MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgrpnmndex Structured version   Visualization version   GIF version

Theorem sgrpnmndex 18667
Description: There is a semigroup which is not a monoid. (Contributed by AV, 29-Jan-2020.)
Assertion
Ref Expression
sgrpnmndex 𝑚 ∈ Smgrp 𝑚 ∉ Mnd

Proof of Theorem sgrpnmndex
Dummy variables 𝑥 𝑦 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prhash2ex 14214 . 2 (♯‘{0, 1}) = 2
2 eqid 2736 . . . 4 {0, 1} = {0, 1}
3 prex 5377 . . . . . 6 {0, 1} ∈ V
4 eqeq1 2740 . . . . . . . . . . 11 (𝑥 = 𝑢 → (𝑥 = 0 ↔ 𝑢 = 0))
54ifbid 4496 . . . . . . . . . 10 (𝑥 = 𝑢 → if(𝑥 = 0, 0, 1) = if(𝑢 = 0, 0, 1))
6 eqidd 2737 . . . . . . . . . 10 (𝑦 = 𝑣 → if(𝑢 = 0, 0, 1) = if(𝑢 = 0, 0, 1))
75, 6cbvmpov 7432 . . . . . . . . 9 (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1)) = (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1))
87opeq2i 4821 . . . . . . . 8 ⟨(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))⟩ = ⟨(+g‘ndx), (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1))⟩
98preq2i 4685 . . . . . . 7 {⟨(Base‘ndx), {0, 1}⟩, ⟨(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))⟩} = {⟨(Base‘ndx), {0, 1}⟩, ⟨(+g‘ndx), (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1))⟩}
109grpbase 17093 . . . . . 6 ({0, 1} ∈ V → {0, 1} = (Base‘{⟨(Base‘ndx), {0, 1}⟩, ⟨(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))⟩}))
113, 10ax-mp 5 . . . . 5 {0, 1} = (Base‘{⟨(Base‘ndx), {0, 1}⟩, ⟨(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))⟩})
1211eqcomi 2745 . . . 4 (Base‘{⟨(Base‘ndx), {0, 1}⟩, ⟨(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))⟩}) = {0, 1}
133, 3mpoex 7988 . . . . . 6 (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1)) ∈ V
149grpplusg 17095 . . . . . 6 ((𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1)) ∈ V → (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1)) = (+g‘{⟨(Base‘ndx), {0, 1}⟩, ⟨(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))⟩}))
1513, 14ax-mp 5 . . . . 5 (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1)) = (+g‘{⟨(Base‘ndx), {0, 1}⟩, ⟨(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))⟩})
1615eqcomi 2745 . . . 4 (+g‘{⟨(Base‘ndx), {0, 1}⟩, ⟨(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))⟩}) = (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1))
172, 12, 16sgrp2nmndlem4 18663 . . 3 ((♯‘{0, 1}) = 2 → {⟨(Base‘ndx), {0, 1}⟩, ⟨(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))⟩} ∈ Smgrp)
18 neleq1 3051 . . . 4 (𝑚 = {⟨(Base‘ndx), {0, 1}⟩, ⟨(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))⟩} → (𝑚 ∉ Mnd ↔ {⟨(Base‘ndx), {0, 1}⟩, ⟨(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))⟩} ∉ Mnd))
1918adantl 482 . . 3 (((♯‘{0, 1}) = 2 ∧ 𝑚 = {⟨(Base‘ndx), {0, 1}⟩, ⟨(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))⟩}) → (𝑚 ∉ Mnd ↔ {⟨(Base‘ndx), {0, 1}⟩, ⟨(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))⟩} ∉ Mnd))
202, 12, 16sgrp2nmndlem5 18664 . . 3 ((♯‘{0, 1}) = 2 → {⟨(Base‘ndx), {0, 1}⟩, ⟨(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))⟩} ∉ Mnd)
2117, 19, 20rspcedvd 3572 . 2 ((♯‘{0, 1}) = 2 → ∃𝑚 ∈ Smgrp 𝑚 ∉ Mnd)
221, 21ax-mp 5 1 𝑚 ∈ Smgrp 𝑚 ∉ Mnd
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1540  wcel 2105  wnel 3046  wrex 3070  Vcvv 3441  ifcif 4473  {cpr 4575  cop 4579  cfv 6479  cmpo 7339  0cc0 10972  1c1 10973  2c2 12129  chash 14145  ndxcnx 16991  Basecbs 17009  +gcplusg 17059  Smgrpcsgrp 18471  Mndcmnd 18482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-int 4895  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-1st 7899  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-1o 8367  df-oadd 8371  df-er 8569  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-dju 9758  df-card 9796  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-nn 12075  df-2 12137  df-n0 12335  df-z 12421  df-uz 12684  df-fz 13341  df-hash 14146  df-struct 16945  df-slot 16980  df-ndx 16992  df-base 17010  df-plusg 17072  df-mgm 18423  df-sgrp 18472  df-mnd 18483
This theorem is referenced by:  mndsssgrp  18669
  Copyright terms: Public domain W3C validator