MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmreclem2 Structured version   Visualization version   GIF version

Theorem prmreclem2 16935
Description: Lemma for prmrec 16940. There are at most 2↑𝐾 squarefree numbers which divide no primes larger than 𝐾. (We could strengthen this to 2↑♯(ℙ ∩ (1...𝐾)) but there's no reason to.) We establish the inequality by showing that the prime counts of the number up to 𝐾 completely determine it because all higher prime counts are zero, and they are all at most 1 because no square divides the number, so there are at most 2↑𝐾 possibilities. (Contributed by Mario Carneiro, 5-Aug-2014.)
Hypotheses
Ref Expression
prmrec.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (1 / 𝑛), 0))
prmrec.2 (𝜑𝐾 ∈ ℕ)
prmrec.3 (𝜑𝑁 ∈ ℕ)
prmrec.4 𝑀 = {𝑛 ∈ (1...𝑁) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛}
prmreclem2.5 𝑄 = (𝑛 ∈ ℕ ↦ sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛}, ℝ, < ))
Assertion
Ref Expression
prmreclem2 (𝜑 → (♯‘{𝑥𝑀 ∣ (𝑄𝑥) = 1}) ≤ (2↑𝐾))
Distinct variable groups:   𝑛,𝑝,𝑟,𝑥,𝐹   𝑛,𝐾,𝑝,𝑥   𝑛,𝑀,𝑝,𝑥   𝜑,𝑛,𝑝,𝑥   𝑄,𝑛,𝑝,𝑟,𝑥   𝑛,𝑁,𝑝,𝑥
Allowed substitution hints:   𝜑(𝑟)   𝐾(𝑟)   𝑀(𝑟)   𝑁(𝑟)

Proof of Theorem prmreclem2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7436 . . . 4 ({0, 1} ↑m (1...𝐾)) ∈ V
2 fveqeq2 6884 . . . . . . 7 (𝑥 = 𝑦 → ((𝑄𝑥) = 1 ↔ (𝑄𝑦) = 1))
32elrab 3671 . . . . . 6 (𝑦 ∈ {𝑥𝑀 ∣ (𝑄𝑥) = 1} ↔ (𝑦𝑀 ∧ (𝑄𝑦) = 1))
4 prmrec.4 . . . . . . . . . . . . . . . . . . . 20 𝑀 = {𝑛 ∈ (1...𝑁) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛}
54ssrab3 4057 . . . . . . . . . . . . . . . . . . 19 𝑀 ⊆ (1...𝑁)
6 simprl 770 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) → 𝑦𝑀)
76ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → 𝑦𝑀)
85, 7sselid 3956 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → 𝑦 ∈ (1...𝑁))
9 elfznn 13568 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (1...𝑁) → 𝑦 ∈ ℕ)
108, 9syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → 𝑦 ∈ ℕ)
11 simpr 484 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → 𝑛 ∈ ℙ)
12 prmuz2 16713 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℙ → 𝑛 ∈ (ℤ‘2))
1311, 12syl 17 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → 𝑛 ∈ (ℤ‘2))
14 prmreclem2.5 . . . . . . . . . . . . . . . . . . 19 𝑄 = (𝑛 ∈ ℕ ↦ sup({𝑟 ∈ ℕ ∣ (𝑟↑2) ∥ 𝑛}, ℝ, < ))
1514prmreclem1 16934 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℕ → ((𝑄𝑦) ∈ ℕ ∧ ((𝑄𝑦)↑2) ∥ 𝑦 ∧ (𝑛 ∈ (ℤ‘2) → ¬ (𝑛↑2) ∥ (𝑦 / ((𝑄𝑦)↑2)))))
1615simp3d 1144 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℕ → (𝑛 ∈ (ℤ‘2) → ¬ (𝑛↑2) ∥ (𝑦 / ((𝑄𝑦)↑2))))
1710, 13, 16sylc 65 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → ¬ (𝑛↑2) ∥ (𝑦 / ((𝑄𝑦)↑2)))
18 simprr 772 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) → (𝑄𝑦) = 1)
1918ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑄𝑦) = 1)
2019oveq1d 7418 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → ((𝑄𝑦)↑2) = (1↑2))
21 sq1 14211 . . . . . . . . . . . . . . . . . . . . 21 (1↑2) = 1
2220, 21eqtrdi 2786 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → ((𝑄𝑦)↑2) = 1)
2322oveq2d 7419 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑦 / ((𝑄𝑦)↑2)) = (𝑦 / 1))
2410nncnd 12254 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → 𝑦 ∈ ℂ)
2524div1d 12007 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑦 / 1) = 𝑦)
2623, 25eqtrd 2770 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑦 / ((𝑄𝑦)↑2)) = 𝑦)
2726breq2d 5131 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → ((𝑛↑2) ∥ (𝑦 / ((𝑄𝑦)↑2)) ↔ (𝑛↑2) ∥ 𝑦))
2810nnzd 12613 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → 𝑦 ∈ ℤ)
29 2nn0 12516 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℕ0
3029a1i 11 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → 2 ∈ ℕ0)
31 pcdvdsb 16887 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℙ ∧ 𝑦 ∈ ℤ ∧ 2 ∈ ℕ0) → (2 ≤ (𝑛 pCnt 𝑦) ↔ (𝑛↑2) ∥ 𝑦))
3211, 28, 30, 31syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (2 ≤ (𝑛 pCnt 𝑦) ↔ (𝑛↑2) ∥ 𝑦))
3327, 32bitr4d 282 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → ((𝑛↑2) ∥ (𝑦 / ((𝑄𝑦)↑2)) ↔ 2 ≤ (𝑛 pCnt 𝑦)))
3417, 33mtbid 324 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → ¬ 2 ≤ (𝑛 pCnt 𝑦))
3511, 10pccld 16868 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑦) ∈ ℕ0)
3635nn0red 12561 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑦) ∈ ℝ)
37 2re 12312 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
38 ltnle 11312 . . . . . . . . . . . . . . . 16 (((𝑛 pCnt 𝑦) ∈ ℝ ∧ 2 ∈ ℝ) → ((𝑛 pCnt 𝑦) < 2 ↔ ¬ 2 ≤ (𝑛 pCnt 𝑦)))
3936, 37, 38sylancl 586 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → ((𝑛 pCnt 𝑦) < 2 ↔ ¬ 2 ≤ (𝑛 pCnt 𝑦)))
4034, 39mpbird 257 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑦) < 2)
41 df-2 12301 . . . . . . . . . . . . . 14 2 = (1 + 1)
4240, 41breqtrdi 5160 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑦) < (1 + 1))
4335nn0zd 12612 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑦) ∈ ℤ)
44 1z 12620 . . . . . . . . . . . . . 14 1 ∈ ℤ
45 zleltp1 12641 . . . . . . . . . . . . . 14 (((𝑛 pCnt 𝑦) ∈ ℤ ∧ 1 ∈ ℤ) → ((𝑛 pCnt 𝑦) ≤ 1 ↔ (𝑛 pCnt 𝑦) < (1 + 1)))
4643, 44, 45sylancl 586 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → ((𝑛 pCnt 𝑦) ≤ 1 ↔ (𝑛 pCnt 𝑦) < (1 + 1)))
4742, 46mpbird 257 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑦) ≤ 1)
48 nn0uz 12892 . . . . . . . . . . . . . 14 0 = (ℤ‘0)
4935, 48eleqtrdi 2844 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑦) ∈ (ℤ‘0))
50 elfz5 13531 . . . . . . . . . . . . 13 (((𝑛 pCnt 𝑦) ∈ (ℤ‘0) ∧ 1 ∈ ℤ) → ((𝑛 pCnt 𝑦) ∈ (0...1) ↔ (𝑛 pCnt 𝑦) ≤ 1))
5149, 44, 50sylancl 586 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → ((𝑛 pCnt 𝑦) ∈ (0...1) ↔ (𝑛 pCnt 𝑦) ≤ 1))
5247, 51mpbird 257 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑦) ∈ (0...1))
53 0z 12597 . . . . . . . . . . . . 13 0 ∈ ℤ
54 fzpr 13594 . . . . . . . . . . . . 13 (0 ∈ ℤ → (0...(0 + 1)) = {0, (0 + 1)})
5553, 54ax-mp 5 . . . . . . . . . . . 12 (0...(0 + 1)) = {0, (0 + 1)}
56 1e0p1 12748 . . . . . . . . . . . . 13 1 = (0 + 1)
5756oveq2i 7414 . . . . . . . . . . . 12 (0...1) = (0...(0 + 1))
5856preq2i 4713 . . . . . . . . . . . 12 {0, 1} = {0, (0 + 1)}
5955, 57, 583eqtr4i 2768 . . . . . . . . . . 11 (0...1) = {0, 1}
6052, 59eleqtrdi 2844 . . . . . . . . . 10 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑦) ∈ {0, 1})
61 c0ex 11227 . . . . . . . . . . . 12 0 ∈ V
6261prid1 4738 . . . . . . . . . . 11 0 ∈ {0, 1}
6362a1i 11 . . . . . . . . . 10 ((((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) ∧ ¬ 𝑛 ∈ ℙ) → 0 ∈ {0, 1})
6460, 63ifclda 4536 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) ∧ 𝑛 ∈ (1...𝐾)) → if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0) ∈ {0, 1})
6564fmpttd 7104 . . . . . . . 8 ((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) → (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)):(1...𝐾)⟶{0, 1})
66 prex 5407 . . . . . . . . 9 {0, 1} ∈ V
67 ovex 7436 . . . . . . . . 9 (1...𝐾) ∈ V
6866, 67elmap 8883 . . . . . . . 8 ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) ∈ ({0, 1} ↑m (1...𝐾)) ↔ (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)):(1...𝐾)⟶{0, 1})
6965, 68sylibr 234 . . . . . . 7 ((𝜑 ∧ (𝑦𝑀 ∧ (𝑄𝑦) = 1)) → (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) ∈ ({0, 1} ↑m (1...𝐾)))
7069ex 412 . . . . . 6 (𝜑 → ((𝑦𝑀 ∧ (𝑄𝑦) = 1) → (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) ∈ ({0, 1} ↑m (1...𝐾))))
713, 70biimtrid 242 . . . . 5 (𝜑 → (𝑦 ∈ {𝑥𝑀 ∣ (𝑄𝑥) = 1} → (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) ∈ ({0, 1} ↑m (1...𝐾))))
72 fveqeq2 6884 . . . . . . . 8 (𝑥 = 𝑧 → ((𝑄𝑥) = 1 ↔ (𝑄𝑧) = 1))
7372elrab 3671 . . . . . . 7 (𝑧 ∈ {𝑥𝑀 ∣ (𝑄𝑥) = 1} ↔ (𝑧𝑀 ∧ (𝑄𝑧) = 1))
743, 73anbi12i 628 . . . . . 6 ((𝑦 ∈ {𝑥𝑀 ∣ (𝑄𝑥) = 1} ∧ 𝑧 ∈ {𝑥𝑀 ∣ (𝑄𝑥) = 1}) ↔ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1)))
75 ovex 7436 . . . . . . . . . . . 12 (𝑛 pCnt 𝑦) ∈ V
7675, 61ifex 4551 . . . . . . . . . . 11 if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0) ∈ V
77 eqid 2735 . . . . . . . . . . 11 (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) = (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0))
7876, 77fnmpti 6680 . . . . . . . . . 10 (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) Fn (1...𝐾)
79 ovex 7436 . . . . . . . . . . . 12 (𝑛 pCnt 𝑧) ∈ V
8079, 61ifex 4551 . . . . . . . . . . 11 if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0) ∈ V
81 eqid 2735 . . . . . . . . . . 11 (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0)) = (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0))
8280, 81fnmpti 6680 . . . . . . . . . 10 (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0)) Fn (1...𝐾)
83 eqfnfv 7020 . . . . . . . . . 10 (((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) Fn (1...𝐾) ∧ (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0)) Fn (1...𝐾)) → ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) = (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0)) ↔ ∀𝑝 ∈ (1...𝐾)((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0))‘𝑝) = ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0))‘𝑝)))
8478, 82, 83mp2an 692 . . . . . . . . 9 ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) = (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0)) ↔ ∀𝑝 ∈ (1...𝐾)((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0))‘𝑝) = ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0))‘𝑝))
85 eleq1w 2817 . . . . . . . . . . . . 13 (𝑛 = 𝑝 → (𝑛 ∈ ℙ ↔ 𝑝 ∈ ℙ))
86 oveq1 7410 . . . . . . . . . . . . 13 (𝑛 = 𝑝 → (𝑛 pCnt 𝑦) = (𝑝 pCnt 𝑦))
8785, 86ifbieq1d 4525 . . . . . . . . . . . 12 (𝑛 = 𝑝 → if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0))
88 ovex 7436 . . . . . . . . . . . . 13 (𝑝 pCnt 𝑦) ∈ V
8988, 61ifex 4551 . . . . . . . . . . . 12 if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) ∈ V
9087, 77, 89fvmpt 6985 . . . . . . . . . . 11 (𝑝 ∈ (1...𝐾) → ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0))‘𝑝) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0))
91 oveq1 7410 . . . . . . . . . . . . 13 (𝑛 = 𝑝 → (𝑛 pCnt 𝑧) = (𝑝 pCnt 𝑧))
9285, 91ifbieq1d 4525 . . . . . . . . . . . 12 (𝑛 = 𝑝 → if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0))
93 ovex 7436 . . . . . . . . . . . . 13 (𝑝 pCnt 𝑧) ∈ V
9493, 61ifex 4551 . . . . . . . . . . . 12 if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ∈ V
9592, 81, 94fvmpt 6985 . . . . . . . . . . 11 (𝑝 ∈ (1...𝐾) → ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0))‘𝑝) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0))
9690, 95eqeq12d 2751 . . . . . . . . . 10 (𝑝 ∈ (1...𝐾) → (((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0))‘𝑝) = ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0))‘𝑝) ↔ if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0)))
9796ralbiia 3080 . . . . . . . . 9 (∀𝑝 ∈ (1...𝐾)((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0))‘𝑝) = ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0))‘𝑝) ↔ ∀𝑝 ∈ (1...𝐾)if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0))
9884, 97bitri 275 . . . . . . . 8 ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) = (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0)) ↔ ∀𝑝 ∈ (1...𝐾)if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0))
99 simprll 778 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → 𝑦𝑀)
100 breq2 5123 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑦 → (𝑝𝑛𝑝𝑦))
101100notbid 318 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑦 → (¬ 𝑝𝑛 ↔ ¬ 𝑝𝑦))
102101ralbidv 3163 . . . . . . . . . . . . . . 15 (𝑛 = 𝑦 → (∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛 ↔ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑦))
103102, 4elrab2 3674 . . . . . . . . . . . . . 14 (𝑦𝑀 ↔ (𝑦 ∈ (1...𝑁) ∧ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑦))
104103simprbi 496 . . . . . . . . . . . . 13 (𝑦𝑀 → ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑦)
10599, 104syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑦)
106 simprrl 780 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → 𝑧𝑀)
107 breq2 5123 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑧 → (𝑝𝑛𝑝𝑧))
108107notbid 318 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑧 → (¬ 𝑝𝑛 ↔ ¬ 𝑝𝑧))
109108ralbidv 3163 . . . . . . . . . . . . . . 15 (𝑛 = 𝑧 → (∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛 ↔ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑧))
110109, 4elrab2 3674 . . . . . . . . . . . . . 14 (𝑧𝑀 ↔ (𝑧 ∈ (1...𝑁) ∧ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑧))
111110simprbi 496 . . . . . . . . . . . . 13 (𝑧𝑀 → ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑧)
112106, 111syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑧)
113 r19.26 3098 . . . . . . . . . . . . 13 (∀𝑝 ∈ (ℙ ∖ (1...𝐾))(¬ 𝑝𝑦 ∧ ¬ 𝑝𝑧) ↔ (∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑦 ∧ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑧))
114 eldifi 4106 . . . . . . . . . . . . . . . . 17 (𝑝 ∈ (ℙ ∖ (1...𝐾)) → 𝑝 ∈ ℙ)
115 fz1ssnn 13570 . . . . . . . . . . . . . . . . . . 19 (1...𝑁) ⊆ ℕ
1165, 115sstri 3968 . . . . . . . . . . . . . . . . . 18 𝑀 ⊆ ℕ
117116, 99sselid 3956 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → 𝑦 ∈ ℕ)
118 pceq0 16889 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ ℙ ∧ 𝑦 ∈ ℕ) → ((𝑝 pCnt 𝑦) = 0 ↔ ¬ 𝑝𝑦))
119114, 117, 118syl2anr 597 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) ∧ 𝑝 ∈ (ℙ ∖ (1...𝐾))) → ((𝑝 pCnt 𝑦) = 0 ↔ ¬ 𝑝𝑦))
120116, 106sselid 3956 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → 𝑧 ∈ ℕ)
121 pceq0 16889 . . . . . . . . . . . . . . . . 17 ((𝑝 ∈ ℙ ∧ 𝑧 ∈ ℕ) → ((𝑝 pCnt 𝑧) = 0 ↔ ¬ 𝑝𝑧))
122114, 120, 121syl2anr 597 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) ∧ 𝑝 ∈ (ℙ ∖ (1...𝐾))) → ((𝑝 pCnt 𝑧) = 0 ↔ ¬ 𝑝𝑧))
123119, 122anbi12d 632 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) ∧ 𝑝 ∈ (ℙ ∖ (1...𝐾))) → (((𝑝 pCnt 𝑦) = 0 ∧ (𝑝 pCnt 𝑧) = 0) ↔ (¬ 𝑝𝑦 ∧ ¬ 𝑝𝑧)))
124 eqtr3 2757 . . . . . . . . . . . . . . 15 (((𝑝 pCnt 𝑦) = 0 ∧ (𝑝 pCnt 𝑧) = 0) → (𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧))
125123, 124biimtrrdi 254 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) ∧ 𝑝 ∈ (ℙ ∖ (1...𝐾))) → ((¬ 𝑝𝑦 ∧ ¬ 𝑝𝑧) → (𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧)))
126125ralimdva 3152 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → (∀𝑝 ∈ (ℙ ∖ (1...𝐾))(¬ 𝑝𝑦 ∧ ¬ 𝑝𝑧) → ∀𝑝 ∈ (ℙ ∖ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧)))
127113, 126biimtrrid 243 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → ((∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑦 ∧ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑧) → ∀𝑝 ∈ (ℙ ∖ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧)))
128105, 112, 127mp2and 699 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → ∀𝑝 ∈ (ℙ ∖ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧))
129128biantrud 531 . . . . . . . . . 10 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → (∀𝑝 ∈ (ℙ ∩ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧) ↔ (∀𝑝 ∈ (ℙ ∩ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧) ∧ ∀𝑝 ∈ (ℙ ∖ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧))))
130 incom 4184 . . . . . . . . . . . . . . 15 (ℙ ∩ (1...𝐾)) = ((1...𝐾) ∩ ℙ)
131130uneq1i 4139 . . . . . . . . . . . . . 14 ((ℙ ∩ (1...𝐾)) ∪ ((1...𝐾) ∖ ℙ)) = (((1...𝐾) ∩ ℙ) ∪ ((1...𝐾) ∖ ℙ))
132 inundif 4454 . . . . . . . . . . . . . 14 (((1...𝐾) ∩ ℙ) ∪ ((1...𝐾) ∖ ℙ)) = (1...𝐾)
133131, 132eqtri 2758 . . . . . . . . . . . . 13 ((ℙ ∩ (1...𝐾)) ∪ ((1...𝐾) ∖ ℙ)) = (1...𝐾)
134133raleqi 3303 . . . . . . . . . . . 12 (∀𝑝 ∈ ((ℙ ∩ (1...𝐾)) ∪ ((1...𝐾) ∖ ℙ))if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ↔ ∀𝑝 ∈ (1...𝐾)if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0))
135 ralunb 4172 . . . . . . . . . . . 12 (∀𝑝 ∈ ((ℙ ∩ (1...𝐾)) ∪ ((1...𝐾) ∖ ℙ))if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ↔ (∀𝑝 ∈ (ℙ ∩ (1...𝐾))if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ∧ ∀𝑝 ∈ ((1...𝐾) ∖ ℙ)if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0)))
136134, 135bitr3i 277 . . . . . . . . . . 11 (∀𝑝 ∈ (1...𝐾)if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ↔ (∀𝑝 ∈ (ℙ ∩ (1...𝐾))if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ∧ ∀𝑝 ∈ ((1...𝐾) ∖ ℙ)if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0)))
137 eldifn 4107 . . . . . . . . . . . . . . 15 (𝑝 ∈ ((1...𝐾) ∖ ℙ) → ¬ 𝑝 ∈ ℙ)
138 iffalse 4509 . . . . . . . . . . . . . . . 16 𝑝 ∈ ℙ → if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = 0)
139 iffalse 4509 . . . . . . . . . . . . . . . 16 𝑝 ∈ ℙ → if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) = 0)
140138, 139eqtr4d 2773 . . . . . . . . . . . . . . 15 𝑝 ∈ ℙ → if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0))
141137, 140syl 17 . . . . . . . . . . . . . 14 (𝑝 ∈ ((1...𝐾) ∖ ℙ) → if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0))
142141rgen 3053 . . . . . . . . . . . . 13 𝑝 ∈ ((1...𝐾) ∖ ℙ)if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0)
143142biantru 529 . . . . . . . . . . . 12 (∀𝑝 ∈ (ℙ ∩ (1...𝐾))if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ↔ (∀𝑝 ∈ (ℙ ∩ (1...𝐾))if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ∧ ∀𝑝 ∈ ((1...𝐾) ∖ ℙ)if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0)))
144 elinel1 4176 . . . . . . . . . . . . . 14 (𝑝 ∈ (ℙ ∩ (1...𝐾)) → 𝑝 ∈ ℙ)
145 iftrue 4506 . . . . . . . . . . . . . . 15 (𝑝 ∈ ℙ → if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = (𝑝 pCnt 𝑦))
146 iftrue 4506 . . . . . . . . . . . . . . 15 (𝑝 ∈ ℙ → if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) = (𝑝 pCnt 𝑧))
147145, 146eqeq12d 2751 . . . . . . . . . . . . . 14 (𝑝 ∈ ℙ → (if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ↔ (𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧)))
148144, 147syl 17 . . . . . . . . . . . . 13 (𝑝 ∈ (ℙ ∩ (1...𝐾)) → (if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ↔ (𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧)))
149148ralbiia 3080 . . . . . . . . . . . 12 (∀𝑝 ∈ (ℙ ∩ (1...𝐾))if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ↔ ∀𝑝 ∈ (ℙ ∩ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧))
150143, 149bitr3i 277 . . . . . . . . . . 11 ((∀𝑝 ∈ (ℙ ∩ (1...𝐾))if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ∧ ∀𝑝 ∈ ((1...𝐾) ∖ ℙ)if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0)) ↔ ∀𝑝 ∈ (ℙ ∩ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧))
151136, 150bitri 275 . . . . . . . . . 10 (∀𝑝 ∈ (1...𝐾)if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ↔ ∀𝑝 ∈ (ℙ ∩ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧))
152 inundif 4454 . . . . . . . . . . . 12 ((ℙ ∩ (1...𝐾)) ∪ (ℙ ∖ (1...𝐾))) = ℙ
153152raleqi 3303 . . . . . . . . . . 11 (∀𝑝 ∈ ((ℙ ∩ (1...𝐾)) ∪ (ℙ ∖ (1...𝐾)))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧))
154 ralunb 4172 . . . . . . . . . . 11 (∀𝑝 ∈ ((ℙ ∩ (1...𝐾)) ∪ (ℙ ∖ (1...𝐾)))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧) ↔ (∀𝑝 ∈ (ℙ ∩ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧) ∧ ∀𝑝 ∈ (ℙ ∖ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧)))
155153, 154bitr3i 277 . . . . . . . . . 10 (∀𝑝 ∈ ℙ (𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧) ↔ (∀𝑝 ∈ (ℙ ∩ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧) ∧ ∀𝑝 ∈ (ℙ ∖ (1...𝐾))(𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧)))
156129, 151, 1553bitr4g 314 . . . . . . . . 9 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → (∀𝑝 ∈ (1...𝐾)if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧)))
157117nnnn0d 12560 . . . . . . . . . 10 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → 𝑦 ∈ ℕ0)
158120nnnn0d 12560 . . . . . . . . . 10 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → 𝑧 ∈ ℕ0)
159 pc11 16898 . . . . . . . . . 10 ((𝑦 ∈ ℕ0𝑧 ∈ ℕ0) → (𝑦 = 𝑧 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧)))
160157, 158, 159syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → (𝑦 = 𝑧 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝑦) = (𝑝 pCnt 𝑧)))
161156, 160bitr4d 282 . . . . . . . 8 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → (∀𝑝 ∈ (1...𝐾)if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑦), 0) = if(𝑝 ∈ ℙ, (𝑝 pCnt 𝑧), 0) ↔ 𝑦 = 𝑧))
16298, 161bitrid 283 . . . . . . 7 ((𝜑 ∧ ((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1))) → ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) = (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0)) ↔ 𝑦 = 𝑧))
163162ex 412 . . . . . 6 (𝜑 → (((𝑦𝑀 ∧ (𝑄𝑦) = 1) ∧ (𝑧𝑀 ∧ (𝑄𝑧) = 1)) → ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) = (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0)) ↔ 𝑦 = 𝑧)))
16474, 163biimtrid 242 . . . . 5 (𝜑 → ((𝑦 ∈ {𝑥𝑀 ∣ (𝑄𝑥) = 1} ∧ 𝑧 ∈ {𝑥𝑀 ∣ (𝑄𝑥) = 1}) → ((𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑦), 0)) = (𝑛 ∈ (1...𝐾) ↦ if(𝑛 ∈ ℙ, (𝑛 pCnt 𝑧), 0)) ↔ 𝑦 = 𝑧)))
16571, 164dom2d 9005 . . . 4 (𝜑 → (({0, 1} ↑m (1...𝐾)) ∈ V → {𝑥𝑀 ∣ (𝑄𝑥) = 1} ≼ ({0, 1} ↑m (1...𝐾))))
1661, 165mpi 20 . . 3 (𝜑 → {𝑥𝑀 ∣ (𝑄𝑥) = 1} ≼ ({0, 1} ↑m (1...𝐾)))
167 fzfi 13988 . . . . . . 7 (1...𝑁) ∈ Fin
168 ssrab2 4055 . . . . . . 7 {𝑛 ∈ (1...𝑁) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛} ⊆ (1...𝑁)
169 ssfi 9185 . . . . . . 7 (((1...𝑁) ∈ Fin ∧ {𝑛 ∈ (1...𝑁) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛} ⊆ (1...𝑁)) → {𝑛 ∈ (1...𝑁) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛} ∈ Fin)
170167, 168, 169mp2an 692 . . . . . 6 {𝑛 ∈ (1...𝑁) ∣ ∀𝑝 ∈ (ℙ ∖ (1...𝐾)) ¬ 𝑝𝑛} ∈ Fin
1714, 170eqeltri 2830 . . . . 5 𝑀 ∈ Fin
172 ssrab2 4055 . . . . 5 {𝑥𝑀 ∣ (𝑄𝑥) = 1} ⊆ 𝑀
173 ssfi 9185 . . . . 5 ((𝑀 ∈ Fin ∧ {𝑥𝑀 ∣ (𝑄𝑥) = 1} ⊆ 𝑀) → {𝑥𝑀 ∣ (𝑄𝑥) = 1} ∈ Fin)
174171, 172, 173mp2an 692 . . . 4 {𝑥𝑀 ∣ (𝑄𝑥) = 1} ∈ Fin
175 prfi 9333 . . . . 5 {0, 1} ∈ Fin
176 fzfid 13989 . . . . 5 (𝜑 → (1...𝐾) ∈ Fin)
177 mapfi 9358 . . . . 5 (({0, 1} ∈ Fin ∧ (1...𝐾) ∈ Fin) → ({0, 1} ↑m (1...𝐾)) ∈ Fin)
178175, 176, 177sylancr 587 . . . 4 (𝜑 → ({0, 1} ↑m (1...𝐾)) ∈ Fin)
179 hashdom 14395 . . . 4 (({𝑥𝑀 ∣ (𝑄𝑥) = 1} ∈ Fin ∧ ({0, 1} ↑m (1...𝐾)) ∈ Fin) → ((♯‘{𝑥𝑀 ∣ (𝑄𝑥) = 1}) ≤ (♯‘({0, 1} ↑m (1...𝐾))) ↔ {𝑥𝑀 ∣ (𝑄𝑥) = 1} ≼ ({0, 1} ↑m (1...𝐾))))
180174, 178, 179sylancr 587 . . 3 (𝜑 → ((♯‘{𝑥𝑀 ∣ (𝑄𝑥) = 1}) ≤ (♯‘({0, 1} ↑m (1...𝐾))) ↔ {𝑥𝑀 ∣ (𝑄𝑥) = 1} ≼ ({0, 1} ↑m (1...𝐾))))
181166, 180mpbird 257 . 2 (𝜑 → (♯‘{𝑥𝑀 ∣ (𝑄𝑥) = 1}) ≤ (♯‘({0, 1} ↑m (1...𝐾))))
182 hashmap 14451 . . . 4 (({0, 1} ∈ Fin ∧ (1...𝐾) ∈ Fin) → (♯‘({0, 1} ↑m (1...𝐾))) = ((♯‘{0, 1})↑(♯‘(1...𝐾))))
183175, 176, 182sylancr 587 . . 3 (𝜑 → (♯‘({0, 1} ↑m (1...𝐾))) = ((♯‘{0, 1})↑(♯‘(1...𝐾))))
184 prhash2ex 14415 . . . . 5 (♯‘{0, 1}) = 2
185184a1i 11 . . . 4 (𝜑 → (♯‘{0, 1}) = 2)
186 prmrec.2 . . . . . 6 (𝜑𝐾 ∈ ℕ)
187186nnnn0d 12560 . . . . 5 (𝜑𝐾 ∈ ℕ0)
188 hashfz1 14362 . . . . 5 (𝐾 ∈ ℕ0 → (♯‘(1...𝐾)) = 𝐾)
189187, 188syl 17 . . . 4 (𝜑 → (♯‘(1...𝐾)) = 𝐾)
190185, 189oveq12d 7421 . . 3 (𝜑 → ((♯‘{0, 1})↑(♯‘(1...𝐾))) = (2↑𝐾))
191183, 190eqtrd 2770 . 2 (𝜑 → (♯‘({0, 1} ↑m (1...𝐾))) = (2↑𝐾))
192181, 191breqtrd 5145 1 (𝜑 → (♯‘{𝑥𝑀 ∣ (𝑄𝑥) = 1}) ≤ (2↑𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  {crab 3415  Vcvv 3459  cdif 3923  cun 3924  cin 3925  wss 3926  ifcif 4500  {cpr 4603   class class class wbr 5119  cmpt 5201   Fn wfn 6525  wf 6526  cfv 6530  (class class class)co 7403  m cmap 8838  cdom 8955  Fincfn 8957  supcsup 9450  cr 11126  0cc0 11127  1c1 11128   + caddc 11130   < clt 11267  cle 11268   / cdiv 11892  cn 12238  2c2 12293  0cn0 12499  cz 12586  cuz 12850  ...cfz 13522  cexp 14077  chash 14346  cdvds 16270  cprime 16688   pCnt cpc 16854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-oadd 8482  df-er 8717  df-map 8840  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9452  df-inf 9453  df-dju 9913  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-n0 12500  df-xnn0 12573  df-z 12587  df-uz 12851  df-q 12963  df-rp 13007  df-fz 13523  df-fl 13807  df-mod 13885  df-seq 14018  df-exp 14078  df-hash 14347  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-dvds 16271  df-gcd 16512  df-prm 16689  df-pc 16855
This theorem is referenced by:  prmreclem3  16936
  Copyright terms: Public domain W3C validator