Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sgrpnmndex | Structured version Visualization version GIF version |
Description: There is a semigroup which is not a monoid. (Contributed by AV, 29-Jan-2020.) |
Ref | Expression |
---|---|
sgrpnmndex | ⊢ ∃𝑚 ∈ Smgrp 𝑚 ∉ Mnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prhash2ex 14095 | . 2 ⊢ (♯‘{0, 1}) = 2 | |
2 | eqid 2739 | . . . 4 ⊢ {0, 1} = {0, 1} | |
3 | prex 5358 | . . . . . 6 ⊢ {0, 1} ∈ V | |
4 | eqeq1 2743 | . . . . . . . . . . 11 ⊢ (𝑥 = 𝑢 → (𝑥 = 0 ↔ 𝑢 = 0)) | |
5 | 4 | ifbid 4487 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑢 → if(𝑥 = 0, 0, 1) = if(𝑢 = 0, 0, 1)) |
6 | eqidd 2740 | . . . . . . . . . 10 ⊢ (𝑦 = 𝑣 → if(𝑢 = 0, 0, 1) = if(𝑢 = 0, 0, 1)) | |
7 | 5, 6 | cbvmpov 7361 | . . . . . . . . 9 ⊢ (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1)) = (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1)) |
8 | 7 | opeq2i 4813 | . . . . . . . 8 ⊢ 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉 = 〈(+g‘ndx), (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1))〉 |
9 | 8 | preq2i 4678 | . . . . . . 7 ⊢ {〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉} = {〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1))〉} |
10 | 9 | grpbase 16977 | . . . . . 6 ⊢ ({0, 1} ∈ V → {0, 1} = (Base‘{〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉})) |
11 | 3, 10 | ax-mp 5 | . . . . 5 ⊢ {0, 1} = (Base‘{〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉}) |
12 | 11 | eqcomi 2748 | . . . 4 ⊢ (Base‘{〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉}) = {0, 1} |
13 | 3, 3 | mpoex 7906 | . . . . . 6 ⊢ (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1)) ∈ V |
14 | 9 | grpplusg 16979 | . . . . . 6 ⊢ ((𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1)) ∈ V → (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1)) = (+g‘{〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉})) |
15 | 13, 14 | ax-mp 5 | . . . . 5 ⊢ (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1)) = (+g‘{〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉}) |
16 | 15 | eqcomi 2748 | . . . 4 ⊢ (+g‘{〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉}) = (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1)) |
17 | 2, 12, 16 | sgrp2nmndlem4 18548 | . . 3 ⊢ ((♯‘{0, 1}) = 2 → {〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉} ∈ Smgrp) |
18 | neleq1 3055 | . . . 4 ⊢ (𝑚 = {〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉} → (𝑚 ∉ Mnd ↔ {〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉} ∉ Mnd)) | |
19 | 18 | adantl 481 | . . 3 ⊢ (((♯‘{0, 1}) = 2 ∧ 𝑚 = {〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉}) → (𝑚 ∉ Mnd ↔ {〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉} ∉ Mnd)) |
20 | 2, 12, 16 | sgrp2nmndlem5 18549 | . . 3 ⊢ ((♯‘{0, 1}) = 2 → {〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉} ∉ Mnd) |
21 | 17, 19, 20 | rspcedvd 3563 | . 2 ⊢ ((♯‘{0, 1}) = 2 → ∃𝑚 ∈ Smgrp 𝑚 ∉ Mnd) |
22 | 1, 21 | ax-mp 5 | 1 ⊢ ∃𝑚 ∈ Smgrp 𝑚 ∉ Mnd |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ∈ wcel 2109 ∉ wnel 3050 ∃wrex 3066 Vcvv 3430 ifcif 4464 {cpr 4568 〈cop 4572 ‘cfv 6430 ∈ cmpo 7270 0cc0 10855 1c1 10856 2c2 12011 ♯chash 14025 ndxcnx 16875 Basecbs 16893 +gcplusg 16943 Smgrpcsgrp 18355 Mndcmnd 18366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-oadd 8285 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-dju 9643 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-n0 12217 df-z 12303 df-uz 12565 df-fz 13222 df-hash 14026 df-struct 16829 df-slot 16864 df-ndx 16876 df-base 16894 df-plusg 16956 df-mgm 18307 df-sgrp 18356 df-mnd 18367 |
This theorem is referenced by: mndsssgrp 18554 |
Copyright terms: Public domain | W3C validator |