MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmreclem2 Structured version   Visualization version   GIF version

Theorem prmreclem2 16846
Description: Lemma for prmrec 16851. There are at most 2↑𝐾 squarefree numbers which divide no primes larger than 𝐾. (We could strengthen this to 2↑♯(ℙ ∩ (1...𝐾)) but there's no reason to.) We establish the inequality by showing that the prime counts of the number up to 𝐾 completely determine it because all higher prime counts are zero, and they are all at most 1 because no square divides the number, so there are at most 2↑𝐾 possibilities. (Contributed by Mario Carneiro, 5-Aug-2014.)
Hypotheses
Ref Expression
prmrec.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (1 / 𝑛), 0))
prmrec.2 (𝜑𝐾 ∈ ℕ)
prmrec.3 (𝜑𝑁 ∈ ℕ)
prmrec.4 𝑀 = {𝑛 ∈ (1...𝑁) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛}
prmreclem2.5 𝑄 = (𝑛 ∈ ℕ ↦ sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛}, ℝ, < ))
Assertion
Ref Expression
prmreclem2 (𝜑 → (♯‘{𝑥𝑀 ∣ (𝑄𝑥) = 1}) ≤ (2↑𝐾))
Distinct variable groups:   𝑛,𝑝,𝑟,𝑥,𝐹   𝑛,𝐾,𝑝,𝑥   𝑛,𝑀,𝑝,𝑥   𝜑,𝑛,𝑝,𝑥   𝑄,𝑛,𝑝,𝑟,𝑥   𝑛,𝑁,𝑝,𝑥
Allowed substitution hints:   𝜑(𝑟)   𝐾(𝑟)   𝑀(𝑟)   𝑁(𝑟)

Proof of Theorem prmreclem2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7438 . . . 4 ({0, 1} ↑m (1...𝐾)) ∈ V
2 fveqeq2 6897 . . . . . . 7 (𝑥 = 𝑦 → ((𝑄𝑥) = 1 ↔ (𝑄𝑦) = 1))
32elrab 3682 . . . . . 6 (𝑦 ∈ {𝑥𝑀 ∣ (𝑄𝑥) = 1} ↔ (𝑦𝑀 ∧ (𝑄𝑦) = 1))
4 prmrec.4 . . . . . . . . . . . . . . . . . . . 20 𝑀 = {𝑛 ∈ (1...𝑁) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛}
54ssrab3 4079 . . . . . . . . . . . . . . . . . . 19 𝑀 ⊆ (1...𝑁)
6 simprl 769 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) → 𝑦𝑀)
76ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → 𝑦𝑀)
85, 7sselid 3979 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → 𝑦 ∈ (1...𝑁))
9 elfznn 13526 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (1...𝑁) → 𝑦 ∈ ℕ)
108, 9syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → 𝑦 ∈ ℕ)
11 simpr 485 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → 𝑛 ∈ ℙ)
12 prmuz2 16629 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℙ → 𝑛 ∈ (ℤ‘2))
1311, 12syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → 𝑛 ∈ (ℤ‘2))
14 prmreclem2.5 . . . . . . . . . . . . . . . . . . 19 𝑄 = (𝑛 ∈ ℕ ↦ sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛}, ℝ, < ))
1514prmreclem1 16845 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℕ → ((𝑄𝑦) ∈ ℕ ∧ ((𝑄𝑦)↑2) ∥ 𝑦 ∧ (𝑛 ∈ (ℤ‘2) → ¬ (𝑛↑2) ∥ (𝑦 / ((𝑄𝑦)↑2)))))
1615simp3d 1144 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ → (𝑛 ∈ (ℤ‘2) → ¬ (𝑛↑2) ∥ (𝑦 / ((𝑄𝑦)↑2))))
1710, 13, 16sylc 65 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → ¬ (𝑛↑2) ∥ (𝑦 / ((𝑄𝑦)↑2)))
18 simprr 771 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) → (𝑄𝑦) = 1)
1918ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑄𝑦) = 1)
2019oveq1d 7420 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → ((𝑄𝑦)↑2) = (1↑2))
21 sq1 14155 . . . . . . . . . . . . . . . . . . . . 21 (1↑2) = 1
2220, 21eqtrdi 2788 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → ((𝑄𝑦)↑2) = 1)
2322oveq2d 7421 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑦 / ((𝑄𝑦)↑2)) = (𝑦 / 1))
2410nncnd 12224 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → 𝑦 ∈ ℂ)
2524div1d 11978 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑦 / 1) = 𝑦)
2623, 25eqtrd 2772 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑦 / ((𝑄𝑦)↑2)) = 𝑦)
2726breq2d 5159 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → ((𝑛↑2) ∥ (𝑦 / ((𝑄𝑦)↑2)) ↔ (𝑛↑2) ∥ 𝑦))
2810nnzd 12581 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → 𝑦 ∈ ℤ)
29 2nn0 12485 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℕ0
3029a1i 11 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → 2 ∈ ℕ0)
31 pcdvdsb 16798 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℙ ∧ 𝑦 ∈ ℤ ∧ 2 ∈ ℕ0) → (2 ≤ (𝑛 pCnt 𝑦) ↔ (𝑛↑2) ∥ 𝑦))
3211, 28, 30, 31syl3anc 1371 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (2 ≤ (𝑛 pCnt 𝑦) ↔ (𝑛↑2) ∥ 𝑦))
3327, 32bitr4d 281 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → ((𝑛↑2) ∥ (𝑦 / ((𝑄𝑦)↑2)) ↔ 2 ≤ (𝑛 pCnt 𝑦)))
3417, 33mtbid 323 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → ¬ 2 ≤ (𝑛 pCnt 𝑦))
3511, 10pccld 16779 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑦) ∈ ℕ0)
3635nn0red 12529 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑦) ∈ ℝ)
37 2re 12282 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
38 ltnle 11289 . . . . . . . . . . . . . . . 16 (((𝑛 pCnt 𝑦) ∈ ℝ ∧ 2 ∈ ℝ) → ((𝑛 pCnt 𝑦) < 2 ↔ ¬ 2 ≤ (𝑛 pCnt 𝑦)))
3936, 37, 38sylancl 586 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → ((𝑛 pCnt 𝑦) < 2 ↔ ¬ 2 ≤ (𝑛 pCnt 𝑦)))
4034, 39mpbird 256 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑦) < 2)
41 df-2 12271 . . . . . . . . . . . . . 14 2 = (1 + 1)
4240, 41breqtrdi 5188 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑦) < (1 + 1))
4335nn0zd 12580 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑦) ∈ ℤ)
44 1z 12588 . . . . . . . . . . . . . 14 1 ∈ ℤ
45 zleltp1 12609 . . . . . . . . . . . . . 14 (((𝑛 pCnt 𝑦) ∈ ℤ ∧ 1 ∈ ℤ) → ((𝑛 pCnt 𝑦) ≤ 1 ↔ (𝑛 pCnt 𝑦) < (1 + 1)))
4643, 44, 45sylancl 586 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → ((𝑛 pCnt 𝑦) ≤ 1 ↔ (𝑛 pCnt 𝑦) < (1 + 1)))
4742, 46mpbird 256 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑦) ≤ 1)
48 nn0uz 12860 . . . . . . . . . . . . . 14 0 = (ℤ‘0)
4935, 48eleqtrdi 2843 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑦) ∈ (ℤ‘0))
50 elfz5 13489 . . . . . . . . . . . . 13 (((𝑛 pCnt 𝑦) ∈ (ℤ‘0) ∧ 1 ∈ ℤ) → ((𝑛 pCnt 𝑦) ∈ (0...1) ↔ (𝑛 pCnt 𝑦) ≤ 1))
5149, 44, 50sylancl 586 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → ((𝑛 pCnt 𝑦) ∈ (0...1) ↔ (𝑛 pCnt 𝑦) ≤ 1))
5247, 51mpbird 256 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑦) ∈ (0...1))
53 0z 12565 . . . . . . . . . . . . 13 0 ∈ ℤ
54 fzpr 13552 . . . . . . . . . . . . 13 (0 ∈ ℤ → (0...(0 + 1)) = {0, (0 + 1)})
5553, 54ax-mp 5 . . . . . . . . . . . 12 (0...(0 + 1)) = {0, (0 + 1)}
56 1e0p1 12715 . . . . . . . . . . . . 13 1 = (0 + 1)
5756oveq2i 7416 . . . . . . . . . . . 12 (0...1) = (0...(0 + 1))
5856preq2i 4740 . . . . . . . . . . . 12 {0, 1} = {0, (0 + 1)}
5955, 57, 583eqtr4i 2770 . . . . . . . . . . 11 (0...1) = {0, 1}
6052, 59eleqtrdi 2843 . . . . . . . . . 10 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑦) ∈ {0, 1})
61 c0ex 11204 . . . . . . . . . . . 12 0 ∈ V
6261prid1 4765 . . . . . . . . . . 11 0 ∈ {0, 1}
6362a1i 11 . . . . . . . . . 10 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ ¬ 𝑛 ∈ ℙ) → 0 ∈ {0, 1})
6460, 63ifclda 4562 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) → if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0) ∈ {0, 1})
6564fmpttd 7111 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) → (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)):(1...𝐾)⟶{0, 1})
66 prex 5431 . . . . . . . . 9 {0, 1} ∈ V
67 ovex 7438 . . . . . . . . 9 (1...𝐾) ∈ V
6866, 67elmap 8861 . . . . . . . 8 ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) ∈ ({0, 1} ↑m (1...𝐾)) ↔ (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)):(1...𝐾)⟶{0, 1})
6965, 68sylibr 233 . . . . . . 7 ((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) → (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) ∈ ({0, 1} ↑m (1...𝐾)))
7069ex 413 . . . . . 6 (𝜑 → ((𝑦𝑀 ∧ (𝑄𝑦) = 1) → (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) ∈ ({0, 1} ↑m (1...𝐾))))
713, 70biimtrid 241 . . . . 5 (𝜑 → (𝑦 ∈ {𝑥𝑀 ∣ (𝑄𝑥) = 1} → (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) ∈ ({0, 1} ↑m (1...𝐾))))
72 fveqeq2 6897 . . . . . . . 8 (𝑥 = 𝑧 → ((𝑄𝑥) = 1 ↔ (𝑄𝑧) = 1))
7372elrab 3682 . . . . . . 7 (𝑧 ∈ {𝑥𝑀 ∣ (𝑄𝑥) = 1} ↔ (𝑧𝑀 ∧ (𝑄𝑧) = 1))
743, 73anbi12i 627 . . . . . 6 ((𝑦 ∈ {𝑥𝑀 ∣ (𝑄𝑥) = 1} ∧ 𝑧 ∈ {𝑥𝑀 ∣ (𝑄𝑥) = 1}) ↔ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1)))
75 ovex 7438 . . . . . . . . . . . 12 (𝑛 pCnt 𝑦) ∈ V
7675, 61ifex 4577 . . . . . . . . . . 11 if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0) ∈ V
77 eqid 2732 . . . . . . . . . . 11 (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) = (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0))
7876, 77fnmpti 6690 . . . . . . . . . 10 (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) Fn (1...𝐾)
79 ovex 7438 . . . . . . . . . . . 12 (𝑛 pCnt 𝑧) ∈ V
8079, 61ifex 4577 . . . . . . . . . . 11 if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0) ∈ V
81 eqid 2732 . . . . . . . . . . 11 (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0)) = (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0))
8280, 81fnmpti 6690 . . . . . . . . . 10 (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0)) Fn (1...𝐾)
83 eqfnfv 7029 . . . . . . . . . 10 (((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) Fn (1...𝐾) ∧ (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0)) Fn (1...𝐾)) → ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) = (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0)) ↔ ∀𝑝 ∈ (1...𝐾)((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0))‘𝑝) = ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0))‘𝑝)))
8478, 82, 83mp2an 690 . . . . . . . . 9 ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) = (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0)) ↔ ∀𝑝 ∈ (1...𝐾)((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0))‘𝑝) = ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0))‘𝑝))
85 eleq1w 2816 . . . . . . . . . . . . 13 (𝑛 = 𝑝 → (𝑛 ∈ ℙ ↔ 𝑝 ∈ ℙ))
86 oveq1 7412 . . . . . . . . . . . . 13 (𝑛 = 𝑝 → (𝑛 pCnt 𝑦) = (𝑝 pCnt 𝑦))
8785, 86ifbieq1d 4551 . . . . . . . . . . . 12 (𝑛 = 𝑝 → if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0))
88 ovex 7438 . . . . . . . . . . . . 13 (𝑝 pCnt 𝑦) ∈ V
8988, 61ifex 4577 . . . . . . . . . . . 12 if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) ∈ V
9087, 77, 89fvmpt 6995 . . . . . . . . . . 11 (𝑝 ∈ (1...𝐾) → ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0))‘𝑝) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0))
91 oveq1 7412 . . . . . . . . . . . . 13 (𝑛 = 𝑝 → (𝑛 pCnt 𝑧) = (𝑝 pCnt 𝑧))
9285, 91ifbieq1d 4551 . . . . . . . . . . . 12 (𝑛 = 𝑝 → if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0))
93 ovex 7438 . . . . . . . . . . . . 13 (𝑝 pCnt 𝑧) ∈ V
9493, 61ifex 4577 . . . . . . . . . . . 12 if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ∈ V
9592, 81, 94fvmpt 6995 . . . . . . . . . . 11 (𝑝 ∈ (1...𝐾) → ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0))‘𝑝) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0))
9690, 95eqeq12d 2748 . . . . . . . . . 10 (𝑝 ∈ (1...𝐾) → (((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0))‘𝑝) = ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0))‘𝑝) ↔ if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0)))
9796ralbiia 3091 . . . . . . . . 9 (∀𝑝 ∈ (1...𝐾)((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0))‘𝑝) = ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0))‘𝑝) ↔ ∀𝑝 ∈ (1...𝐾)if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0))
9884, 97bitri 274 . . . . . . . 8 ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) = (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0)) ↔ ∀𝑝 ∈ (1...𝐾)if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0))
99 simprll 777 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → 𝑦𝑀)
100 breq2 5151 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑦 → (𝑝𝑛𝑝𝑦))
101100notbid 317 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑦 → (¬ 𝑝𝑛 ↔ ¬ 𝑝𝑦))
102101ralbidv 3177 . . . . . . . . . . . . . . 15 (𝑛 = 𝑦 → (∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛 ↔ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑦))
103102, 4elrab2 3685 . . . . . . . . . . . . . 14 (𝑦𝑀 ↔ (𝑦 ∈ (1...𝑁) ∧ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑦))
104103simprbi 497 . . . . . . . . . . . . 13 (𝑦𝑀 → ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑦)
10599, 104syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑦)
106 simprrl 779 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → 𝑧𝑀)
107 breq2 5151 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑧 → (𝑝𝑛𝑝𝑧))
108107notbid 317 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑧 → (¬ 𝑝𝑛 ↔ ¬ 𝑝𝑧))
109108ralbidv 3177 . . . . . . . . . . . . . . 15 (𝑛 = 𝑧 → (∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛 ↔ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑧))
110109, 4elrab2 3685 . . . . . . . . . . . . . 14 (𝑧𝑀 ↔ (𝑧 ∈ (1...𝑁) ∧ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑧))
111110simprbi 497 . . . . . . . . . . . . 13 (𝑧𝑀 → ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑧)
112106, 111syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑧)
113 r19.26 3111 . . . . . . . . . . . . 13 (∀𝑝 ∈ (ℙ ∖ (1...𝐾))(¬ 𝑝𝑦 ∧ ¬ 𝑝𝑧) ↔ (∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑦 ∧ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑧))
114 eldifi 4125 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ (ℙ ∖ (1...𝐾)) → 𝑝 ∈ ℙ)
115 fz1ssnn 13528 . . . . . . . . . . . . . . . . . . 19 (1...𝑁) ⊆ ℕ
1165, 115sstri 3990 . . . . . . . . . . . . . . . . . 18 𝑀 ⊆ ℕ
117116, 99sselid 3979 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → 𝑦 ∈ ℕ)
118 pceq0 16800 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ ℙ ∧ 𝑦 ∈ ℕ) → ((𝑝 pCnt 𝑦) = 0 ↔ ¬ 𝑝𝑦))
119114, 117, 118syl2anr 597 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) ∧ 𝑝 ∈ (ℙ ∖ (1...𝐾))) → ((𝑝 pCnt 𝑦) = 0 ↔ ¬ 𝑝𝑦))
120116, 106sselid 3979 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → 𝑧 ∈ ℕ)
121 pceq0 16800 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ ℙ ∧ 𝑧 ∈ ℕ) → ((𝑝 pCnt 𝑧) = 0 ↔ ¬ 𝑝𝑧))
122114, 120, 121syl2anr 597 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) ∧ 𝑝 ∈ (ℙ ∖ (1...𝐾))) → ((𝑝 pCnt 𝑧) = 0 ↔ ¬ 𝑝𝑧))
123119, 122anbi12d 631 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) ∧ 𝑝 ∈ (ℙ ∖ (1...𝐾))) → (((𝑝 pCnt 𝑦) = 0 ∧ (𝑝 pCnt 𝑧) = 0) ↔ (¬ 𝑝𝑦 ∧ ¬ 𝑝𝑧)))
124 eqtr3 2758 . . . . . . . . . . . . . . 15 (((𝑝 pCnt 𝑦) = 0 ∧ (𝑝 pCnt 𝑧) = 0) → (𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧))
125123, 124syl6bir 253 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) ∧ 𝑝 ∈ (ℙ ∖ (1...𝐾))) → ((¬ 𝑝𝑦 ∧ ¬ 𝑝𝑧) → (𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧)))
126125ralimdva 3167 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → (∀𝑝 ∈ (ℙ ∖ (1...𝐾))(¬ 𝑝𝑦 ∧ ¬ 𝑝𝑧) → ∀𝑝 ∈ (ℙ ∖ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧)))
127113, 126biimtrrid 242 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → ((∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑦 ∧ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑧) → ∀𝑝 ∈ (ℙ ∖ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧)))
128105, 112, 127mp2and 697 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → ∀𝑝 ∈ (ℙ ∖ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧))
129128biantrud 532 . . . . . . . . . 10 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → (∀𝑝 ∈ (ℙ ∩ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧) ↔ (∀𝑝 ∈ (ℙ ∩ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧) ∧ ∀𝑝 ∈ (ℙ ∖ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧))))
130 incom 4200 . . . . . . . . . . . . . . 15 (ℙ ∩ (1...𝐾)) = ((1...𝐾) ∩ ℙ)
131130uneq1i 4158 . . . . . . . . . . . . . 14 ((ℙ ∩ (1...𝐾)) ∪ ((1...𝐾) ∖ ℙ)) = (((1...𝐾) ∩ ℙ) ∪ ((1...𝐾) ∖ ℙ))
132 inundif 4477 . . . . . . . . . . . . . 14 (((1...𝐾) ∩ ℙ) ∪ ((1...𝐾) ∖ ℙ)) = (1...𝐾)
133131, 132eqtri 2760 . . . . . . . . . . . . 13 ((ℙ ∩ (1...𝐾)) ∪ ((1...𝐾) ∖ ℙ)) = (1...𝐾)
134133raleqi 3323 . . . . . . . . . . . 12 (∀𝑝 ∈ ((ℙ ∩ (1...𝐾)) ∪ ((1...𝐾) ∖ ℙ))if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ↔ ∀𝑝 ∈ (1...𝐾)if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0))
135 ralunb 4190 . . . . . . . . . . . 12 (∀𝑝 ∈ ((ℙ ∩ (1...𝐾)) ∪ ((1...𝐾) ∖ ℙ))if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ↔ (∀𝑝 ∈ (ℙ ∩ (1...𝐾))if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ∧ ∀𝑝 ∈ ((1...𝐾) ∖ ℙ)if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0)))
136134, 135bitr3i 276 . . . . . . . . . . 11 (∀𝑝 ∈ (1...𝐾)if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ↔ (∀𝑝 ∈ (ℙ ∩ (1...𝐾))if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ∧ ∀𝑝 ∈ ((1...𝐾) ∖ ℙ)if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0)))
137 eldifn 4126 . . . . . . . . . . . . . . 15 (𝑝 ∈ ((1...𝐾) ∖ ℙ) → ¬ 𝑝 ∈ ℙ)
138 iffalse 4536 . . . . . . . . . . . . . . . 16 𝑝 ∈ ℙ → if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = 0)
139 iffalse 4536 . . . . . . . . . . . . . . . 16 𝑝 ∈ ℙ → if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) = 0)
140138, 139eqtr4d 2775 . . . . . . . . . . . . . . 15 𝑝 ∈ ℙ → if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0))
141137, 140syl 17 . . . . . . . . . . . . . 14 (𝑝 ∈ ((1...𝐾) ∖ ℙ) → if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0))
142141rgen 3063 . . . . . . . . . . . . 13 𝑝 ∈ ((1...𝐾) ∖ ℙ)if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0)
143142biantru 530 . . . . . . . . . . . 12 (∀𝑝 ∈ (ℙ ∩ (1...𝐾))if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ↔ (∀𝑝 ∈ (ℙ ∩ (1...𝐾))if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ∧ ∀𝑝 ∈ ((1...𝐾) ∖ ℙ)if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0)))
144 elinel1 4194 . . . . . . . . . . . . . 14 (𝑝 ∈ (ℙ ∩ (1...𝐾)) → 𝑝 ∈ ℙ)
145 iftrue 4533 . . . . . . . . . . . . . . 15 (𝑝 ∈ ℙ → if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = (𝑝 pCnt 𝑦))
146 iftrue 4533 . . . . . . . . . . . . . . 15 (𝑝 ∈ ℙ → if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) = (𝑝 pCnt 𝑧))
147145, 146eqeq12d 2748 . . . . . . . . . . . . . 14 (𝑝 ∈ ℙ → (if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ↔ (𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧)))
148144, 147syl 17 . . . . . . . . . . . . 13 (𝑝 ∈ (ℙ ∩ (1...𝐾)) → (if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ↔ (𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧)))
149148ralbiia 3091 . . . . . . . . . . . 12 (∀𝑝 ∈ (ℙ ∩ (1...𝐾))if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ↔ ∀𝑝 ∈ (ℙ ∩ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧))
150143, 149bitr3i 276 . . . . . . . . . . 11 ((∀𝑝 ∈ (ℙ ∩ (1...𝐾))if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ∧ ∀𝑝 ∈ ((1...𝐾) ∖ ℙ)if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0)) ↔ ∀𝑝 ∈ (ℙ ∩ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧))
151136, 150bitri 274 . . . . . . . . . 10 (∀𝑝 ∈ (1...𝐾)if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ↔ ∀𝑝 ∈ (ℙ ∩ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧))
152 inundif 4477 . . . . . . . . . . . 12 ((ℙ ∩ (1...𝐾)) ∪ (ℙ ∖ (1...𝐾))) = ℙ
153152raleqi 3323 . . . . . . . . . . 11 (∀𝑝 ∈ ((ℙ ∩ (1...𝐾)) ∪ (ℙ ∖ (1...𝐾)))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧))
154 ralunb 4190 . . . . . . . . . . 11 (∀𝑝 ∈ ((ℙ ∩ (1...𝐾)) ∪ (ℙ ∖ (1...𝐾)))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧) ↔ (∀𝑝 ∈ (ℙ ∩ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧) ∧ ∀𝑝 ∈ (ℙ ∖ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧)))
155153, 154bitr3i 276 . . . . . . . . . 10 (∀𝑝 ∈ ℙ (𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧) ↔ (∀𝑝 ∈ (ℙ ∩ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧) ∧ ∀𝑝 ∈ (ℙ ∖ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧)))
156129, 151, 1553bitr4g 313 . . . . . . . . 9 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → (∀𝑝 ∈ (1...𝐾)if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧)))
157117nnnn0d 12528 . . . . . . . . . 10 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → 𝑦 ∈ ℕ0)
158120nnnn0d 12528 . . . . . . . . . 10 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → 𝑧 ∈ ℕ0)
159 pc11 16809 . . . . . . . . . 10 ((𝑦 ∈ ℕ0𝑧 ∈ ℕ0) → (𝑦 = 𝑧 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧)))
160157, 158, 159syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → (𝑦 = 𝑧 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧)))
161156, 160bitr4d 281 . . . . . . . 8 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → (∀𝑝 ∈ (1...𝐾)if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ↔ 𝑦 = 𝑧))
16298, 161bitrid 282 . . . . . . 7 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) = (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0)) ↔ 𝑦 = 𝑧))
163162ex 413 . . . . . 6 (𝜑 → (((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1)) → ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) = (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0)) ↔ 𝑦 = 𝑧)))
16474, 163biimtrid 241 . . . . 5 (𝜑 → ((𝑦 ∈ {𝑥𝑀 ∣ (𝑄𝑥) = 1} ∧ 𝑧 ∈ {𝑥𝑀 ∣ (𝑄𝑥) = 1}) → ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) = (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0)) ↔ 𝑦 = 𝑧)))
16571, 164dom2d 8985 . . . 4 (𝜑 → (({0, 1} ↑m (1...𝐾)) ∈ V → {𝑥𝑀 ∣ (𝑄𝑥) = 1} ≼ ({0, 1} ↑m (1...𝐾))))
1661, 165mpi 20 . . 3 (𝜑 → {𝑥𝑀 ∣ (𝑄𝑥) = 1} ≼ ({0, 1} ↑m (1...𝐾)))
167 fzfi 13933 . . . . . . 7 (1...𝑁) ∈ Fin
168 ssrab2 4076 . . . . . . 7 {𝑛 ∈ (1...𝑁) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛} ⊆ (1...𝑁)
169 ssfi 9169 . . . . . . 7 (((1...𝑁) ∈ Fin ∧ {𝑛 ∈ (1...𝑁) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛} ⊆ (1...𝑁)) → {𝑛 ∈ (1...𝑁) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛} ∈ Fin)
170167, 168, 169mp2an 690 . . . . . 6 {𝑛 ∈ (1...𝑁) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛} ∈ Fin
1714, 170eqeltri 2829 . . . . 5 𝑀 ∈ Fin
172 ssrab2 4076 . . . . 5 {𝑥𝑀 ∣ (𝑄𝑥) = 1} ⊆ 𝑀
173 ssfi 9169 . . . . 5 ((𝑀 ∈ Fin ∧ {𝑥𝑀 ∣ (𝑄𝑥) = 1} ⊆ 𝑀) → {𝑥𝑀 ∣ (𝑄𝑥) = 1} ∈ Fin)
174171, 172, 173mp2an 690 . . . 4 {𝑥𝑀 ∣ (𝑄𝑥) = 1} ∈ Fin
175 prfi 9318 . . . . 5 {0, 1} ∈ Fin
176 fzfid 13934 . . . . 5 (𝜑 → (1...𝐾) ∈ Fin)
177 mapfi 9344 . . . . 5 (({0, 1} ∈ Fin ∧ (1...𝐾) ∈ Fin) → ({0, 1} ↑m (1...𝐾)) ∈ Fin)
178175, 176, 177sylancr 587 . . . 4 (𝜑 → ({0, 1} ↑m (1...𝐾)) ∈ Fin)
179 hashdom 14335 . . . 4 (({𝑥𝑀 ∣ (𝑄𝑥) = 1} ∈ Fin ∧ ({0, 1} ↑m (1...𝐾)) ∈ Fin) → ((♯‘{𝑥𝑀 ∣ (𝑄𝑥) = 1}) ≤ (♯‘({0, 1} ↑m (1...𝐾))) ↔ {𝑥𝑀 ∣ (𝑄𝑥) = 1} ≼ ({0, 1} ↑m (1...𝐾))))
180174, 178, 179sylancr 587 . . 3 (𝜑 → ((♯‘{𝑥𝑀 ∣ (𝑄𝑥) = 1}) ≤ (♯‘({0, 1} ↑m (1...𝐾))) ↔ {𝑥𝑀 ∣ (𝑄𝑥) = 1} ≼ ({0, 1} ↑m (1...𝐾))))
181166, 180mpbird 256 . 2 (𝜑 → (♯‘{𝑥𝑀 ∣ (𝑄𝑥) = 1}) ≤ (♯‘({0, 1} ↑m (1...𝐾))))
182 hashmap 14391 . . . 4 (({0, 1} ∈ Fin ∧ (1...𝐾) ∈ Fin) → (♯‘({0, 1} ↑m (1...𝐾))) = ((♯‘{0, 1})↑(♯‘(1...𝐾))))
183175, 176, 182sylancr 587 . . 3 (𝜑 → (♯‘({0, 1} ↑m (1...𝐾))) = ((♯‘{0, 1})↑(♯‘(1...𝐾))))
184 prhash2ex 14355 . . . . 5 (♯‘{0, 1}) = 2
185184a1i 11 . . . 4 (𝜑 → (♯‘{0, 1}) = 2)
186 prmrec.2 . . . . . 6 (𝜑𝐾 ∈ ℕ)
187186nnnn0d 12528 . . . . 5 (𝜑𝐾 ∈ ℕ0)
188 hashfz1 14302 . . . . 5 (𝐾 ∈ ℕ0 → (♯‘(1...𝐾)) = 𝐾)
189187, 188syl 17 . . . 4 (𝜑 → (♯‘(1...𝐾)) = 𝐾)
190185, 189oveq12d 7423 . . 3 (𝜑 → ((♯‘{0, 1})↑(♯‘(1...𝐾))) = (2↑𝐾))
191183, 190eqtrd 2772 . 2 (𝜑 → (♯‘({0, 1} ↑m (1...𝐾))) = (2↑𝐾))
192181, 191breqtrd 5173 1 (𝜑 → (♯‘{𝑥𝑀 ∣ (𝑄𝑥) = 1}) ≤ (2↑𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3061  {crab 3432  Vcvv 3474  cdif 3944  cun 3945  cin 3946  wss 3947  ifcif 4527  {cpr 4629   class class class wbr 5147  cmpt 5230   Fn wfn 6535  wf 6536  cfv 6540  (class class class)co 7405  m cmap 8816  cdom 8933  Fincfn 8935  supcsup 9431  cr 11105  0cc0 11106  1c1 11107   + caddc 11109   < clt 11244  cle 11245   / cdiv 11867  cn 12208  2c2 12263  0cn0 12468  cz 12554  cuz 12818  ...cfz 13480  cexp 14023  chash 14286  cdvds 16193  cprime 16604   pCnt cpc 16765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-q 12929  df-rp 12971  df-fz 13481  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-dvds 16194  df-gcd 16432  df-prm 16605  df-pc 16766
This theorem is referenced by:  prmreclem3  16847
  Copyright terms: Public domain W3C validator