Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sgrpnmndex | Structured version Visualization version GIF version |
Description: There is a semigroup which is not a monoid. (Contributed by AV, 29-Jan-2020.) |
Ref | Expression |
---|---|
sgrpnmndex | ⊢ ∃𝑚 ∈ Smgrp 𝑚 ∉ Mnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prhash2ex 14163 | . 2 ⊢ (♯‘{0, 1}) = 2 | |
2 | eqid 2736 | . . . 4 ⊢ {0, 1} = {0, 1} | |
3 | prex 5364 | . . . . . 6 ⊢ {0, 1} ∈ V | |
4 | eqeq1 2740 | . . . . . . . . . . 11 ⊢ (𝑥 = 𝑢 → (𝑥 = 0 ↔ 𝑢 = 0)) | |
5 | 4 | ifbid 4488 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑢 → if(𝑥 = 0, 0, 1) = if(𝑢 = 0, 0, 1)) |
6 | eqidd 2737 | . . . . . . . . . 10 ⊢ (𝑦 = 𝑣 → if(𝑢 = 0, 0, 1) = if(𝑢 = 0, 0, 1)) | |
7 | 5, 6 | cbvmpov 7402 | . . . . . . . . 9 ⊢ (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1)) = (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1)) |
8 | 7 | opeq2i 4813 | . . . . . . . 8 ⊢ 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉 = 〈(+g‘ndx), (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1))〉 |
9 | 8 | preq2i 4677 | . . . . . . 7 ⊢ {〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉} = {〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1))〉} |
10 | 9 | grpbase 17045 | . . . . . 6 ⊢ ({0, 1} ∈ V → {0, 1} = (Base‘{〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉})) |
11 | 3, 10 | ax-mp 5 | . . . . 5 ⊢ {0, 1} = (Base‘{〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉}) |
12 | 11 | eqcomi 2745 | . . . 4 ⊢ (Base‘{〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉}) = {0, 1} |
13 | 3, 3 | mpoex 7952 | . . . . . 6 ⊢ (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1)) ∈ V |
14 | 9 | grpplusg 17047 | . . . . . 6 ⊢ ((𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1)) ∈ V → (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1)) = (+g‘{〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉})) |
15 | 13, 14 | ax-mp 5 | . . . . 5 ⊢ (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1)) = (+g‘{〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉}) |
16 | 15 | eqcomi 2745 | . . . 4 ⊢ (+g‘{〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉}) = (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1)) |
17 | 2, 12, 16 | sgrp2nmndlem4 18616 | . . 3 ⊢ ((♯‘{0, 1}) = 2 → {〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉} ∈ Smgrp) |
18 | neleq1 3052 | . . . 4 ⊢ (𝑚 = {〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉} → (𝑚 ∉ Mnd ↔ {〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉} ∉ Mnd)) | |
19 | 18 | adantl 483 | . . 3 ⊢ (((♯‘{0, 1}) = 2 ∧ 𝑚 = {〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉}) → (𝑚 ∉ Mnd ↔ {〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉} ∉ Mnd)) |
20 | 2, 12, 16 | sgrp2nmndlem5 18617 | . . 3 ⊢ ((♯‘{0, 1}) = 2 → {〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉} ∉ Mnd) |
21 | 17, 19, 20 | rspcedvd 3568 | . 2 ⊢ ((♯‘{0, 1}) = 2 → ∃𝑚 ∈ Smgrp 𝑚 ∉ Mnd) |
22 | 1, 21 | ax-mp 5 | 1 ⊢ ∃𝑚 ∈ Smgrp 𝑚 ∉ Mnd |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2104 ∉ wnel 3047 ∃wrex 3071 Vcvv 3437 ifcif 4465 {cpr 4567 〈cop 4571 ‘cfv 6458 ∈ cmpo 7309 0cc0 10921 1c1 10922 2c2 12078 ♯chash 14094 ndxcnx 16943 Basecbs 16961 +gcplusg 17011 Smgrpcsgrp 18423 Mndcmnd 18434 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-oadd 8332 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-dju 9707 df-card 9745 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-nn 12024 df-2 12086 df-n0 12284 df-z 12370 df-uz 12633 df-fz 13290 df-hash 14095 df-struct 16897 df-slot 16932 df-ndx 16944 df-base 16962 df-plusg 17024 df-mgm 18375 df-sgrp 18424 df-mnd 18435 |
This theorem is referenced by: mndsssgrp 18622 |
Copyright terms: Public domain | W3C validator |