MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzo0to2pr Structured version   Visualization version   GIF version

Theorem fzo0to2pr 13657
Description: A half-open integer range from 0 to 2 is an unordered pair. (Contributed by Alexander van der Vekens, 4-Dec-2017.)
Assertion
Ref Expression
fzo0to2pr (0..^2) = {0, 1}

Proof of Theorem fzo0to2pr
StepHypRef Expression
1 2z 12514 . . 3 2 ∈ ℤ
2 fzoval 13567 . . 3 (2 ∈ ℤ → (0..^2) = (0...(2 − 1)))
31, 2ax-mp 5 . 2 (0..^2) = (0...(2 − 1))
4 2m1e1 12257 . . . 4 (2 − 1) = 1
5 0p1e1 12253 . . . 4 (0 + 1) = 1
64, 5eqtr4i 2759 . . 3 (2 − 1) = (0 + 1)
76oveq2i 7366 . 2 (0...(2 − 1)) = (0...(0 + 1))
8 0z 12490 . . 3 0 ∈ ℤ
9 fzpr 13486 . . . 4 (0 ∈ ℤ → (0...(0 + 1)) = {0, (0 + 1)})
105preq2i 4691 . . . 4 {0, (0 + 1)} = {0, 1}
119, 10eqtrdi 2784 . . 3 (0 ∈ ℤ → (0...(0 + 1)) = {0, 1})
128, 11ax-mp 5 . 2 (0...(0 + 1)) = {0, 1}
133, 7, 123eqtri 2760 1 (0..^2) = {0, 1}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2113  {cpr 4579  (class class class)co 7355  0cc0 11017  1c1 11018   + caddc 11020  cmin 11355  2c2 12191  cz 12479  ...cfz 13414  ..^cfzo 13561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-n0 12393  df-z 12480  df-uz 12743  df-fz 13415  df-fzo 13562
This theorem is referenced by:  fzo0to42pr  13660  s2dm  14804  wrdlen2i  14856  wrd2pr2op  14857  pfx2  14861  wwlktovf1  14871  bitsinv1lem  16359  upgr2wlk  29666  usgr2wlkneq  29755  usgr2trlncl  29759  usgr2pthlem  29762  usgr2pth  29763  uspgrn2crct  29807  2wlkdlem2  29925  usgrwwlks2on  29957  umgrwwlks2on  29958  nn0split01  32826  nn0disj01  32827  s2rnOLD  32954  cyc3fv1  33147  cyc3fv2  33148  lmat22lem  33902  eulerpartlemd  34451  prodfzo03  34688  elmod2  47517  grtriclwlk3  48107  2aryfvalel  48809
  Copyright terms: Public domain W3C validator