MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  posref Structured version   Visualization version   GIF version

Theorem posref 18279
Description: A poset ordering is reflexive. (Contributed by NM, 11-Sep-2011.) (Proof shortened by OpenAI, 25-Mar-2020.)
Hypotheses
Ref Expression
posi.b 𝐵 = (Base‘𝐾)
posi.l = (le‘𝐾)
Assertion
Ref Expression
posref ((𝐾 ∈ Poset ∧ 𝑋𝐵) → 𝑋 𝑋)

Proof of Theorem posref
StepHypRef Expression
1 posprs 18277 . 2 (𝐾 ∈ Poset → 𝐾 ∈ Proset )
2 posi.b . . 3 𝐵 = (Base‘𝐾)
3 posi.l . . 3 = (le‘𝐾)
42, 3prsref 18259 . 2 ((𝐾 ∈ Proset ∧ 𝑋𝐵) → 𝑋 𝑋)
51, 4sylan 580 1 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → 𝑋 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5107  cfv 6511  Basecbs 17179  lecple 17227   Proset cproset 18253  Posetcpo 18268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-proset 18255  df-poset 18274
This theorem is referenced by:  posasymb  18280  odupos  18287  pleval2  18296  pltval3  18298  pospo  18304  lublecllem  18319  latref  18400  omndmul2  33026  omndmul  33028  gsumle  33038  archirngz  33143  cvrnbtwn2  39268  cvrnbtwn3  39269  cvrnbtwn4  39272  cvrcmp  39276  llncmp  39516  lplncmp  39556  lvolcmp  39611  lubprlem  48950  posjidm  48960  posmidm  48961
  Copyright terms: Public domain W3C validator