MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txindis Structured version   Visualization version   GIF version

Theorem txindis 23557
Description: The topological product of indiscrete spaces is indiscrete. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
txindis ({∅, 𝐴} ×t {∅, 𝐵}) = {∅, (𝐴 × 𝐵)}

Proof of Theorem txindis
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neq0 4325 . . . . . . 7 𝑥 = ∅ ↔ ∃𝑦 𝑦𝑥)
2 indistop 22925 . . . . . . . . . . 11 {∅, 𝐴} ∈ Top
3 indistop 22925 . . . . . . . . . . 11 {∅, 𝐵} ∈ Top
4 eltx 23491 . . . . . . . . . . 11 (({∅, 𝐴} ∈ Top ∧ {∅, 𝐵} ∈ Top) → (𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) ↔ ∀𝑦𝑥𝑧 ∈ {∅, 𝐴}∃𝑤 ∈ {∅, 𝐵} (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)))
52, 3, 4mp2an 692 . . . . . . . . . 10 (𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) ↔ ∀𝑦𝑥𝑧 ∈ {∅, 𝐴}∃𝑤 ∈ {∅, 𝐵} (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥))
6 rsp 3228 . . . . . . . . . 10 (∀𝑦𝑥𝑧 ∈ {∅, 𝐴}∃𝑤 ∈ {∅, 𝐵} (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥) → (𝑦𝑥 → ∃𝑧 ∈ {∅, 𝐴}∃𝑤 ∈ {∅, 𝐵} (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)))
75, 6sylbi 217 . . . . . . . . 9 (𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) → (𝑦𝑥 → ∃𝑧 ∈ {∅, 𝐴}∃𝑤 ∈ {∅, 𝐵} (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)))
8 elssuni 4910 . . . . . . . . . . . . . 14 (𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) → 𝑥 ({∅, 𝐴} ×t {∅, 𝐵}))
9 indisuni 22926 . . . . . . . . . . . . . . 15 ( I ‘𝐴) = {∅, 𝐴}
10 indisuni 22926 . . . . . . . . . . . . . . 15 ( I ‘𝐵) = {∅, 𝐵}
112, 3, 9, 10txunii 23516 . . . . . . . . . . . . . 14 (( I ‘𝐴) × ( I ‘𝐵)) = ({∅, 𝐴} ×t {∅, 𝐵})
128, 11sseqtrrdi 3998 . . . . . . . . . . . . 13 (𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) → 𝑥 ⊆ (( I ‘𝐴) × ( I ‘𝐵)))
1312ad2antrr 726 . . . . . . . . . . . 12 (((𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) ∧ (𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵})) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → 𝑥 ⊆ (( I ‘𝐴) × ( I ‘𝐵)))
14 ne0i 4314 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝑧 × 𝑤) → (𝑧 × 𝑤) ≠ ∅)
1514ad2antrl 728 . . . . . . . . . . . . . . . . . . 19 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → (𝑧 × 𝑤) ≠ ∅)
16 xpnz 6145 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ≠ ∅ ∧ 𝑤 ≠ ∅) ↔ (𝑧 × 𝑤) ≠ ∅)
1715, 16sylibr 234 . . . . . . . . . . . . . . . . . 18 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → (𝑧 ≠ ∅ ∧ 𝑤 ≠ ∅))
1817simpld 494 . . . . . . . . . . . . . . . . 17 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → 𝑧 ≠ ∅)
1918neneqd 2936 . . . . . . . . . . . . . . . 16 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → ¬ 𝑧 = ∅)
20 simpll 766 . . . . . . . . . . . . . . . . . . 19 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → 𝑧 ∈ {∅, 𝐴})
21 indislem 22923 . . . . . . . . . . . . . . . . . . 19 {∅, ( I ‘𝐴)} = {∅, 𝐴}
2220, 21eleqtrrdi 2844 . . . . . . . . . . . . . . . . . 18 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → 𝑧 ∈ {∅, ( I ‘𝐴)})
23 elpri 4622 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ {∅, ( I ‘𝐴)} → (𝑧 = ∅ ∨ 𝑧 = ( I ‘𝐴)))
2422, 23syl 17 . . . . . . . . . . . . . . . . 17 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → (𝑧 = ∅ ∨ 𝑧 = ( I ‘𝐴)))
2524ord 864 . . . . . . . . . . . . . . . 16 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → (¬ 𝑧 = ∅ → 𝑧 = ( I ‘𝐴)))
2619, 25mpd 15 . . . . . . . . . . . . . . 15 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → 𝑧 = ( I ‘𝐴))
2717simprd 495 . . . . . . . . . . . . . . . . 17 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → 𝑤 ≠ ∅)
2827neneqd 2936 . . . . . . . . . . . . . . . 16 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → ¬ 𝑤 = ∅)
29 simplr 768 . . . . . . . . . . . . . . . . . . 19 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → 𝑤 ∈ {∅, 𝐵})
30 indislem 22923 . . . . . . . . . . . . . . . . . . 19 {∅, ( I ‘𝐵)} = {∅, 𝐵}
3129, 30eleqtrrdi 2844 . . . . . . . . . . . . . . . . . 18 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → 𝑤 ∈ {∅, ( I ‘𝐵)})
32 elpri 4622 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ {∅, ( I ‘𝐵)} → (𝑤 = ∅ ∨ 𝑤 = ( I ‘𝐵)))
3331, 32syl 17 . . . . . . . . . . . . . . . . 17 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → (𝑤 = ∅ ∨ 𝑤 = ( I ‘𝐵)))
3433ord 864 . . . . . . . . . . . . . . . 16 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → (¬ 𝑤 = ∅ → 𝑤 = ( I ‘𝐵)))
3528, 34mpd 15 . . . . . . . . . . . . . . 15 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → 𝑤 = ( I ‘𝐵))
3626, 35xpeq12d 5682 . . . . . . . . . . . . . 14 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → (𝑧 × 𝑤) = (( I ‘𝐴) × ( I ‘𝐵)))
37 simprr 772 . . . . . . . . . . . . . 14 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → (𝑧 × 𝑤) ⊆ 𝑥)
3836, 37eqsstrrd 3992 . . . . . . . . . . . . 13 (((𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵}) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → (( I ‘𝐴) × ( I ‘𝐵)) ⊆ 𝑥)
3938adantll 714 . . . . . . . . . . . 12 (((𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) ∧ (𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵})) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → (( I ‘𝐴) × ( I ‘𝐵)) ⊆ 𝑥)
4013, 39eqssd 3974 . . . . . . . . . . 11 (((𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) ∧ (𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵})) ∧ (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) → 𝑥 = (( I ‘𝐴) × ( I ‘𝐵)))
4140ex 412 . . . . . . . . . 10 ((𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) ∧ (𝑧 ∈ {∅, 𝐴} ∧ 𝑤 ∈ {∅, 𝐵})) → ((𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥) → 𝑥 = (( I ‘𝐴) × ( I ‘𝐵))))
4241rexlimdvva 3196 . . . . . . . . 9 (𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) → (∃𝑧 ∈ {∅, 𝐴}∃𝑤 ∈ {∅, 𝐵} (𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥) → 𝑥 = (( I ‘𝐴) × ( I ‘𝐵))))
437, 42syld 47 . . . . . . . 8 (𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) → (𝑦𝑥𝑥 = (( I ‘𝐴) × ( I ‘𝐵))))
4443exlimdv 1932 . . . . . . 7 (𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) → (∃𝑦 𝑦𝑥𝑥 = (( I ‘𝐴) × ( I ‘𝐵))))
451, 44biimtrid 242 . . . . . 6 (𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) → (¬ 𝑥 = ∅ → 𝑥 = (( I ‘𝐴) × ( I ‘𝐵))))
4645orrd 863 . . . . 5 (𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) → (𝑥 = ∅ ∨ 𝑥 = (( I ‘𝐴) × ( I ‘𝐵))))
47 vex 3461 . . . . . 6 𝑥 ∈ V
4847elpr 4623 . . . . 5 (𝑥 ∈ {∅, (( I ‘𝐴) × ( I ‘𝐵))} ↔ (𝑥 = ∅ ∨ 𝑥 = (( I ‘𝐴) × ( I ‘𝐵))))
4946, 48sylibr 234 . . . 4 (𝑥 ∈ ({∅, 𝐴} ×t {∅, 𝐵}) → 𝑥 ∈ {∅, (( I ‘𝐴) × ( I ‘𝐵))})
5049ssriv 3960 . . 3 ({∅, 𝐴} ×t {∅, 𝐵}) ⊆ {∅, (( I ‘𝐴) × ( I ‘𝐵))}
519toptopon 22840 . . . . . . 7 ({∅, 𝐴} ∈ Top ↔ {∅, 𝐴} ∈ (TopOn‘( I ‘𝐴)))
522, 51mpbi 230 . . . . . 6 {∅, 𝐴} ∈ (TopOn‘( I ‘𝐴))
5310toptopon 22840 . . . . . . 7 ({∅, 𝐵} ∈ Top ↔ {∅, 𝐵} ∈ (TopOn‘( I ‘𝐵)))
543, 53mpbi 230 . . . . . 6 {∅, 𝐵} ∈ (TopOn‘( I ‘𝐵))
55 txtopon 23514 . . . . . 6 (({∅, 𝐴} ∈ (TopOn‘( I ‘𝐴)) ∧ {∅, 𝐵} ∈ (TopOn‘( I ‘𝐵))) → ({∅, 𝐴} ×t {∅, 𝐵}) ∈ (TopOn‘(( I ‘𝐴) × ( I ‘𝐵))))
5652, 54, 55mp2an 692 . . . . 5 ({∅, 𝐴} ×t {∅, 𝐵}) ∈ (TopOn‘(( I ‘𝐴) × ( I ‘𝐵)))
57 topgele 22853 . . . . 5 (({∅, 𝐴} ×t {∅, 𝐵}) ∈ (TopOn‘(( I ‘𝐴) × ( I ‘𝐵))) → ({∅, (( I ‘𝐴) × ( I ‘𝐵))} ⊆ ({∅, 𝐴} ×t {∅, 𝐵}) ∧ ({∅, 𝐴} ×t {∅, 𝐵}) ⊆ 𝒫 (( I ‘𝐴) × ( I ‘𝐵))))
5856, 57ax-mp 5 . . . 4 ({∅, (( I ‘𝐴) × ( I ‘𝐵))} ⊆ ({∅, 𝐴} ×t {∅, 𝐵}) ∧ ({∅, 𝐴} ×t {∅, 𝐵}) ⊆ 𝒫 (( I ‘𝐴) × ( I ‘𝐵)))
5958simpli 483 . . 3 {∅, (( I ‘𝐴) × ( I ‘𝐵))} ⊆ ({∅, 𝐴} ×t {∅, 𝐵})
6050, 59eqssi 3973 . 2 ({∅, 𝐴} ×t {∅, 𝐵}) = {∅, (( I ‘𝐴) × ( I ‘𝐵))}
61 txindislem 23556 . . 3 (( I ‘𝐴) × ( I ‘𝐵)) = ( I ‘(𝐴 × 𝐵))
6261preq2i 4710 . 2 {∅, (( I ‘𝐴) × ( I ‘𝐵))} = {∅, ( I ‘(𝐴 × 𝐵))}
63 indislem 22923 . 2 {∅, ( I ‘(𝐴 × 𝐵))} = {∅, (𝐴 × 𝐵)}
6460, 62, 633eqtri 2761 1 ({∅, 𝐴} ×t {∅, 𝐵}) = {∅, (𝐴 × 𝐵)}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1539  wex 1778  wcel 2107  wne 2931  wral 3050  wrex 3059  wss 3924  c0 4306  𝒫 cpw 4573  {cpr 4601   cuni 4880   I cid 5544   × cxp 5649  cfv 6527  (class class class)co 7399  Topctop 22816  TopOnctopon 22833   ×t ctx 23483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-id 5545  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-fv 6535  df-ov 7402  df-oprab 7403  df-mpo 7404  df-1st 7982  df-2nd 7983  df-topgen 17442  df-top 22817  df-topon 22834  df-bases 22869  df-tx 23485
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator