| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzo0to2pr | Structured version Visualization version GIF version | ||
| Description: A half-open integer range from 0 to 2 is an unordered pair. (Contributed by Alexander van der Vekens, 4-Dec-2017.) |
| Ref | Expression |
|---|---|
| fzo0to2pr | ⊢ (0..^2) = {0, 1} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2z 12514 | . . 3 ⊢ 2 ∈ ℤ | |
| 2 | fzoval 13567 | . . 3 ⊢ (2 ∈ ℤ → (0..^2) = (0...(2 − 1))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (0..^2) = (0...(2 − 1)) |
| 4 | 2m1e1 12257 | . . . 4 ⊢ (2 − 1) = 1 | |
| 5 | 0p1e1 12253 | . . . 4 ⊢ (0 + 1) = 1 | |
| 6 | 4, 5 | eqtr4i 2759 | . . 3 ⊢ (2 − 1) = (0 + 1) |
| 7 | 6 | oveq2i 7366 | . 2 ⊢ (0...(2 − 1)) = (0...(0 + 1)) |
| 8 | 0z 12490 | . . 3 ⊢ 0 ∈ ℤ | |
| 9 | fzpr 13486 | . . . 4 ⊢ (0 ∈ ℤ → (0...(0 + 1)) = {0, (0 + 1)}) | |
| 10 | 5 | preq2i 4691 | . . . 4 ⊢ {0, (0 + 1)} = {0, 1} |
| 11 | 9, 10 | eqtrdi 2784 | . . 3 ⊢ (0 ∈ ℤ → (0...(0 + 1)) = {0, 1}) |
| 12 | 8, 11 | ax-mp 5 | . 2 ⊢ (0...(0 + 1)) = {0, 1} |
| 13 | 3, 7, 12 | 3eqtri 2760 | 1 ⊢ (0..^2) = {0, 1} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 {cpr 4579 (class class class)co 7355 0cc0 11017 1c1 11018 + caddc 11020 − cmin 11355 2c2 12191 ℤcz 12479 ...cfz 13414 ..^cfzo 13561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-n0 12393 df-z 12480 df-uz 12743 df-fz 13415 df-fzo 13562 |
| This theorem is referenced by: fzo0to42pr 13660 s2dm 14804 wrdlen2i 14856 wrd2pr2op 14857 pfx2 14861 wwlktovf1 14871 bitsinv1lem 16359 upgr2wlk 29666 usgr2wlkneq 29755 usgr2trlncl 29759 usgr2pthlem 29762 usgr2pth 29763 uspgrn2crct 29807 2wlkdlem2 29925 usgrwwlks2on 29957 umgrwwlks2on 29958 nn0split01 32826 nn0disj01 32827 s2rnOLD 32954 cyc3fv1 33147 cyc3fv2 33148 lmat22lem 33902 eulerpartlemd 34451 prodfzo03 34688 elmod2 47517 grtriclwlk3 48107 2aryfvalel 48809 |
| Copyright terms: Public domain | W3C validator |