| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sgrpnmndex | Structured version Visualization version GIF version | ||
| Description: There is a semigroup which is not a monoid. (Contributed by AV, 29-Jan-2020.) |
| Ref | Expression |
|---|---|
| sgrpnmndex | ⊢ ∃𝑚 ∈ Smgrp 𝑚 ∉ Mnd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prhash2ex 14306 | . 2 ⊢ (♯‘{0, 1}) = 2 | |
| 2 | eqid 2729 | . . . 4 ⊢ {0, 1} = {0, 1} | |
| 3 | prex 5376 | . . . . . 6 ⊢ {0, 1} ∈ V | |
| 4 | eqeq1 2733 | . . . . . . . . . . 11 ⊢ (𝑥 = 𝑢 → (𝑥 = 0 ↔ 𝑢 = 0)) | |
| 5 | 4 | ifbid 4500 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑢 → if(𝑥 = 0, 0, 1) = if(𝑢 = 0, 0, 1)) |
| 6 | eqidd 2730 | . . . . . . . . . 10 ⊢ (𝑦 = 𝑣 → if(𝑢 = 0, 0, 1) = if(𝑢 = 0, 0, 1)) | |
| 7 | 5, 6 | cbvmpov 7444 | . . . . . . . . 9 ⊢ (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1)) = (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1)) |
| 8 | 7 | opeq2i 4828 | . . . . . . . 8 ⊢ 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉 = 〈(+g‘ndx), (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1))〉 |
| 9 | 8 | preq2i 4689 | . . . . . . 7 ⊢ {〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉} = {〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1))〉} |
| 10 | 9 | grpbase 17193 | . . . . . 6 ⊢ ({0, 1} ∈ V → {0, 1} = (Base‘{〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉})) |
| 11 | 3, 10 | ax-mp 5 | . . . . 5 ⊢ {0, 1} = (Base‘{〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉}) |
| 12 | 11 | eqcomi 2738 | . . . 4 ⊢ (Base‘{〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉}) = {0, 1} |
| 13 | 3, 3 | mpoex 8014 | . . . . . 6 ⊢ (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1)) ∈ V |
| 14 | 9 | grpplusg 17194 | . . . . . 6 ⊢ ((𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1)) ∈ V → (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1)) = (+g‘{〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉})) |
| 15 | 13, 14 | ax-mp 5 | . . . . 5 ⊢ (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1)) = (+g‘{〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉}) |
| 16 | 15 | eqcomi 2738 | . . . 4 ⊢ (+g‘{〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉}) = (𝑢 ∈ {0, 1}, 𝑣 ∈ {0, 1} ↦ if(𝑢 = 0, 0, 1)) |
| 17 | 2, 12, 16 | sgrp2nmndlem4 18802 | . . 3 ⊢ ((♯‘{0, 1}) = 2 → {〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉} ∈ Smgrp) |
| 18 | neleq1 3035 | . . . 4 ⊢ (𝑚 = {〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉} → (𝑚 ∉ Mnd ↔ {〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉} ∉ Mnd)) | |
| 19 | 18 | adantl 481 | . . 3 ⊢ (((♯‘{0, 1}) = 2 ∧ 𝑚 = {〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉}) → (𝑚 ∉ Mnd ↔ {〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉} ∉ Mnd)) |
| 20 | 2, 12, 16 | sgrp2nmndlem5 18803 | . . 3 ⊢ ((♯‘{0, 1}) = 2 → {〈(Base‘ndx), {0, 1}〉, 〈(+g‘ndx), (𝑥 ∈ {0, 1}, 𝑦 ∈ {0, 1} ↦ if(𝑥 = 0, 0, 1))〉} ∉ Mnd) |
| 21 | 17, 19, 20 | rspcedvd 3579 | . 2 ⊢ ((♯‘{0, 1}) = 2 → ∃𝑚 ∈ Smgrp 𝑚 ∉ Mnd) |
| 22 | 1, 21 | ax-mp 5 | 1 ⊢ ∃𝑚 ∈ Smgrp 𝑚 ∉ Mnd |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∉ wnel 3029 ∃wrex 3053 Vcvv 3436 ifcif 4476 {cpr 4579 〈cop 4583 ‘cfv 6482 ∈ cmpo 7351 0cc0 11009 1c1 11010 2c2 12183 ♯chash 14237 ndxcnx 17104 Basecbs 17120 +gcplusg 17161 Smgrpcsgrp 18592 Mndcmnd 18608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-oadd 8392 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-dju 9797 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-n0 12385 df-z 12472 df-uz 12736 df-fz 13411 df-hash 14238 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mgm 18514 df-sgrp 18593 df-mnd 18609 |
| This theorem is referenced by: mndsssgrp 18808 |
| Copyright terms: Public domain | W3C validator |