MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgrpnmndex Structured version   Visualization version   GIF version

Theorem sgrpnmndex 18552
Description: There is a semigroup which is not a monoid. (Contributed by AV, 29-Jan-2020.)
Assertion
Ref Expression
sgrpnmndex 𝑚 ∈ Smgrp 𝑚 ∉ Mnd

Proof of Theorem sgrpnmndex
Dummy variables 𝑥 𝑦 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prhash2ex 14095 . 2 (♯‘{0, 1}) = 2
2 eqid 2739 . . . 4 {0, 1} = {0, 1}
3 prex 5358 . . . . . 6 {0, 1} ∈ V
4 eqeq1 2743 . . . . . . . . . . 11 (𝑥 = 𝑢 → (𝑥 = 0 ↔ 𝑢 = 0))
54ifbid 4487 . . . . . . . . . 10 (𝑥 = 𝑢 → if(𝑥 = 0, 0, 1) = if(𝑢 = 0, 0, 1))
6 eqidd 2740 . . . . . . . . . 10 (𝑦 = 𝑣 → if(𝑢 = 0, 0, 1) = if(𝑢 = 0, 0, 1))
75, 6cbvmpov 7361 . . . . . . . . 9 (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1)) = (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1))
87opeq2i 4813 . . . . . . . 8 ⟨(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))⟩ = ⟨(+g‘ndx), (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1))⟩
98preq2i 4678 . . . . . . 7 {⟨(Base‘ndx), {0, 1}⟩, ⟨(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))⟩} = {⟨(Base‘ndx), {0, 1}⟩, ⟨(+g‘ndx), (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1))⟩}
109grpbase 16977 . . . . . 6 ({0, 1} ∈ V → {0, 1} = (Base‘{⟨(Base‘ndx), {0, 1}⟩, ⟨(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))⟩}))
113, 10ax-mp 5 . . . . 5 {0, 1} = (Base‘{⟨(Base‘ndx), {0, 1}⟩, ⟨(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))⟩})
1211eqcomi 2748 . . . 4 (Base‘{⟨(Base‘ndx), {0, 1}⟩, ⟨(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))⟩}) = {0, 1}
133, 3mpoex 7906 . . . . . 6 (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1)) ∈ V
149grpplusg 16979 . . . . . 6 ((𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1)) ∈ V → (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1)) = (+g‘{⟨(Base‘ndx), {0, 1}⟩, ⟨(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))⟩}))
1513, 14ax-mp 5 . . . . 5 (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1)) = (+g‘{⟨(Base‘ndx), {0, 1}⟩, ⟨(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))⟩})
1615eqcomi 2748 . . . 4 (+g‘{⟨(Base‘ndx), {0, 1}⟩, ⟨(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))⟩}) = (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1))
172, 12, 16sgrp2nmndlem4 18548 . . 3 ((♯‘{0, 1}) = 2 → {⟨(Base‘ndx), {0, 1}⟩, ⟨(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))⟩} ∈ Smgrp)
18 neleq1 3055 . . . 4 (𝑚 = {⟨(Base‘ndx), {0, 1}⟩, ⟨(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))⟩} → (𝑚 ∉ Mnd ↔ {⟨(Base‘ndx), {0, 1}⟩, ⟨(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))⟩} ∉ Mnd))
1918adantl 481 . . 3 (((♯‘{0, 1}) = 2 ∧ 𝑚 = {⟨(Base‘ndx), {0, 1}⟩, ⟨(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))⟩}) → (𝑚 ∉ Mnd ↔ {⟨(Base‘ndx), {0, 1}⟩, ⟨(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))⟩} ∉ Mnd))
202, 12, 16sgrp2nmndlem5 18549 . . 3 ((♯‘{0, 1}) = 2 → {⟨(Base‘ndx), {0, 1}⟩, ⟨(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))⟩} ∉ Mnd)
2117, 19, 20rspcedvd 3563 . 2 ((♯‘{0, 1}) = 2 → ∃𝑚 ∈ Smgrp 𝑚 ∉ Mnd)
221, 21ax-mp 5 1 𝑚 ∈ Smgrp 𝑚 ∉ Mnd
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1541  wcel 2109  wnel 3050  wrex 3066  Vcvv 3430  ifcif 4464  {cpr 4568  cop 4572  cfv 6430  cmpo 7270  0cc0 10855  1c1 10856  2c2 12011  chash 14025  ndxcnx 16875  Basecbs 16893  +gcplusg 16943  Smgrpcsgrp 18355  Mndcmnd 18366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-oadd 8285  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-dju 9643  df-card 9681  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-2 12019  df-n0 12217  df-z 12303  df-uz 12565  df-fz 13222  df-hash 14026  df-struct 16829  df-slot 16864  df-ndx 16876  df-base 16894  df-plusg 16956  df-mgm 18307  df-sgrp 18356  df-mnd 18367
This theorem is referenced by:  mndsssgrp  18554
  Copyright terms: Public domain W3C validator