| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > posref | Structured version Visualization version GIF version | ||
| Description: A poset ordering is reflexive. (Contributed by NM, 11-Sep-2011.) (Proof shortened by OpenAI, 25-Mar-2020.) |
| Ref | Expression |
|---|---|
| posi.b | ⊢ 𝐵 = (Base‘𝐾) |
| posi.l | ⊢ ≤ = (le‘𝐾) |
| Ref | Expression |
|---|---|
| posref | ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | posprs 18277 | . 2 ⊢ (𝐾 ∈ Poset → 𝐾 ∈ Proset ) | |
| 2 | posi.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | posi.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 4 | 2, 3 | prsref 18259 | . 2 ⊢ ((𝐾 ∈ Proset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
| 5 | 1, 4 | sylan 580 | 1 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ‘cfv 6511 Basecbs 17179 lecple 17227 Proset cproset 18253 Posetcpo 18268 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-proset 18255 df-poset 18274 |
| This theorem is referenced by: posasymb 18280 odupos 18287 pleval2 18296 pltval3 18298 pospo 18304 lublecllem 18319 latref 18400 omndmul2 33026 omndmul 33028 gsumle 33038 archirngz 33143 cvrnbtwn2 39268 cvrnbtwn3 39269 cvrnbtwn4 39272 cvrcmp 39276 llncmp 39516 lplncmp 39556 lvolcmp 39611 lubprlem 48950 posjidm 48960 posmidm 48961 |
| Copyright terms: Public domain | W3C validator |