![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sgrpnmndex | Structured version Visualization version GIF version |
Description: There is a semigroup which is not a monoid. (Contributed by AV, 29-Jan-2020.) |
Ref | Expression |
---|---|
sgrpnmndex | ⊢ ∃𝑚 ∈ Smgrp 𝑚 ∉ Mnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prhash2ex 14448 | . 2 ⊢ (♯‘{0, 1}) = 2 | |
2 | eqid 2740 | . . . 4 ⊢ {0, 1} = {0, 1} | |
3 | prex 5452 | . . . . . 6 ⊢ {0, 1} ∈ V | |
4 | eqeq1 2744 | . . . . . . . . . . 11 ⊢ (𝑥 = 𝑢 → (𝑥 = 0 ↔ 𝑢 = 0)) | |
5 | 4 | ifbid 4571 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑢 → if(𝑥 = 0, 0, 1) = if(𝑢 = 0, 0, 1)) |
6 | eqidd 2741 | . . . . . . . . . 10 ⊢ (𝑦 = 𝑣 → if(𝑢 = 0, 0, 1) = if(𝑢 = 0, 0, 1)) | |
7 | 5, 6 | cbvmpov 7545 | . . . . . . . . 9 ⊢ (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1)) = (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1)) |
8 | 7 | opeq2i 4901 | . . . . . . . 8 ⊢ 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉 = 〈(+g‘ndx), (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1))〉 |
9 | 8 | preq2i 4762 | . . . . . . 7 ⊢ {〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉} = {〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1))〉} |
10 | 9 | grpbase 17345 | . . . . . 6 ⊢ ({0, 1} ∈ V → {0, 1} = (Base‘{〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉})) |
11 | 3, 10 | ax-mp 5 | . . . . 5 ⊢ {0, 1} = (Base‘{〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉}) |
12 | 11 | eqcomi 2749 | . . . 4 ⊢ (Base‘{〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉}) = {0, 1} |
13 | 3, 3 | mpoex 8120 | . . . . . 6 ⊢ (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1)) ∈ V |
14 | 9 | grpplusg 17347 | . . . . . 6 ⊢ ((𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1)) ∈ V → (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1)) = (+g‘{〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉})) |
15 | 13, 14 | ax-mp 5 | . . . . 5 ⊢ (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1)) = (+g‘{〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉}) |
16 | 15 | eqcomi 2749 | . . . 4 ⊢ (+g‘{〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉}) = (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1)) |
17 | 2, 12, 16 | sgrp2nmndlem4 18963 | . . 3 ⊢ ((♯‘{0, 1}) = 2 → {〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉} ∈ Smgrp) |
18 | neleq1 3058 | . . . 4 ⊢ (𝑚 = {〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉} → (𝑚 ∉ Mnd ↔ {〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉} ∉ Mnd)) | |
19 | 18 | adantl 481 | . . 3 ⊢ (((♯‘{0, 1}) = 2 ∧ 𝑚 = {〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉}) → (𝑚 ∉ Mnd ↔ {〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉} ∉ Mnd)) |
20 | 2, 12, 16 | sgrp2nmndlem5 18964 | . . 3 ⊢ ((♯‘{0, 1}) = 2 → {〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉} ∉ Mnd) |
21 | 17, 19, 20 | rspcedvd 3637 | . 2 ⊢ ((♯‘{0, 1}) = 2 → ∃𝑚 ∈ Smgrp 𝑚 ∉ Mnd) |
22 | 1, 21 | ax-mp 5 | 1 ⊢ ∃𝑚 ∈ Smgrp 𝑚 ∉ Mnd |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∉ wnel 3052 ∃wrex 3076 Vcvv 3488 ifcif 4548 {cpr 4650 〈cop 4654 ‘cfv 6573 ∈ cmpo 7450 0cc0 11184 1c1 11185 2c2 12348 ♯chash 14379 ndxcnx 17240 Basecbs 17258 +gcplusg 17311 Smgrpcsgrp 18756 Mndcmnd 18772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-oadd 8526 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-hash 14380 df-struct 17194 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-mgm 18678 df-sgrp 18757 df-mnd 18773 |
This theorem is referenced by: mndsssgrp 18969 |
Copyright terms: Public domain | W3C validator |