| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > posref | Structured version Visualization version GIF version | ||
| Description: A poset ordering is reflexive. (Contributed by NM, 11-Sep-2011.) (Proof shortened by OpenAI, 25-Mar-2020.) |
| Ref | Expression |
|---|---|
| posi.b | ⊢ 𝐵 = (Base‘𝐾) |
| posi.l | ⊢ ≤ = (le‘𝐾) |
| Ref | Expression |
|---|---|
| posref | ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | posprs 18240 | . 2 ⊢ (𝐾 ∈ Poset → 𝐾 ∈ Proset ) | |
| 2 | posi.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | posi.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 4 | 2, 3 | prsref 18222 | . 2 ⊢ ((𝐾 ∈ Proset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
| 5 | 1, 4 | sylan 580 | 1 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5095 ‘cfv 6486 Basecbs 17138 lecple 17186 Proset cproset 18216 Posetcpo 18231 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-proset 18218 df-poset 18237 |
| This theorem is referenced by: posasymb 18243 odupos 18250 pleval2 18259 pltval3 18261 pospo 18267 lublecllem 18282 latref 18365 omndmul2 20030 omndmul 20032 gsumle 20042 archirngz 33141 cvrnbtwn2 39253 cvrnbtwn3 39254 cvrnbtwn4 39257 cvrcmp 39261 llncmp 39501 lplncmp 39541 lvolcmp 39596 lubprlem 48947 posjidm 48957 posmidm 48958 |
| Copyright terms: Public domain | W3C validator |