| Step | Hyp | Ref
| Expression |
| 1 | | neq0 4352 |
. . . . . . 7
⊢ (¬
𝑥 = ∅ ↔
∃𝑦 𝑦 ∈ 𝑥) |
| 2 | | indistop 23009 |
. . . . . . . . . . 11
⊢ {∅,
𝐴} ∈
Top |
| 3 | | indistop 23009 |
. . . . . . . . . . 11
⊢ {∅,
𝐵} ∈
Top |
| 4 | | eltx 23576 |
. . . . . . . . . . 11
⊢
(({∅, 𝐴}
∈ Top ∧ {∅, 𝐵} ∈ Top) → (𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) ↔ ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ {∅, 𝐴}∃𝑤 ∈ {∅, 𝐵} (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥))) |
| 5 | 2, 3, 4 | mp2an 692 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ({∅, 𝐴} ×t {∅,
𝐵}) ↔ ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ {∅, 𝐴}∃𝑤 ∈ {∅, 𝐵} (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) |
| 6 | | rsp 3247 |
. . . . . . . . . 10
⊢
(∀𝑦 ∈
𝑥 ∃𝑧 ∈ {∅, 𝐴}∃𝑤 ∈ {∅, 𝐵} (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥) → (𝑦 ∈ 𝑥 → ∃𝑧 ∈ {∅, 𝐴}∃𝑤 ∈ {∅, 𝐵} (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥))) |
| 7 | 5, 6 | sylbi 217 |
. . . . . . . . 9
⊢ (𝑥 ∈ ({∅, 𝐴} ×t {∅,
𝐵}) → (𝑦 ∈ 𝑥 → ∃𝑧 ∈ {∅, 𝐴}∃𝑤 ∈ {∅, 𝐵} (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥))) |
| 8 | | elssuni 4937 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ({∅, 𝐴} ×t {∅,
𝐵}) → 𝑥 ⊆ ∪ ({∅, 𝐴} ×t {∅, 𝐵})) |
| 9 | | indisuni 23010 |
. . . . . . . . . . . . . . 15
⊢ ( I
‘𝐴) = ∪ {∅, 𝐴} |
| 10 | | indisuni 23010 |
. . . . . . . . . . . . . . 15
⊢ ( I
‘𝐵) = ∪ {∅, 𝐵} |
| 11 | 2, 3, 9, 10 | txunii 23601 |
. . . . . . . . . . . . . 14
⊢ (( I
‘𝐴) × ( I
‘𝐵)) = ∪ ({∅, 𝐴} ×t {∅, 𝐵}) |
| 12 | 8, 11 | sseqtrrdi 4025 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ({∅, 𝐴} ×t {∅,
𝐵}) → 𝑥 ⊆ (( I ‘𝐴) × ( I ‘𝐵))) |
| 13 | 12 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ({∅, 𝐴} ×t {∅,
𝐵}) ∧ (𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵})) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → 𝑥 ⊆ (( I ‘𝐴) × ( I ‘𝐵))) |
| 14 | | ne0i 4341 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ (𝑧 × 𝑤) → (𝑧 × 𝑤) ≠ ∅) |
| 15 | 14 | ad2antrl 728 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → (𝑧 × 𝑤) ≠ ∅) |
| 16 | | xpnz 6179 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑧 ≠ ∅ ∧ 𝑤 ≠ ∅) ↔ (𝑧 × 𝑤) ≠ ∅) |
| 17 | 15, 16 | sylibr 234 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → (𝑧 ≠ ∅ ∧ 𝑤 ≠ ∅)) |
| 18 | 17 | simpld 494 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → 𝑧 ≠ ∅) |
| 19 | 18 | neneqd 2945 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → ¬ 𝑧 = ∅) |
| 20 | | simpll 767 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → 𝑧 ∈ {∅, 𝐴}) |
| 21 | | indislem 23007 |
. . . . . . . . . . . . . . . . . . 19
⊢ {∅,
( I ‘𝐴)} = {∅,
𝐴} |
| 22 | 20, 21 | eleqtrrdi 2852 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → 𝑧 ∈ {∅, ( I ‘𝐴)}) |
| 23 | | elpri 4649 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ {∅, ( I
‘𝐴)} → (𝑧 = ∅ ∨ 𝑧 = ( I ‘𝐴))) |
| 24 | 22, 23 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → (𝑧 = ∅ ∨ 𝑧 = ( I ‘𝐴))) |
| 25 | 24 | ord 865 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → (¬ 𝑧 = ∅ → 𝑧 = ( I ‘𝐴))) |
| 26 | 19, 25 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢ (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → 𝑧 = ( I ‘𝐴)) |
| 27 | 17 | simprd 495 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → 𝑤 ≠ ∅) |
| 28 | 27 | neneqd 2945 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → ¬ 𝑤 = ∅) |
| 29 | | simplr 769 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → 𝑤 ∈ {∅, 𝐵}) |
| 30 | | indislem 23007 |
. . . . . . . . . . . . . . . . . . 19
⊢ {∅,
( I ‘𝐵)} = {∅,
𝐵} |
| 31 | 29, 30 | eleqtrrdi 2852 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → 𝑤 ∈ {∅, ( I ‘𝐵)}) |
| 32 | | elpri 4649 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 ∈ {∅, ( I
‘𝐵)} → (𝑤 = ∅ ∨ 𝑤 = ( I ‘𝐵))) |
| 33 | 31, 32 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → (𝑤 = ∅ ∨ 𝑤 = ( I ‘𝐵))) |
| 34 | 33 | ord 865 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → (¬ 𝑤 = ∅ → 𝑤 = ( I ‘𝐵))) |
| 35 | 28, 34 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢ (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → 𝑤 = ( I ‘𝐵)) |
| 36 | 26, 35 | xpeq12d 5716 |
. . . . . . . . . . . . . 14
⊢ (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → (𝑧 × 𝑤) = (( I ‘𝐴) × ( I ‘𝐵))) |
| 37 | | simprr 773 |
. . . . . . . . . . . . . 14
⊢ (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → (𝑧 × 𝑤) ⊆ 𝑥) |
| 38 | 36, 37 | eqsstrrd 4019 |
. . . . . . . . . . . . 13
⊢ (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → (( I ‘𝐴) × ( I ‘𝐵)) ⊆ 𝑥) |
| 39 | 38 | adantll 714 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ({∅, 𝐴} ×t {∅,
𝐵}) ∧ (𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵})) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → (( I ‘𝐴) × ( I ‘𝐵)) ⊆ 𝑥) |
| 40 | 13, 39 | eqssd 4001 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ ({∅, 𝐴} ×t {∅,
𝐵}) ∧ (𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵})) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → 𝑥 = (( I ‘𝐴) × ( I ‘𝐵))) |
| 41 | 40 | ex 412 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ({∅, 𝐴} ×t {∅,
𝐵}) ∧ (𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵})) → ((𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥) → 𝑥 = (( I ‘𝐴) × ( I ‘𝐵)))) |
| 42 | 41 | rexlimdvva 3213 |
. . . . . . . . 9
⊢ (𝑥 ∈ ({∅, 𝐴} ×t {∅,
𝐵}) → (∃𝑧 ∈ {∅, 𝐴}∃𝑤 ∈ {∅, 𝐵} (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥) → 𝑥 = (( I ‘𝐴) × ( I ‘𝐵)))) |
| 43 | 7, 42 | syld 47 |
. . . . . . . 8
⊢ (𝑥 ∈ ({∅, 𝐴} ×t {∅,
𝐵}) → (𝑦 ∈ 𝑥 → 𝑥 = (( I ‘𝐴) × ( I ‘𝐵)))) |
| 44 | 43 | exlimdv 1933 |
. . . . . . 7
⊢ (𝑥 ∈ ({∅, 𝐴} ×t {∅,
𝐵}) → (∃𝑦 𝑦 ∈ 𝑥 → 𝑥 = (( I ‘𝐴) × ( I ‘𝐵)))) |
| 45 | 1, 44 | biimtrid 242 |
. . . . . 6
⊢ (𝑥 ∈ ({∅, 𝐴} ×t {∅,
𝐵}) → (¬ 𝑥 = ∅ → 𝑥 = (( I ‘𝐴) × ( I ‘𝐵)))) |
| 46 | 45 | orrd 864 |
. . . . 5
⊢ (𝑥 ∈ ({∅, 𝐴} ×t {∅,
𝐵}) → (𝑥 = ∅ ∨ 𝑥 = (( I ‘𝐴) × ( I ‘𝐵)))) |
| 47 | | vex 3484 |
. . . . . 6
⊢ 𝑥 ∈ V |
| 48 | 47 | elpr 4650 |
. . . . 5
⊢ (𝑥 ∈ {∅, (( I
‘𝐴) × ( I
‘𝐵))} ↔ (𝑥 = ∅ ∨ 𝑥 = (( I ‘𝐴) × ( I ‘𝐵)))) |
| 49 | 46, 48 | sylibr 234 |
. . . 4
⊢ (𝑥 ∈ ({∅, 𝐴} ×t {∅,
𝐵}) → 𝑥 ∈ {∅, (( I
‘𝐴) × ( I
‘𝐵))}) |
| 50 | 49 | ssriv 3987 |
. . 3
⊢
({∅, 𝐴}
×t {∅, 𝐵}) ⊆ {∅, (( I ‘𝐴) × ( I ‘𝐵))} |
| 51 | 9 | toptopon 22923 |
. . . . . . 7
⊢
({∅, 𝐴} ∈
Top ↔ {∅, 𝐴}
∈ (TopOn‘( I ‘𝐴))) |
| 52 | 2, 51 | mpbi 230 |
. . . . . 6
⊢ {∅,
𝐴} ∈ (TopOn‘( I
‘𝐴)) |
| 53 | 10 | toptopon 22923 |
. . . . . . 7
⊢
({∅, 𝐵} ∈
Top ↔ {∅, 𝐵}
∈ (TopOn‘( I ‘𝐵))) |
| 54 | 3, 53 | mpbi 230 |
. . . . . 6
⊢ {∅,
𝐵} ∈ (TopOn‘( I
‘𝐵)) |
| 55 | | txtopon 23599 |
. . . . . 6
⊢
(({∅, 𝐴}
∈ (TopOn‘( I ‘𝐴)) ∧ {∅, 𝐵} ∈ (TopOn‘( I ‘𝐵))) → ({∅, 𝐴} ×t {∅,
𝐵}) ∈ (TopOn‘((
I ‘𝐴) × ( I
‘𝐵)))) |
| 56 | 52, 54, 55 | mp2an 692 |
. . . . 5
⊢
({∅, 𝐴}
×t {∅, 𝐵}) ∈ (TopOn‘(( I ‘𝐴) × ( I ‘𝐵))) |
| 57 | | topgele 22936 |
. . . . 5
⊢
(({∅, 𝐴}
×t {∅, 𝐵}) ∈ (TopOn‘(( I ‘𝐴) × ( I ‘𝐵))) → ({∅, (( I
‘𝐴) × ( I
‘𝐵))} ⊆
({∅, 𝐴}
×t {∅, 𝐵}) ∧ ({∅, 𝐴} ×t {∅, 𝐵}) ⊆ 𝒫 (( I
‘𝐴) × ( I
‘𝐵)))) |
| 58 | 56, 57 | ax-mp 5 |
. . . 4
⊢
({∅, (( I ‘𝐴) × ( I ‘𝐵))} ⊆ ({∅, 𝐴} ×t {∅, 𝐵}) ∧ ({∅, 𝐴} ×t {∅,
𝐵}) ⊆ 𝒫 (( I
‘𝐴) × ( I
‘𝐵))) |
| 59 | 58 | simpli 483 |
. . 3
⊢ {∅,
(( I ‘𝐴) × ( I
‘𝐵))} ⊆
({∅, 𝐴}
×t {∅, 𝐵}) |
| 60 | 50, 59 | eqssi 4000 |
. 2
⊢
({∅, 𝐴}
×t {∅, 𝐵}) = {∅, (( I ‘𝐴) × ( I ‘𝐵))} |
| 61 | | txindislem 23641 |
. . 3
⊢ (( I
‘𝐴) × ( I
‘𝐵)) = ( I
‘(𝐴 × 𝐵)) |
| 62 | 61 | preq2i 4737 |
. 2
⊢ {∅,
(( I ‘𝐴) × ( I
‘𝐵))} = {∅, ( I
‘(𝐴 × 𝐵))} |
| 63 | | indislem 23007 |
. 2
⊢ {∅,
( I ‘(𝐴 × 𝐵))} = {∅, (𝐴 × 𝐵)} |
| 64 | 60, 62, 63 | 3eqtri 2769 |
1
⊢
({∅, 𝐴}
×t {∅, 𝐵}) = {∅, (𝐴 × 𝐵)} |