MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmreclem2 Structured version   Visualization version   GIF version

Theorem prmreclem2 16789
Description: Lemma for prmrec 16794. There are at most 2↑𝐾 squarefree numbers which divide no primes larger than 𝐾. (We could strengthen this to 2↑♯(ℙ ∩ (1...𝐾)) but there's no reason to.) We establish the inequality by showing that the prime counts of the number up to 𝐾 completely determine it because all higher prime counts are zero, and they are all at most 1 because no square divides the number, so there are at most 2↑𝐾 possibilities. (Contributed by Mario Carneiro, 5-Aug-2014.)
Hypotheses
Ref Expression
prmrec.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (1 / 𝑛), 0))
prmrec.2 (𝜑𝐾 ∈ ℕ)
prmrec.3 (𝜑𝑁 ∈ ℕ)
prmrec.4 𝑀 = {𝑛 ∈ (1...𝑁) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛}
prmreclem2.5 𝑄 = (𝑛 ∈ ℕ ↦ sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛}, ℝ, < ))
Assertion
Ref Expression
prmreclem2 (𝜑 → (♯‘{𝑥𝑀 ∣ (𝑄𝑥) = 1}) ≤ (2↑𝐾))
Distinct variable groups:   𝑛,𝑝,𝑟,𝑥,𝐹   𝑛,𝐾,𝑝,𝑥   𝑛,𝑀,𝑝,𝑥   𝜑,𝑛,𝑝,𝑥   𝑄,𝑛,𝑝,𝑟,𝑥   𝑛,𝑁,𝑝,𝑥
Allowed substitution hints:   𝜑(𝑟)   𝐾(𝑟)   𝑀(𝑟)   𝑁(𝑟)

Proof of Theorem prmreclem2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7390 . . . 4 ({0, 1} ↑m (1...𝐾)) ∈ V
2 fveqeq2 6851 . . . . . . 7 (𝑥 = 𝑦 → ((𝑄𝑥) = 1 ↔ (𝑄𝑦) = 1))
32elrab 3645 . . . . . 6 (𝑦 ∈ {𝑥𝑀 ∣ (𝑄𝑥) = 1} ↔ (𝑦𝑀 ∧ (𝑄𝑦) = 1))
4 prmrec.4 . . . . . . . . . . . . . . . . . . . 20 𝑀 = {𝑛 ∈ (1...𝑁) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛}
54ssrab3 4040 . . . . . . . . . . . . . . . . . . 19 𝑀 ⊆ (1...𝑁)
6 simprl 769 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) → 𝑦𝑀)
76ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → 𝑦𝑀)
85, 7sselid 3942 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → 𝑦 ∈ (1...𝑁))
9 elfznn 13470 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (1...𝑁) → 𝑦 ∈ ℕ)
108, 9syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → 𝑦 ∈ ℕ)
11 simpr 485 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → 𝑛 ∈ ℙ)
12 prmuz2 16572 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℙ → 𝑛 ∈ (ℤ‘2))
1311, 12syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → 𝑛 ∈ (ℤ‘2))
14 prmreclem2.5 . . . . . . . . . . . . . . . . . . 19 𝑄 = (𝑛 ∈ ℕ ↦ sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛}, ℝ, < ))
1514prmreclem1 16788 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℕ → ((𝑄𝑦) ∈ ℕ ∧ ((𝑄𝑦)↑2) ∥ 𝑦 ∧ (𝑛 ∈ (ℤ‘2) → ¬ (𝑛↑2) ∥ (𝑦 / ((𝑄𝑦)↑2)))))
1615simp3d 1144 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ → (𝑛 ∈ (ℤ‘2) → ¬ (𝑛↑2) ∥ (𝑦 / ((𝑄𝑦)↑2))))
1710, 13, 16sylc 65 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → ¬ (𝑛↑2) ∥ (𝑦 / ((𝑄𝑦)↑2)))
18 simprr 771 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) → (𝑄𝑦) = 1)
1918ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑄𝑦) = 1)
2019oveq1d 7372 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → ((𝑄𝑦)↑2) = (1↑2))
21 sq1 14099 . . . . . . . . . . . . . . . . . . . . 21 (1↑2) = 1
2220, 21eqtrdi 2792 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → ((𝑄𝑦)↑2) = 1)
2322oveq2d 7373 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑦 / ((𝑄𝑦)↑2)) = (𝑦 / 1))
2410nncnd 12169 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → 𝑦 ∈ ℂ)
2524div1d 11923 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑦 / 1) = 𝑦)
2623, 25eqtrd 2776 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑦 / ((𝑄𝑦)↑2)) = 𝑦)
2726breq2d 5117 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → ((𝑛↑2) ∥ (𝑦 / ((𝑄𝑦)↑2)) ↔ (𝑛↑2) ∥ 𝑦))
2810nnzd 12526 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → 𝑦 ∈ ℤ)
29 2nn0 12430 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℕ0
3029a1i 11 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → 2 ∈ ℕ0)
31 pcdvdsb 16741 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℙ ∧ 𝑦 ∈ ℤ ∧ 2 ∈ ℕ0) → (2 ≤ (𝑛 pCnt 𝑦) ↔ (𝑛↑2) ∥ 𝑦))
3211, 28, 30, 31syl3anc 1371 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (2 ≤ (𝑛 pCnt 𝑦) ↔ (𝑛↑2) ∥ 𝑦))
3327, 32bitr4d 281 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → ((𝑛↑2) ∥ (𝑦 / ((𝑄𝑦)↑2)) ↔ 2 ≤ (𝑛 pCnt 𝑦)))
3417, 33mtbid 323 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → ¬ 2 ≤ (𝑛 pCnt 𝑦))
3511, 10pccld 16722 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑦) ∈ ℕ0)
3635nn0red 12474 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑦) ∈ ℝ)
37 2re 12227 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
38 ltnle 11234 . . . . . . . . . . . . . . . 16 (((𝑛 pCnt 𝑦) ∈ ℝ ∧ 2 ∈ ℝ) → ((𝑛 pCnt 𝑦) < 2 ↔ ¬ 2 ≤ (𝑛 pCnt 𝑦)))
3936, 37, 38sylancl 586 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → ((𝑛 pCnt 𝑦) < 2 ↔ ¬ 2 ≤ (𝑛 pCnt 𝑦)))
4034, 39mpbird 256 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑦) < 2)
41 df-2 12216 . . . . . . . . . . . . . 14 2 = (1 + 1)
4240, 41breqtrdi 5146 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑦) < (1 + 1))
4335nn0zd 12525 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑦) ∈ ℤ)
44 1z 12533 . . . . . . . . . . . . . 14 1 ∈ ℤ
45 zleltp1 12554 . . . . . . . . . . . . . 14 (((𝑛 pCnt 𝑦) ∈ ℤ ∧ 1 ∈ ℤ) → ((𝑛 pCnt 𝑦) ≤ 1 ↔ (𝑛 pCnt 𝑦) < (1 + 1)))
4643, 44, 45sylancl 586 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → ((𝑛 pCnt 𝑦) ≤ 1 ↔ (𝑛 pCnt 𝑦) < (1 + 1)))
4742, 46mpbird 256 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑦) ≤ 1)
48 nn0uz 12805 . . . . . . . . . . . . . 14 0 = (ℤ‘0)
4935, 48eleqtrdi 2848 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑦) ∈ (ℤ‘0))
50 elfz5 13433 . . . . . . . . . . . . 13 (((𝑛 pCnt 𝑦) ∈ (ℤ‘0) ∧ 1 ∈ ℤ) → ((𝑛 pCnt 𝑦) ∈ (0...1) ↔ (𝑛 pCnt 𝑦) ≤ 1))
5149, 44, 50sylancl 586 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → ((𝑛 pCnt 𝑦) ∈ (0...1) ↔ (𝑛 pCnt 𝑦) ≤ 1))
5247, 51mpbird 256 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑦) ∈ (0...1))
53 0z 12510 . . . . . . . . . . . . 13 0 ∈ ℤ
54 fzpr 13496 . . . . . . . . . . . . 13 (0 ∈ ℤ → (0...(0 + 1)) = {0, (0 + 1)})
5553, 54ax-mp 5 . . . . . . . . . . . 12 (0...(0 + 1)) = {0, (0 + 1)}
56 1e0p1 12660 . . . . . . . . . . . . 13 1 = (0 + 1)
5756oveq2i 7368 . . . . . . . . . . . 12 (0...1) = (0...(0 + 1))
5856preq2i 4698 . . . . . . . . . . . 12 {0, 1} = {0, (0 + 1)}
5955, 57, 583eqtr4i 2774 . . . . . . . . . . 11 (0...1) = {0, 1}
6052, 59eleqtrdi 2848 . . . . . . . . . 10 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑦) ∈ {0, 1})
61 c0ex 11149 . . . . . . . . . . . 12 0 ∈ V
6261prid1 4723 . . . . . . . . . . 11 0 ∈ {0, 1}
6362a1i 11 . . . . . . . . . 10 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ ¬ 𝑛 ∈ ℙ) → 0 ∈ {0, 1})
6460, 63ifclda 4521 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) → if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0) ∈ {0, 1})
6564fmpttd 7063 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) → (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)):(1...𝐾)⟶{0, 1})
66 prex 5389 . . . . . . . . 9 {0, 1} ∈ V
67 ovex 7390 . . . . . . . . 9 (1...𝐾) ∈ V
6866, 67elmap 8809 . . . . . . . 8 ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) ∈ ({0, 1} ↑m (1...𝐾)) ↔ (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)):(1...𝐾)⟶{0, 1})
6965, 68sylibr 233 . . . . . . 7 ((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) → (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) ∈ ({0, 1} ↑m (1...𝐾)))
7069ex 413 . . . . . 6 (𝜑 → ((𝑦𝑀 ∧ (𝑄𝑦) = 1) → (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) ∈ ({0, 1} ↑m (1...𝐾))))
713, 70biimtrid 241 . . . . 5 (𝜑 → (𝑦 ∈ {𝑥𝑀 ∣ (𝑄𝑥) = 1} → (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) ∈ ({0, 1} ↑m (1...𝐾))))
72 fveqeq2 6851 . . . . . . . 8 (𝑥 = 𝑧 → ((𝑄𝑥) = 1 ↔ (𝑄𝑧) = 1))
7372elrab 3645 . . . . . . 7 (𝑧 ∈ {𝑥𝑀 ∣ (𝑄𝑥) = 1} ↔ (𝑧𝑀 ∧ (𝑄𝑧) = 1))
743, 73anbi12i 627 . . . . . 6 ((𝑦 ∈ {𝑥𝑀 ∣ (𝑄𝑥) = 1} ∧ 𝑧 ∈ {𝑥𝑀 ∣ (𝑄𝑥) = 1}) ↔ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1)))
75 ovex 7390 . . . . . . . . . . . 12 (𝑛 pCnt 𝑦) ∈ V
7675, 61ifex 4536 . . . . . . . . . . 11 if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0) ∈ V
77 eqid 2736 . . . . . . . . . . 11 (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) = (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0))
7876, 77fnmpti 6644 . . . . . . . . . 10 (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) Fn (1...𝐾)
79 ovex 7390 . . . . . . . . . . . 12 (𝑛 pCnt 𝑧) ∈ V
8079, 61ifex 4536 . . . . . . . . . . 11 if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0) ∈ V
81 eqid 2736 . . . . . . . . . . 11 (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0)) = (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0))
8280, 81fnmpti 6644 . . . . . . . . . 10 (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0)) Fn (1...𝐾)
83 eqfnfv 6982 . . . . . . . . . 10 (((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) Fn (1...𝐾) ∧ (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0)) Fn (1...𝐾)) → ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) = (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0)) ↔ ∀𝑝 ∈ (1...𝐾)((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0))‘𝑝) = ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0))‘𝑝)))
8478, 82, 83mp2an 690 . . . . . . . . 9 ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) = (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0)) ↔ ∀𝑝 ∈ (1...𝐾)((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0))‘𝑝) = ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0))‘𝑝))
85 eleq1w 2820 . . . . . . . . . . . . 13 (𝑛 = 𝑝 → (𝑛 ∈ ℙ ↔ 𝑝 ∈ ℙ))
86 oveq1 7364 . . . . . . . . . . . . 13 (𝑛 = 𝑝 → (𝑛 pCnt 𝑦) = (𝑝 pCnt 𝑦))
8785, 86ifbieq1d 4510 . . . . . . . . . . . 12 (𝑛 = 𝑝 → if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0))
88 ovex 7390 . . . . . . . . . . . . 13 (𝑝 pCnt 𝑦) ∈ V
8988, 61ifex 4536 . . . . . . . . . . . 12 if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) ∈ V
9087, 77, 89fvmpt 6948 . . . . . . . . . . 11 (𝑝 ∈ (1...𝐾) → ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0))‘𝑝) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0))
91 oveq1 7364 . . . . . . . . . . . . 13 (𝑛 = 𝑝 → (𝑛 pCnt 𝑧) = (𝑝 pCnt 𝑧))
9285, 91ifbieq1d 4510 . . . . . . . . . . . 12 (𝑛 = 𝑝 → if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0))
93 ovex 7390 . . . . . . . . . . . . 13 (𝑝 pCnt 𝑧) ∈ V
9493, 61ifex 4536 . . . . . . . . . . . 12 if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ∈ V
9592, 81, 94fvmpt 6948 . . . . . . . . . . 11 (𝑝 ∈ (1...𝐾) → ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0))‘𝑝) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0))
9690, 95eqeq12d 2752 . . . . . . . . . 10 (𝑝 ∈ (1...𝐾) → (((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0))‘𝑝) = ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0))‘𝑝) ↔ if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0)))
9796ralbiia 3094 . . . . . . . . 9 (∀𝑝 ∈ (1...𝐾)((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0))‘𝑝) = ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0))‘𝑝) ↔ ∀𝑝 ∈ (1...𝐾)if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0))
9884, 97bitri 274 . . . . . . . 8 ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) = (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0)) ↔ ∀𝑝 ∈ (1...𝐾)if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0))
99 simprll 777 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → 𝑦𝑀)
100 breq2 5109 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑦 → (𝑝𝑛𝑝𝑦))
101100notbid 317 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑦 → (¬ 𝑝𝑛 ↔ ¬ 𝑝𝑦))
102101ralbidv 3174 . . . . . . . . . . . . . . 15 (𝑛 = 𝑦 → (∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛 ↔ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑦))
103102, 4elrab2 3648 . . . . . . . . . . . . . 14 (𝑦𝑀 ↔ (𝑦 ∈ (1...𝑁) ∧ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑦))
104103simprbi 497 . . . . . . . . . . . . 13 (𝑦𝑀 → ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑦)
10599, 104syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑦)
106 simprrl 779 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → 𝑧𝑀)
107 breq2 5109 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑧 → (𝑝𝑛𝑝𝑧))
108107notbid 317 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑧 → (¬ 𝑝𝑛 ↔ ¬ 𝑝𝑧))
109108ralbidv 3174 . . . . . . . . . . . . . . 15 (𝑛 = 𝑧 → (∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛 ↔ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑧))
110109, 4elrab2 3648 . . . . . . . . . . . . . 14 (𝑧𝑀 ↔ (𝑧 ∈ (1...𝑁) ∧ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑧))
111110simprbi 497 . . . . . . . . . . . . 13 (𝑧𝑀 → ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑧)
112106, 111syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑧)
113 r19.26 3114 . . . . . . . . . . . . 13 (∀𝑝 ∈ (ℙ ∖ (1...𝐾))(¬ 𝑝𝑦 ∧ ¬ 𝑝𝑧) ↔ (∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑦 ∧ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑧))
114 eldifi 4086 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ (ℙ ∖ (1...𝐾)) → 𝑝 ∈ ℙ)
115 fz1ssnn 13472 . . . . . . . . . . . . . . . . . . 19 (1...𝑁) ⊆ ℕ
1165, 115sstri 3953 . . . . . . . . . . . . . . . . . 18 𝑀 ⊆ ℕ
117116, 99sselid 3942 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → 𝑦 ∈ ℕ)
118 pceq0 16743 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ ℙ ∧ 𝑦 ∈ ℕ) → ((𝑝 pCnt 𝑦) = 0 ↔ ¬ 𝑝𝑦))
119114, 117, 118syl2anr 597 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) ∧ 𝑝 ∈ (ℙ ∖ (1...𝐾))) → ((𝑝 pCnt 𝑦) = 0 ↔ ¬ 𝑝𝑦))
120116, 106sselid 3942 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → 𝑧 ∈ ℕ)
121 pceq0 16743 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ ℙ ∧ 𝑧 ∈ ℕ) → ((𝑝 pCnt 𝑧) = 0 ↔ ¬ 𝑝𝑧))
122114, 120, 121syl2anr 597 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) ∧ 𝑝 ∈ (ℙ ∖ (1...𝐾))) → ((𝑝 pCnt 𝑧) = 0 ↔ ¬ 𝑝𝑧))
123119, 122anbi12d 631 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) ∧ 𝑝 ∈ (ℙ ∖ (1...𝐾))) → (((𝑝 pCnt 𝑦) = 0 ∧ (𝑝 pCnt 𝑧) = 0) ↔ (¬ 𝑝𝑦 ∧ ¬ 𝑝𝑧)))
124 eqtr3 2762 . . . . . . . . . . . . . . 15 (((𝑝 pCnt 𝑦) = 0 ∧ (𝑝 pCnt 𝑧) = 0) → (𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧))
125123, 124syl6bir 253 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) ∧ 𝑝 ∈ (ℙ ∖ (1...𝐾))) → ((¬ 𝑝𝑦 ∧ ¬ 𝑝𝑧) → (𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧)))
126125ralimdva 3164 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → (∀𝑝 ∈ (ℙ ∖ (1...𝐾))(¬ 𝑝𝑦 ∧ ¬ 𝑝𝑧) → ∀𝑝 ∈ (ℙ ∖ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧)))
127113, 126biimtrrid 242 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → ((∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑦 ∧ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑧) → ∀𝑝 ∈ (ℙ ∖ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧)))
128105, 112, 127mp2and 697 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → ∀𝑝 ∈ (ℙ ∖ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧))
129128biantrud 532 . . . . . . . . . 10 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → (∀𝑝 ∈ (ℙ ∩ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧) ↔ (∀𝑝 ∈ (ℙ ∩ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧) ∧ ∀𝑝 ∈ (ℙ ∖ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧))))
130 incom 4161 . . . . . . . . . . . . . . 15 (ℙ ∩ (1...𝐾)) = ((1...𝐾) ∩ ℙ)
131130uneq1i 4119 . . . . . . . . . . . . . 14 ((ℙ ∩ (1...𝐾)) ∪ ((1...𝐾) ∖ ℙ)) = (((1...𝐾) ∩ ℙ) ∪ ((1...𝐾) ∖ ℙ))
132 inundif 4438 . . . . . . . . . . . . . 14 (((1...𝐾) ∩ ℙ) ∪ ((1...𝐾) ∖ ℙ)) = (1...𝐾)
133131, 132eqtri 2764 . . . . . . . . . . . . 13 ((ℙ ∩ (1...𝐾)) ∪ ((1...𝐾) ∖ ℙ)) = (1...𝐾)
134133raleqi 3311 . . . . . . . . . . . 12 (∀𝑝 ∈ ((ℙ ∩ (1...𝐾)) ∪ ((1...𝐾) ∖ ℙ))if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ↔ ∀𝑝 ∈ (1...𝐾)if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0))
135 ralunb 4151 . . . . . . . . . . . 12 (∀𝑝 ∈ ((ℙ ∩ (1...𝐾)) ∪ ((1...𝐾) ∖ ℙ))if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ↔ (∀𝑝 ∈ (ℙ ∩ (1...𝐾))if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ∧ ∀𝑝 ∈ ((1...𝐾) ∖ ℙ)if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0)))
136134, 135bitr3i 276 . . . . . . . . . . 11 (∀𝑝 ∈ (1...𝐾)if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ↔ (∀𝑝 ∈ (ℙ ∩ (1...𝐾))if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ∧ ∀𝑝 ∈ ((1...𝐾) ∖ ℙ)if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0)))
137 eldifn 4087 . . . . . . . . . . . . . . 15 (𝑝 ∈ ((1...𝐾) ∖ ℙ) → ¬ 𝑝 ∈ ℙ)
138 iffalse 4495 . . . . . . . . . . . . . . . 16 𝑝 ∈ ℙ → if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = 0)
139 iffalse 4495 . . . . . . . . . . . . . . . 16 𝑝 ∈ ℙ → if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) = 0)
140138, 139eqtr4d 2779 . . . . . . . . . . . . . . 15 𝑝 ∈ ℙ → if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0))
141137, 140syl 17 . . . . . . . . . . . . . 14 (𝑝 ∈ ((1...𝐾) ∖ ℙ) → if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0))
142141rgen 3066 . . . . . . . . . . . . 13 𝑝 ∈ ((1...𝐾) ∖ ℙ)if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0)
143142biantru 530 . . . . . . . . . . . 12 (∀𝑝 ∈ (ℙ ∩ (1...𝐾))if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ↔ (∀𝑝 ∈ (ℙ ∩ (1...𝐾))if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ∧ ∀𝑝 ∈ ((1...𝐾) ∖ ℙ)if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0)))
144 elinel1 4155 . . . . . . . . . . . . . 14 (𝑝 ∈ (ℙ ∩ (1...𝐾)) → 𝑝 ∈ ℙ)
145 iftrue 4492 . . . . . . . . . . . . . . 15 (𝑝 ∈ ℙ → if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = (𝑝 pCnt 𝑦))
146 iftrue 4492 . . . . . . . . . . . . . . 15 (𝑝 ∈ ℙ → if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) = (𝑝 pCnt 𝑧))
147145, 146eqeq12d 2752 . . . . . . . . . . . . . 14 (𝑝 ∈ ℙ → (if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ↔ (𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧)))
148144, 147syl 17 . . . . . . . . . . . . 13 (𝑝 ∈ (ℙ ∩ (1...𝐾)) → (if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ↔ (𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧)))
149148ralbiia 3094 . . . . . . . . . . . 12 (∀𝑝 ∈ (ℙ ∩ (1...𝐾))if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ↔ ∀𝑝 ∈ (ℙ ∩ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧))
150143, 149bitr3i 276 . . . . . . . . . . 11 ((∀𝑝 ∈ (ℙ ∩ (1...𝐾))if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ∧ ∀𝑝 ∈ ((1...𝐾) ∖ ℙ)if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0)) ↔ ∀𝑝 ∈ (ℙ ∩ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧))
151136, 150bitri 274 . . . . . . . . . 10 (∀𝑝 ∈ (1...𝐾)if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ↔ ∀𝑝 ∈ (ℙ ∩ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧))
152 inundif 4438 . . . . . . . . . . . 12 ((ℙ ∩ (1...𝐾)) ∪ (ℙ ∖ (1...𝐾))) = ℙ
153152raleqi 3311 . . . . . . . . . . 11 (∀𝑝 ∈ ((ℙ ∩ (1...𝐾)) ∪ (ℙ ∖ (1...𝐾)))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧))
154 ralunb 4151 . . . . . . . . . . 11 (∀𝑝 ∈ ((ℙ ∩ (1...𝐾)) ∪ (ℙ ∖ (1...𝐾)))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧) ↔ (∀𝑝 ∈ (ℙ ∩ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧) ∧ ∀𝑝 ∈ (ℙ ∖ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧)))
155153, 154bitr3i 276 . . . . . . . . . 10 (∀𝑝 ∈ ℙ (𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧) ↔ (∀𝑝 ∈ (ℙ ∩ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧) ∧ ∀𝑝 ∈ (ℙ ∖ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧)))
156129, 151, 1553bitr4g 313 . . . . . . . . 9 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → (∀𝑝 ∈ (1...𝐾)if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧)))
157117nnnn0d 12473 . . . . . . . . . 10 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → 𝑦 ∈ ℕ0)
158120nnnn0d 12473 . . . . . . . . . 10 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → 𝑧 ∈ ℕ0)
159 pc11 16752 . . . . . . . . . 10 ((𝑦 ∈ ℕ0𝑧 ∈ ℕ0) → (𝑦 = 𝑧 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧)))
160157, 158, 159syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → (𝑦 = 𝑧 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧)))
161156, 160bitr4d 281 . . . . . . . 8 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → (∀𝑝 ∈ (1...𝐾)if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ↔ 𝑦 = 𝑧))
16298, 161bitrid 282 . . . . . . 7 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) = (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0)) ↔ 𝑦 = 𝑧))
163162ex 413 . . . . . 6 (𝜑 → (((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1)) → ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) = (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0)) ↔ 𝑦 = 𝑧)))
16474, 163biimtrid 241 . . . . 5 (𝜑 → ((𝑦 ∈ {𝑥𝑀 ∣ (𝑄𝑥) = 1} ∧ 𝑧 ∈ {𝑥𝑀 ∣ (𝑄𝑥) = 1}) → ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) = (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0)) ↔ 𝑦 = 𝑧)))
16571, 164dom2d 8933 . . . 4 (𝜑 → (({0, 1} ↑m (1...𝐾)) ∈ V → {𝑥𝑀 ∣ (𝑄𝑥) = 1} ≼ ({0, 1} ↑m (1...𝐾))))
1661, 165mpi 20 . . 3 (𝜑 → {𝑥𝑀 ∣ (𝑄𝑥) = 1} ≼ ({0, 1} ↑m (1...𝐾)))
167 fzfi 13877 . . . . . . 7 (1...𝑁) ∈ Fin
168 ssrab2 4037 . . . . . . 7 {𝑛 ∈ (1...𝑁) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛} ⊆ (1...𝑁)
169 ssfi 9117 . . . . . . 7 (((1...𝑁) ∈ Fin ∧ {𝑛 ∈ (1...𝑁) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛} ⊆ (1...𝑁)) → {𝑛 ∈ (1...𝑁) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛} ∈ Fin)
170167, 168, 169mp2an 690 . . . . . 6 {𝑛 ∈ (1...𝑁) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛} ∈ Fin
1714, 170eqeltri 2834 . . . . 5 𝑀 ∈ Fin
172 ssrab2 4037 . . . . 5 {𝑥𝑀 ∣ (𝑄𝑥) = 1} ⊆ 𝑀
173 ssfi 9117 . . . . 5 ((𝑀 ∈ Fin ∧ {𝑥𝑀 ∣ (𝑄𝑥) = 1} ⊆ 𝑀) → {𝑥𝑀 ∣ (𝑄𝑥) = 1} ∈ Fin)
174171, 172, 173mp2an 690 . . . 4 {𝑥𝑀 ∣ (𝑄𝑥) = 1} ∈ Fin
175 prfi 9266 . . . . 5 {0, 1} ∈ Fin
176 fzfid 13878 . . . . 5 (𝜑 → (1...𝐾) ∈ Fin)
177 mapfi 9292 . . . . 5 (({0, 1} ∈ Fin ∧ (1...𝐾) ∈ Fin) → ({0, 1} ↑m (1...𝐾)) ∈ Fin)
178175, 176, 177sylancr 587 . . . 4 (𝜑 → ({0, 1} ↑m (1...𝐾)) ∈ Fin)
179 hashdom 14279 . . . 4 (({𝑥𝑀 ∣ (𝑄𝑥) = 1} ∈ Fin ∧ ({0, 1} ↑m (1...𝐾)) ∈ Fin) → ((♯‘{𝑥𝑀 ∣ (𝑄𝑥) = 1}) ≤ (♯‘({0, 1} ↑m (1...𝐾))) ↔ {𝑥𝑀 ∣ (𝑄𝑥) = 1} ≼ ({0, 1} ↑m (1...𝐾))))
180174, 178, 179sylancr 587 . . 3 (𝜑 → ((♯‘{𝑥𝑀 ∣ (𝑄𝑥) = 1}) ≤ (♯‘({0, 1} ↑m (1...𝐾))) ↔ {𝑥𝑀 ∣ (𝑄𝑥) = 1} ≼ ({0, 1} ↑m (1...𝐾))))
181166, 180mpbird 256 . 2 (𝜑 → (♯‘{𝑥𝑀 ∣ (𝑄𝑥) = 1}) ≤ (♯‘({0, 1} ↑m (1...𝐾))))
182 hashmap 14335 . . . 4 (({0, 1} ∈ Fin ∧ (1...𝐾) ∈ Fin) → (♯‘({0, 1} ↑m (1...𝐾))) = ((♯‘{0, 1})↑(♯‘(1...𝐾))))
183175, 176, 182sylancr 587 . . 3 (𝜑 → (♯‘({0, 1} ↑m (1...𝐾))) = ((♯‘{0, 1})↑(♯‘(1...𝐾))))
184 prhash2ex 14299 . . . . 5 (♯‘{0, 1}) = 2
185184a1i 11 . . . 4 (𝜑 → (♯‘{0, 1}) = 2)
186 prmrec.2 . . . . . 6 (𝜑𝐾 ∈ ℕ)
187186nnnn0d 12473 . . . . 5 (𝜑𝐾 ∈ ℕ0)
188 hashfz1 14246 . . . . 5 (𝐾 ∈ ℕ0 → (♯‘(1...𝐾)) = 𝐾)
189187, 188syl 17 . . . 4 (𝜑 → (♯‘(1...𝐾)) = 𝐾)
190185, 189oveq12d 7375 . . 3 (𝜑 → ((♯‘{0, 1})↑(♯‘(1...𝐾))) = (2↑𝐾))
191183, 190eqtrd 2776 . 2 (𝜑 → (♯‘({0, 1} ↑m (1...𝐾))) = (2↑𝐾))
192181, 191breqtrd 5131 1 (𝜑 → (♯‘{𝑥𝑀 ∣ (𝑄𝑥) = 1}) ≤ (2↑𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  {crab 3407  Vcvv 3445  cdif 3907  cun 3908  cin 3909  wss 3910  ifcif 4486  {cpr 4588   class class class wbr 5105  cmpt 5188   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  m cmap 8765  cdom 8881  Fincfn 8883  supcsup 9376  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   < clt 11189  cle 11190   / cdiv 11812  cn 12153  2c2 12208  0cn0 12413  cz 12499  cuz 12763  ...cfz 13424  cexp 13967  chash 14230  cdvds 16136  cprime 16547   pCnt cpc 16708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-fz 13425  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-dvds 16137  df-gcd 16375  df-prm 16548  df-pc 16709
This theorem is referenced by:  prmreclem3  16790
  Copyright terms: Public domain W3C validator