MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzo0to2pr Structured version   Visualization version   GIF version

Theorem fzo0to2pr 13801
Description: A half-open integer range from 0 to 2 is an unordered pair. (Contributed by Alexander van der Vekens, 4-Dec-2017.)
Assertion
Ref Expression
fzo0to2pr (0..^2) = {0, 1}

Proof of Theorem fzo0to2pr
StepHypRef Expression
1 2z 12675 . . 3 2 ∈ ℤ
2 fzoval 13717 . . 3 (2 ∈ ℤ → (0..^2) = (0...(2 − 1)))
31, 2ax-mp 5 . 2 (0..^2) = (0...(2 − 1))
4 2m1e1 12419 . . . 4 (2 − 1) = 1
5 0p1e1 12415 . . . 4 (0 + 1) = 1
64, 5eqtr4i 2771 . . 3 (2 − 1) = (0 + 1)
76oveq2i 7459 . 2 (0...(2 − 1)) = (0...(0 + 1))
8 0z 12650 . . 3 0 ∈ ℤ
9 fzpr 13639 . . . 4 (0 ∈ ℤ → (0...(0 + 1)) = {0, (0 + 1)})
105preq2i 4762 . . . 4 {0, (0 + 1)} = {0, 1}
119, 10eqtrdi 2796 . . 3 (0 ∈ ℤ → (0...(0 + 1)) = {0, 1})
128, 11ax-mp 5 . 2 (0...(0 + 1)) = {0, 1}
133, 7, 123eqtri 2772 1 (0..^2) = {0, 1}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  {cpr 4650  (class class class)co 7448  0cc0 11184  1c1 11185   + caddc 11187  cmin 11520  2c2 12348  cz 12639  ...cfz 13567  ..^cfzo 13711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712
This theorem is referenced by:  fzo0to42pr  13803  s2dm  14939  wrdlen2i  14991  wrd2pr2op  14992  pfx2  14996  wwlktovf1  15006  bitsinv1lem  16487  upgr2wlk  29704  usgr2wlkneq  29792  usgr2trlncl  29796  usgr2pthlem  29799  usgr2pth  29800  uspgrn2crct  29841  2wlkdlem2  29959  umgrwwlks2on  29990  nn0split01  32821  nn0disj01  32822  s2rnOLD  32910  cyc3fv1  33130  cyc3fv2  33131  lmat22lem  33763  eulerpartlemd  34331  prodfzo03  34580  elmod2  47244  grtriclwlk3  47796  2aryfvalel  48381
  Copyright terms: Public domain W3C validator