| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sgrpnmndex | Structured version Visualization version GIF version | ||
| Description: There is a semigroup which is not a monoid. (Contributed by AV, 29-Jan-2020.) |
| Ref | Expression |
|---|---|
| sgrpnmndex | ⊢ ∃𝑚 ∈ Smgrp 𝑚 ∉ Mnd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prhash2ex 14306 | . 2 ⊢ (♯‘{0, 1}) = 2 | |
| 2 | eqid 2731 | . . . 4 ⊢ {0, 1} = {0, 1} | |
| 3 | prex 5373 | . . . . . 6 ⊢ {0, 1} ∈ V | |
| 4 | eqeq1 2735 | . . . . . . . . . . 11 ⊢ (𝑥 = 𝑢 → (𝑥 = 0 ↔ 𝑢 = 0)) | |
| 5 | 4 | ifbid 4496 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑢 → if(𝑥 = 0, 0, 1) = if(𝑢 = 0, 0, 1)) |
| 6 | eqidd 2732 | . . . . . . . . . 10 ⊢ (𝑦 = 𝑣 → if(𝑢 = 0, 0, 1) = if(𝑢 = 0, 0, 1)) | |
| 7 | 5, 6 | cbvmpov 7441 | . . . . . . . . 9 ⊢ (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1)) = (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1)) |
| 8 | 7 | opeq2i 4826 | . . . . . . . 8 ⊢ 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉 = 〈(+g‘ndx), (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1))〉 |
| 9 | 8 | preq2i 4687 | . . . . . . 7 ⊢ {〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉} = {〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1))〉} |
| 10 | 9 | grpbase 17193 | . . . . . 6 ⊢ ({0, 1} ∈ V → {0, 1} = (Base‘{〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉})) |
| 11 | 3, 10 | ax-mp 5 | . . . . 5 ⊢ {0, 1} = (Base‘{〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉}) |
| 12 | 11 | eqcomi 2740 | . . . 4 ⊢ (Base‘{〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉}) = {0, 1} |
| 13 | 3, 3 | mpoex 8011 | . . . . . 6 ⊢ (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1)) ∈ V |
| 14 | 9 | grpplusg 17194 | . . . . . 6 ⊢ ((𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1)) ∈ V → (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1)) = (+g‘{〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉})) |
| 15 | 13, 14 | ax-mp 5 | . . . . 5 ⊢ (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1)) = (+g‘{〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉}) |
| 16 | 15 | eqcomi 2740 | . . . 4 ⊢ (+g‘{〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉}) = (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1)) |
| 17 | 2, 12, 16 | sgrp2nmndlem4 18836 | . . 3 ⊢ ((♯‘{0, 1}) = 2 → {〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉} ∈ Smgrp) |
| 18 | neleq1 3038 | . . . 4 ⊢ (𝑚 = {〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉} → (𝑚 ∉ Mnd ↔ {〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉} ∉ Mnd)) | |
| 19 | 18 | adantl 481 | . . 3 ⊢ (((♯‘{0, 1}) = 2 ∧ 𝑚 = {〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉}) → (𝑚 ∉ Mnd ↔ {〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉} ∉ Mnd)) |
| 20 | 2, 12, 16 | sgrp2nmndlem5 18837 | . . 3 ⊢ ((♯‘{0, 1}) = 2 → {〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉} ∉ Mnd) |
| 21 | 17, 19, 20 | rspcedvd 3574 | . 2 ⊢ ((♯‘{0, 1}) = 2 → ∃𝑚 ∈ Smgrp 𝑚 ∉ Mnd) |
| 22 | 1, 21 | ax-mp 5 | 1 ⊢ ∃𝑚 ∈ Smgrp 𝑚 ∉ Mnd |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∉ wnel 3032 ∃wrex 3056 Vcvv 3436 ifcif 4472 {cpr 4575 〈cop 4579 ‘cfv 6481 ∈ cmpo 7348 0cc0 11006 1c1 11007 2c2 12180 ♯chash 14237 ndxcnx 17104 Basecbs 17120 +gcplusg 17161 Smgrpcsgrp 18626 Mndcmnd 18642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-hash 14238 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mgm 18548 df-sgrp 18627 df-mnd 18643 |
| This theorem is referenced by: mndsssgrp 18842 |
| Copyright terms: Public domain | W3C validator |