| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > posref | Structured version Visualization version GIF version | ||
| Description: A poset ordering is reflexive. (Contributed by NM, 11-Sep-2011.) (Proof shortened by OpenAI, 25-Mar-2020.) |
| Ref | Expression |
|---|---|
| posi.b | ⊢ 𝐵 = (Base‘𝐾) |
| posi.l | ⊢ ≤ = (le‘𝐾) |
| Ref | Expression |
|---|---|
| posref | ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | posprs 18224 | . 2 ⊢ (𝐾 ∈ Poset → 𝐾 ∈ Proset ) | |
| 2 | posi.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | posi.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 4 | 2, 3 | prsref 18206 | . 2 ⊢ ((𝐾 ∈ Proset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
| 5 | 1, 4 | sylan 580 | 1 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 class class class wbr 5093 ‘cfv 6486 Basecbs 17122 lecple 17170 Proset cproset 18200 Posetcpo 18215 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 df-proset 18202 df-poset 18221 |
| This theorem is referenced by: posasymb 18227 odupos 18234 pleval2 18243 pltval3 18245 pospo 18251 lublecllem 18266 latref 18349 omndmul2 20047 omndmul 20049 gsumle 20059 archirngz 33165 cvrnbtwn2 39394 cvrnbtwn3 39395 cvrnbtwn4 39398 cvrcmp 39402 llncmp 39641 lplncmp 39681 lvolcmp 39736 lubprlem 49086 posjidm 49096 posmidm 49097 |
| Copyright terms: Public domain | W3C validator |