (0...(0 + 1)) = {0, (0 + 1)}
56 1e0p1 12721 . . . . . . . . . . . . 13 1 = (0 + 1)
5756oveq2i 7422 . . . . . . . . . . . 12 (0...1) = (0...(0 + 1))
5856preq2i 4741 . . . . . . . . . . . 12 {0, 1} = {0, (0 + 1)}
5955, 57, 583eqtr4i 2770 . . . . . . . . . . 11 (0...1) = {0, 1}
6052, 59eleqtrdi 2843 . . . . . . . . . 10 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑦) ∈ {0, 1})
61 c0ex 11210 . . . . . . . . . . . 12 0 ∈ V
6261prid1 4766 . . . . . . . . . . 11 0 ∈ {0, 1}
6362a1i 11 . . . . . . . . . 10 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ ¬ 𝑛 ∈ ℙ) → 0 ∈ {0, 1})
6460, 63ifclda 4563 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) → if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0) ∈ {0, 1})
6564fmpttd 7116 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) → (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)):(1...𝐾)⟶{0, 1})
66 prex 5432 . . . . . . . . 9 {0, 1} ∈ V
67 ovex 7444 . . . . . . . . 9 (1...𝐾) ∈ V
6866, 67elmap 8867 . . . . . . . 8 ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) ∈ ({0, 1} ↑m (1...𝐾)) ↔ (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)):(1...𝐾)⟶{0, 1})
6965, 68sylibr 233 . . . . . . 7 ((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) → (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) ∈ ({0, 1} ↑m (1...𝐾)))
7069ex 413 . . . . . 6 (𝜑 → ((𝑦𝑀 ∧ (𝑄𝑦) = 1) → (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) ∈ ({0, 1} ↑m (1...𝐾))))
713, 70biimtrid 241 . . . . 5 (𝜑 → (𝑦 ∈ {𝑥𝑀 ∣ (𝑄𝑥) = 1} → (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) ∈ ({0, 1} ↑m (1...𝐾))))
72 fveqeq2 6900 . . . . . . . 8 (𝑥 = 𝑧 → ((𝑄𝑥) = 1 ↔ (𝑄𝑧) = 1))
7372elrab 3683 . . . . . . 7 (𝑧 ∈ {𝑥𝑀 ∣ (𝑄𝑥) = 1} ↔ (𝑧𝑀 ∧ (𝑄𝑧) = 1))
743, 73anbi12i 627 . . . . . 6 ((𝑦 ∈ {𝑥𝑀 ∣ (𝑄𝑥) = 1} ∧ 𝑧 ∈ {𝑥𝑀 ∣ (𝑄𝑥) = 1}) ↔ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1)))
75 ovex 7444 . . . . . . . . . . . 12 (𝑛 pCnt 𝑦) ∈ V
7675, 61ifex 4578 . . . . . . . . . . 11 if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0) ∈ V
77 eqid 2732 . . . . . . . . . . 11 (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) = (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0))
7876, 77fnmpti 6693 . . . . . . . . . 10 (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) Fn (1...𝐾)
79 ovex 7444 . . . . . . . . . . . 12 (𝑛 pCnt 𝑧) ∈ V
8079, 61ifex 4578 . . . . . . . . . . 11 if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0) ∈ V
81 eqid 2732 . . . . . . . . . . 11 (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0)) = (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0))
8280, 81fnmpti 6693 . . . . . . . . . 10 (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0)) Fn (1...𝐾)
83 eqfnfv 7032 . . . . . . . . . 10 (((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) Fn (1...𝐾) ∧ (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0)) Fn (1...𝐾)) → ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) = (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0)) ↔ ∀𝑝 ∈ (1...𝐾)((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0))‘𝑝) = ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0))‘𝑝)))
8478, 82, 83mp2an 690 . . . . . . . . 9 ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) = (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0)) ↔ ∀𝑝 ∈ (1...𝐾)((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0))‘𝑝) = ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0))‘𝑝))
85 eleq1w 2816 . . . . . . . . . . . . 13 (𝑛 = 𝑝 → (𝑛 ∈ ℙ ↔ 𝑝 ∈ ℙ))
86 oveq1 7418 . . . . . . . . . . . . 13 (𝑛 = 𝑝 → (𝑛 pCnt 𝑦) = (𝑝 pCnt 𝑦))
8785, 86ifbieq1d 4552 . . . . . . . . . . . 12 (𝑛 = 𝑝 → if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0))
88 ovex 7444 . . . . . . . . . . . . 13 (𝑝 pCnt 𝑦) ∈ V
8988, 61ifex 4578 . . . . . . . . . . . 12 if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) ∈ V
9087, 77, 89fvmpt 6998 . . . . . . . . . . 11 (𝑝 ∈ (1...𝐾) → ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0))‘𝑝) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0))
91 oveq1 7418 . . . . . . . . . . . . 13 (𝑛 = 𝑝 → (𝑛 pCnt 𝑧) = (𝑝 pCnt 𝑧))
9285, 91ifbieq1d 4552 . . . . . . . . . . . 12 (𝑛 = 𝑝 → if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0))
93 ovex 7444 . . . . . . . . . . . . 13 (𝑝 pCnt 𝑧) ∈ V
9493, 61ifex 4578 . . . . . . . . . . . 12 if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ∈ V
9592, 81, 94fvmpt 6998 . . . . . . . . . . 11 (𝑝 ∈ (1...𝐾) → ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0))‘𝑝) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0))
9690, 95eqeq12d 2748 . . . . . . . . . 10 (𝑝 ∈ (1...𝐾) → (((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0))‘𝑝) = ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0))‘𝑝) ↔ if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0)))
9796ralbiia 3091 . . . . . . . . 9 (∀𝑝 ∈ (1...𝐾)((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0))‘𝑝) = ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0))‘𝑝) ↔ ∀𝑝 ∈ (1...𝐾)if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0))
9884, 97bitri 274 . . . . . . . 8 ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) = (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0)) ↔ ∀𝑝 ∈ (1...𝐾)if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0))
99 simprll 777 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → 𝑦𝑀)
100 breq2 5152 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑦 → (𝑝𝑛𝑝𝑦))
101100notbid 317 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑦 → (¬ 𝑝𝑛 ↔ ¬ 𝑝𝑦))
102101ralbidv 3177 . . . . . . . . . . . . . . 15 (𝑛 = 𝑦 → (∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛 ↔ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑦))
103102, 4elrab2 3686 . . . . . . . . . . . . . 14 (𝑦𝑀 ↔ (𝑦 ∈ (1...𝑁) ∧ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑦))
104103simprbi 497 . . . . . . . . . . . . 13 (𝑦𝑀 → ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑦)
10599, 104syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑦)
106 simprrl 779 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → 𝑧𝑀)
107 breq2 5152 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑧 → (𝑝𝑛𝑝𝑧))
108107notbid 317 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑧 → (¬ 𝑝𝑛 ↔ ¬ 𝑝𝑧))
109108ralbidv 3177 . . . . . . . . . . . . . . 15 (𝑛 = 𝑧 → (∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛 ↔ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑧))
110109, 4elrab2 3686 . . . . . . . . . . . . . 14 (𝑧𝑀 ↔ (𝑧 ∈ (1...𝑁) ∧ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑧))
111110simprbi 497 . . . . . . . . . . . . 13 (𝑧𝑀 → ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑧)
112106, 111syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑧)
113 r19.26 3111 . . . . . . . . . . . . 13 (∀𝑝 ∈ (ℙ ∖ (1...𝐾))(¬ 𝑝𝑦 ∧ ¬ 𝑝𝑧) ↔ (∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑦 ∧ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑧))
114 eldifi 4126 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ (ℙ ∖ (1...𝐾)) → 𝑝 ∈ ℙ)
115 fz1ssnn 13534 . . . . . . . . . . . . . . . . . . 19 (1...𝑁) ⊆ ℕ
1165, 115sstri 3991 . . . . . . . . . . . . . . . . . 18 𝑀 ⊆ ℕ
117116, 99sselid 3980 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → 𝑦 ∈ ℕ)
118 pceq0 16806 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ ℙ ∧ 𝑦 ∈ ℕ) → ((𝑝 pCnt 𝑦) = 0 ↔ ¬ 𝑝𝑦))
119114, 117, 118syl2anr 597 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) ∧ 𝑝 ∈ (ℙ ∖ (1...𝐾))) → ((𝑝 pCnt 𝑦) = 0 ↔ ¬ 𝑝𝑦))
120116, 106sselid 3980 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → 𝑧 ∈ ℕ)
121 pceq0 16806 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ ℙ ∧ 𝑧 ∈ ℕ) → ((𝑝 pCnt 𝑧) = 0 ↔ ¬ 𝑝𝑧))
122114, 120, 121syl2anr 597 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) ∧ 𝑝 ∈ (ℙ ∖ (1...𝐾))) → ((𝑝 pCnt 𝑧) = 0 ↔ ¬ 𝑝𝑧))
123119, 122anbi12d 631 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) ∧ 𝑝 ∈ (ℙ ∖ (1...𝐾))) → (((𝑝 pCnt 𝑦) = 0 ∧ (𝑝 pCnt 𝑧) = 0) ↔ (¬ 𝑝𝑦 ∧ ¬ 𝑝𝑧)))
124 eqtr3 2758 . . . . . . . . . . . . . . 15 (((𝑝 pCnt 𝑦) = 0 ∧ (𝑝 pCnt 𝑧) = 0) → (𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧))
125123, 124syl6bir 253 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) ∧ 𝑝 ∈ (ℙ ∖ (1...𝐾))) → ((¬ 𝑝𝑦 ∧ ¬ 𝑝𝑧) → (𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧)))
126125ralimdva 3167 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → (∀𝑝 ∈ (ℙ ∖ (1...𝐾))(¬ 𝑝𝑦 ∧ ¬ 𝑝𝑧) → ∀𝑝 ∈ (ℙ ∖ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧)))
127113, 126biimtrrid 242 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → ((∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑦 ∧ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑧) → ∀𝑝 ∈ (ℙ ∖ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧)))
128105, 112, 127mp2and 697 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → ∀𝑝 ∈ (ℙ ∖ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧))
129128biantrud 532 . . . . . . . . . 10 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → (∀𝑝 ∈ (ℙ ∩ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧) ↔ (∀𝑝 ∈ (ℙ ∩ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧) ∧ ∀𝑝 ∈ (ℙ ∖ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧))))
130 incom 4201 . . . . . . . . . . . . . . 15 (ℙ ∩ (1...𝐾)) = ((1...𝐾) ∩ ℙ)
131130uneq1i 4159 . . . . . . . . . . . . . 14 ((ℙ ∩ (1...𝐾)) ∪ ((1...𝐾) ∖ ℙ)) = (((1...𝐾) ∩ ℙ) ∪ ((1...𝐾) ∖ ℙ))
132 inundif 4478 . . . . . . . . . . . . . 14 (((1...𝐾) ∩ ℙ) ∪ ((1...𝐾) ∖ ℙ)) = (1...𝐾)
133131, 132eqtri 2760 . . . . . . . . . . . . 13 ((ℙ ∩ (1...𝐾)) ∪ ((1...𝐾) ∖ ℙ)) = (1...𝐾)
134133raleqi 3323 . . . . . . . . . . . 12 (∀𝑝 ∈ ((ℙ ∩ (1...𝐾)) ∪ ((1...𝐾) ∖ ℙ))if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ↔ ∀𝑝 ∈ (1...𝐾)if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0))
135 ralunb 4191 . . . . . . . . . . . 12 (∀𝑝 ∈ ((ℙ ∩ (1...𝐾)) ∪ ((1...𝐾) ∖ ℙ))if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ↔ (∀𝑝 ∈ (ℙ ∩ (1...𝐾))if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ∧ ∀𝑝 ∈ ((1...𝐾) ∖ ℙ)if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0)))
136134, 135bitr3i 276 . . . . . . . . . . 11 (∀𝑝 ∈ (1...𝐾)if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ↔ (∀𝑝 ∈ (ℙ ∩ (1...𝐾))if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ∧ ∀𝑝 ∈ ((1...𝐾) ∖ ℙ)if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0)))
137 eldifn 4127 . . . . . . . . . . . . . . 15 (𝑝 ∈ ((1...𝐾) ∖ ℙ) → ¬ 𝑝 ∈ ℙ)
138 iffalse 4537 . . . . . . . . . . . . . . . 16 𝑝 ∈ ℙ → if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = 0)
139 iffalse 4537 . . . . . . . . . . . . . . . 16 𝑝 ∈ ℙ → if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) = 0)
140138, 139eqtr4d 2775 . . . . . . . . . . . . . . 15 𝑝 ∈ ℙ → if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0))
141137, 140syl 17 . . . . . . . . . . . . . 14 (𝑝 ∈ ((1...𝐾) ∖ ℙ) → if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0))
142141rgen 3063 . . . . . . . . . . . . 13 𝑝 ∈ ((1...𝐾) ∖ ℙ)if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0)
143142biantru 530 . . . . . . . . . . . 12 (∀𝑝 ∈ (ℙ ∩ (1...𝐾))if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ↔ (∀𝑝 ∈ (ℙ ∩ (1...𝐾))if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ∧ ∀𝑝 ∈ ((1...𝐾) ∖ ℙ)if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0)))
144 elinel1 4195 . . . . . . . . . . . . . 14 (𝑝 ∈ (ℙ ∩ (1...𝐾)) → 𝑝 ∈ ℙ)
145 iftrue 4534 . . . . . . . . . . . . . . 15 (𝑝 ∈ ℙ → if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = (𝑝 pCnt 𝑦))
146 iftrue 4534 . . . . . . . . . . . . . . 15 (𝑝 ∈ ℙ → if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) = (𝑝 pCnt 𝑧))
147145, 146eqeq12d 2748 . . . . . . . . . . . . . 14 (𝑝 ∈ ℙ → (if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ↔ (𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧)))
148144, 147syl 17 . . . . . . . . . . . . 13 (𝑝 ∈ (ℙ ∩ (1...𝐾)) → (if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ↔ (𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧)))
149148ralbiia 3091 . . . . . . . . . . . 12 (∀𝑝 ∈ (ℙ ∩ (1...𝐾))if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ↔ ∀𝑝 ∈ (ℙ ∩ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧))
150143, 149bitr3i 276 . . . . . . . . . . 11 ((∀𝑝 ∈ (ℙ ∩ (1...𝐾))if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ∧ ∀𝑝 ∈ ((1...𝐾) ∖ ℙ)if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0)) ↔ ∀𝑝 ∈ (ℙ ∩ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧))
151136, 150bitri 274 . . . . . . . . . 10 (∀𝑝 ∈ (1...𝐾)if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ↔ ∀𝑝 ∈ (ℙ ∩ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧))
152 inundif 4478 . . . . . . . . . . . 12 ((ℙ ∩ (1...𝐾)) ∪ (ℙ ∖ (1...𝐾))) = ℙ
153152raleqi 3323 . . . . . . . . . . 11 (∀𝑝 ∈ ((ℙ ∩ (1...𝐾)) ∪ (ℙ ∖ (1...𝐾)))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧))
154 ralunb 4191 . . . . . . . . . . 11 (∀𝑝 ∈ ((ℙ ∩ (1...𝐾)) ∪ (ℙ ∖ (1...𝐾)))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧) ↔ (∀𝑝 ∈ (ℙ ∩ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧) ∧ ∀𝑝 ∈ (ℙ ∖ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧)))
155153, 154bitr3i 276 . . . . . . . . . 10 (∀𝑝 ∈ ℙ (𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧) ↔ (∀𝑝 ∈ (ℙ ∩ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧) ∧ ∀𝑝 ∈ (ℙ ∖ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧)))
156129, 151, 1553bitr4g 313 . . . . . . . . 9 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → (∀𝑝 ∈ (1...𝐾)if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧)))
157117nnnn0d 12534 . . . . . . . . . 10 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → 𝑦 ∈ ℕ0)
158120nnnn0d 12534 . . . . . . . . . 10 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → 𝑧 ∈ ℕ0)
159 pc11 16815 . . . . . . . . . 10 ((𝑦 ∈ ℕ0𝑧 ∈ ℕ0) → (𝑦 = 𝑧 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧)))
160157, 158, 159syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → (𝑦 = 𝑧 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧)))
161156, 160bitr4d 281 . . . . . . . 8 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → (∀𝑝 ∈ (1...𝐾)if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ↔ 𝑦 = 𝑧))
16298, 161bitrid 282 . . . . . . 7 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) = (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0)) ↔ 𝑦 = 𝑧))
163162ex 413 . . . . . 6 (𝜑 → (((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1)) → ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) = (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0)) ↔ 𝑦 = 𝑧)))
16474, 163biimtrid 241 . . . . 5 (𝜑 → ((𝑦 ∈ {𝑥𝑀 ∣ (𝑄𝑥) = 1} ∧ 𝑧 ∈ {𝑥𝑀 ∣ (𝑄𝑥) = 1}) → ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) = (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0)) ↔ 𝑦 = 𝑧)))
16571, 164dom2d 8991 . . . 4 (𝜑 → (({0, 1} ↑m (1...𝐾)) ∈ V → {𝑥𝑀 ∣ (𝑄𝑥) = 1} ≼ ({0, 1} ↑m (1...𝐾))))
1661, 165mpi 20 . . 3 (𝜑 → {𝑥𝑀 ∣ (𝑄𝑥) = 1} ≼ ({0, 1} ↑m (1...𝐾)))
167 fzfi 13939 . . . . . . 7 (1...𝑁) ∈ Fin
168 ssrab2 4077 . . . . . . 7 {𝑛 ∈ (1...𝑁) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛} ⊆ (1...𝑁)
169 ssfi 9175 . . . . . . 7 (((1...𝑁) ∈ Fin ∧ {𝑛 ∈ (1...𝑁) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛} ⊆ (1...𝑁)) → {𝑛 ∈ (1...𝑁) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛} ∈ Fin)
170167, 168, 169mp2an 690 . . . . . 6 {𝑛 ∈ (1...𝑁) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛} ∈ Fin
1714, 170eqeltri 2829 . . . . 5 𝑀 ∈ Fin
172 ssrab2 4077 . . . . 5 {𝑥𝑀 ∣ (𝑄𝑥) = 1} ⊆ 𝑀
173 ssfi 9175 . . . . 5 ((𝑀 ∈ Fin ∧ {𝑥𝑀 ∣ (𝑄𝑥) = 1} ⊆ 𝑀) → {𝑥𝑀 ∣ (𝑄𝑥) = 1} ∈ Fin)
174171, 172, 173mp2an 690 . . . 4 {𝑥𝑀 ∣ (𝑄𝑥) = 1} ∈ Fin
175 prfi 9324 . . . . 5 {0, 1} ∈ Fin
176 fzfid 13940 . . . . 5 (𝜑 → (1...𝐾) ∈ Fin)
177 mapfi 9350 . . . . 5 (({0, 1} ∈ Fin ∧ (1...𝐾) ∈ Fin) → ({0, 1} ↑m (1...𝐾)) ∈ Fin)
178175, 176, 177sylancr 587 . . . 4 (𝜑 → ({0, 1} ↑m (1...𝐾)) ∈ Fin)
179 hashdom 14341 . . . 4 (({𝑥𝑀 ∣ (𝑄𝑥) = 1} ∈ Fin ∧ ({0, 1} ↑m (1...𝐾)) ∈ Fin) → ((♯‘{𝑥𝑀 ∣ (𝑄𝑥) = 1}) ≤ (♯‘({0, 1} ↑m (1...𝐾))) ↔ {𝑥𝑀 ∣ (𝑄𝑥) = 1} ≼ ({0, 1} ↑m (1...𝐾))))
180174, 178, 179sylancr 587 . . 3 (𝜑 → ((♯‘{𝑥𝑀 ∣ (𝑄𝑥) = 1}) ≤ (♯‘({0, 1} ↑m (1...𝐾))) ↔ {𝑥𝑀 ∣ (𝑄𝑥) = 1} ≼ ({0, 1} ↑m (1...𝐾))))
181166, 180mpbird 256 . 2 (𝜑 → (♯‘{𝑥𝑀 ∣ (𝑄𝑥) = 1}) ≤ (♯‘({0, 1} ↑m (1...𝐾))))
182 hashmap 14397 . . . 4 (({0, 1} ∈ Fin ∧ (1...𝐾) ∈ Fin) → (♯‘({0, 1} ↑m (1...𝐾))) = ((♯‘{0, 1})↑(♯‘(1...𝐾))))
183175, 176, 182sylancr 587 . . 3 (𝜑 → (♯‘({0, 1} ↑m (1...𝐾))) = ((♯‘{0, 1})↑(♯‘(1...𝐾))))
184 prhash2ex 14361 . . . . 5 (♯‘{0, 1}) = 2
185184a1i 11 . . . 4 (𝜑 → (♯‘{0, 1}) = 2)
186 prmrec.2 . . . . . 6 (𝜑𝐾 ∈ ℕ)
187186nnnn0d 12534 . . . . 5 (𝜑𝐾 ∈ ℕ0)
188 hashfz1 14308 . . . . 5 (𝐾 ∈ ℕ0 → (♯‘(1...𝐾)) = 𝐾)
189187, 188syl 17 . . . 4 (𝜑 → (♯‘(1...𝐾)) = 𝐾)
190185, 189oveq12d 7429 . . 3 (𝜑 → ((♯‘{0, 1})↑(♯‘(1...𝐾))) = (2↑𝐾))
191183, 190eqtrd 2772 . 2 (𝜑 → (♯‘({0, 1} ↑m (1...𝐾))) = (2↑𝐾))
192181, 191breqtrd 5174 1 (𝜑 → (♯‘{𝑥𝑀 ∣ (𝑄𝑥) = 1}) ≤ (2↑𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3061  {crab 3432  Vcvv 3474  cdif 3945  cun 3946  cin 3947  wss 3948  ifcif 4528  {cpr 4630   class class class wbr 5148  cmpt 5231   Fn wfn 6538  wf 6539  cfv 6543  (class class class)co 7411  m cmap 8822  cdom 8939  Fincfn 8941  supcsup 9437  cr 11111  0cc0 11112  1c1 11113   + caddc 11115   < clt 11250  cle 11251   / cdiv 11873  cn 12214  2c2 12269  0cn0 12474  cz 12560  cuz 12824  ...cfz 13486  cexp 14029  chash 14292  cdvds 16199  cprime 16610   pCnt cpc 16771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-oadd 8472  df-er 8705  df-map 8824  df-pm 8825  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-inf 9440  df-dju 9898  df-card 9936  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-div 11874  df-nn 12215  df-2 12277  df-3 12278  df-n0 12475  df-xnn0 12547  df-z 12561  df-uz 12825  df-q 12935  df-rp 12977  df-fz 13487  df-fl 13759  df-mod 13837  df-seq 13969  df-exp 14030  df-hash 14293  df-cj 15048  df-re 15049  df-im 15050  df-sqrt 15184  df-abs 15185  df-dvds 16200  df-gcd 16438  df-prm 16611  df-pc 16772
This theorem is referenced by:  prmreclem3  16853
  Copyright terms: Public domain W3C validator