Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > posref | Structured version Visualization version GIF version |
Description: A poset ordering is reflexive. (Contributed by NM, 11-Sep-2011.) (Proof shortened by OpenAI, 25-Mar-2020.) |
Ref | Expression |
---|---|
posi.b | ⊢ 𝐵 = (Base‘𝐾) |
posi.l | ⊢ ≤ = (le‘𝐾) |
Ref | Expression |
---|---|
posref | ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | posprs 17687 | . 2 ⊢ (𝐾 ∈ Poset → 𝐾 ∈ Proset ) | |
2 | posi.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
3 | posi.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
4 | 2, 3 | prsref 17670 | . 2 ⊢ ((𝐾 ∈ Proset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
5 | 1, 4 | sylan 583 | 1 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 class class class wbr 5040 ‘cfv 6349 Basecbs 16598 lecple 16687 Proset cproset 17664 Posetcpo 17678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-nul 5184 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-ral 3059 df-rex 3060 df-v 3402 df-sbc 3686 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-nul 4222 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4807 df-br 5041 df-iota 6307 df-fv 6357 df-proset 17666 df-poset 17684 |
This theorem is referenced by: posasymb 17690 pleval2 17703 pltval3 17705 pospo 17711 lublecllem 17726 latref 17791 odupos 17873 omndmul2 30927 omndmul 30929 gsumle 30939 archirngz 31032 cvrnbtwn2 36944 cvrnbtwn3 36945 cvrnbtwn4 36948 cvrcmp 36952 llncmp 37191 lplncmp 37231 lvolcmp 37286 |
Copyright terms: Public domain | W3C validator |