Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > posref | Structured version Visualization version GIF version |
Description: A poset ordering is reflexive. (Contributed by NM, 11-Sep-2011.) (Proof shortened by OpenAI, 25-Mar-2020.) |
Ref | Expression |
---|---|
posi.b | ⊢ 𝐵 = (Base‘𝐾) |
posi.l | ⊢ ≤ = (le‘𝐾) |
Ref | Expression |
---|---|
posref | ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | posprs 17949 | . 2 ⊢ (𝐾 ∈ Poset → 𝐾 ∈ Proset ) | |
2 | posi.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
3 | posi.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
4 | 2, 3 | prsref 17932 | . 2 ⊢ ((𝐾 ∈ Proset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
5 | 1, 4 | sylan 579 | 1 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 Basecbs 16840 lecple 16895 Proset cproset 17926 Posetcpo 17940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-proset 17928 df-poset 17946 |
This theorem is referenced by: posasymb 17952 odupos 17961 pleval2 17970 pltval3 17972 pospo 17978 lublecllem 17993 latref 18074 omndmul2 31240 omndmul 31242 gsumle 31252 archirngz 31345 cvrnbtwn2 37216 cvrnbtwn3 37217 cvrnbtwn4 37220 cvrcmp 37224 llncmp 37463 lplncmp 37503 lvolcmp 37558 lubprlem 46144 posjidm 46154 posmidm 46155 |
Copyright terms: Public domain | W3C validator |