| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > posref | Structured version Visualization version GIF version | ||
| Description: A poset ordering is reflexive. (Contributed by NM, 11-Sep-2011.) (Proof shortened by OpenAI, 25-Mar-2020.) |
| Ref | Expression |
|---|---|
| posi.b | ⊢ 𝐵 = (Base‘𝐾) |
| posi.l | ⊢ ≤ = (le‘𝐾) |
| Ref | Expression |
|---|---|
| posref | ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | posprs 18219 | . 2 ⊢ (𝐾 ∈ Poset → 𝐾 ∈ Proset ) | |
| 2 | posi.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | posi.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 4 | 2, 3 | prsref 18201 | . 2 ⊢ ((𝐾 ∈ Proset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
| 5 | 1, 4 | sylan 580 | 1 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5091 ‘cfv 6481 Basecbs 17117 lecple 17165 Proset cproset 18195 Posetcpo 18210 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5244 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-proset 18197 df-poset 18216 |
| This theorem is referenced by: posasymb 18222 odupos 18229 pleval2 18238 pltval3 18240 pospo 18246 lublecllem 18261 latref 18344 omndmul2 20043 omndmul 20045 gsumle 20055 archirngz 33153 cvrnbtwn2 39313 cvrnbtwn3 39314 cvrnbtwn4 39317 cvrcmp 39321 llncmp 39560 lplncmp 39600 lvolcmp 39655 lubprlem 48992 posjidm 49002 posmidm 49003 |
| Copyright terms: Public domain | W3C validator |