| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > posref | Structured version Visualization version GIF version | ||
| Description: A poset ordering is reflexive. (Contributed by NM, 11-Sep-2011.) (Proof shortened by OpenAI, 25-Mar-2020.) |
| Ref | Expression |
|---|---|
| posi.b | ⊢ 𝐵 = (Base‘𝐾) |
| posi.l | ⊢ ≤ = (le‘𝐾) |
| Ref | Expression |
|---|---|
| posref | ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | posprs 18328 | . 2 ⊢ (𝐾 ∈ Poset → 𝐾 ∈ Proset ) | |
| 2 | posi.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | posi.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 4 | 2, 3 | prsref 18310 | . 2 ⊢ ((𝐾 ∈ Proset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
| 5 | 1, 4 | sylan 580 | 1 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 ‘cfv 6531 Basecbs 17228 lecple 17278 Proset cproset 18304 Posetcpo 18319 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-proset 18306 df-poset 18325 |
| This theorem is referenced by: posasymb 18331 odupos 18338 pleval2 18347 pltval3 18349 pospo 18355 lublecllem 18370 latref 18451 omndmul2 33080 omndmul 33082 gsumle 33092 archirngz 33187 cvrnbtwn2 39293 cvrnbtwn3 39294 cvrnbtwn4 39297 cvrcmp 39301 llncmp 39541 lplncmp 39581 lvolcmp 39636 lubprlem 48936 posjidm 48946 posmidm 48947 |
| Copyright terms: Public domain | W3C validator |