Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prsdm Structured version   Visualization version   GIF version

Theorem prsdm 31578
Description: Domain of the relation of a proset. (Contributed by Thierry Arnoux, 11-Sep-2015.)
Hypotheses
Ref Expression
ordtNEW.b 𝐵 = (Base‘𝐾)
ordtNEW.l = ((le‘𝐾) ∩ (𝐵 × 𝐵))
Assertion
Ref Expression
prsdm (𝐾 ∈ Proset → dom = 𝐵)

Proof of Theorem prsdm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordtNEW.l . . . . 5 = ((le‘𝐾) ∩ (𝐵 × 𝐵))
21dmeqi 5773 . . . 4 dom = dom ((le‘𝐾) ∩ (𝐵 × 𝐵))
32eleq2i 2829 . . 3 (𝑥 ∈ dom 𝑥 ∈ dom ((le‘𝐾) ∩ (𝐵 × 𝐵)))
4 vex 3412 . . . . 5 𝑥 ∈ V
54eldm2 5770 . . . 4 (𝑥 ∈ dom ((le‘𝐾) ∩ (𝐵 × 𝐵)) ↔ ∃𝑦𝑥, 𝑦⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵)))
6 ordtNEW.b . . . . . . . . . 10 𝐵 = (Base‘𝐾)
7 eqid 2737 . . . . . . . . . 10 (le‘𝐾) = (le‘𝐾)
86, 7prsref 17806 . . . . . . . . 9 ((𝐾 ∈ Proset ∧ 𝑥𝐵) → 𝑥(le‘𝐾)𝑥)
9 df-br 5054 . . . . . . . . 9 (𝑥(le‘𝐾)𝑥 ↔ ⟨𝑥, 𝑥⟩ ∈ (le‘𝐾))
108, 9sylib 221 . . . . . . . 8 ((𝐾 ∈ Proset ∧ 𝑥𝐵) → ⟨𝑥, 𝑥⟩ ∈ (le‘𝐾))
11 simpr 488 . . . . . . . . 9 ((𝐾 ∈ Proset ∧ 𝑥𝐵) → 𝑥𝐵)
1211, 11opelxpd 5589 . . . . . . . 8 ((𝐾 ∈ Proset ∧ 𝑥𝐵) → ⟨𝑥, 𝑥⟩ ∈ (𝐵 × 𝐵))
1310, 12elind 4108 . . . . . . 7 ((𝐾 ∈ Proset ∧ 𝑥𝐵) → ⟨𝑥, 𝑥⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵)))
14 opeq2 4785 . . . . . . . . 9 (𝑦 = 𝑥 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑥⟩)
1514eleq1d 2822 . . . . . . . 8 (𝑦 = 𝑥 → (⟨𝑥, 𝑦⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵)) ↔ ⟨𝑥, 𝑥⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵))))
164, 15spcev 3521 . . . . . . 7 (⟨𝑥, 𝑥⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵)) → ∃𝑦𝑥, 𝑦⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵)))
1713, 16syl 17 . . . . . 6 ((𝐾 ∈ Proset ∧ 𝑥𝐵) → ∃𝑦𝑥, 𝑦⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵)))
1817ex 416 . . . . 5 (𝐾 ∈ Proset → (𝑥𝐵 → ∃𝑦𝑥, 𝑦⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵))))
19 elinel2 4110 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵)) → ⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵))
20 opelxp1 5592 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) → 𝑥𝐵)
2119, 20syl 17 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵)) → 𝑥𝐵)
2221exlimiv 1938 . . . . 5 (∃𝑦𝑥, 𝑦⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵)) → 𝑥𝐵)
2318, 22impbid1 228 . . . 4 (𝐾 ∈ Proset → (𝑥𝐵 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵))))
245, 23bitr4id 293 . . 3 (𝐾 ∈ Proset → (𝑥 ∈ dom ((le‘𝐾) ∩ (𝐵 × 𝐵)) ↔ 𝑥𝐵))
253, 24syl5bb 286 . 2 (𝐾 ∈ Proset → (𝑥 ∈ dom 𝑥𝐵))
2625eqrdv 2735 1 (𝐾 ∈ Proset → dom = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wex 1787  wcel 2110  cin 3865  cop 4547   class class class wbr 5053   × cxp 5549  dom cdm 5551  cfv 6380  Basecbs 16760  lecple 16809   Proset cproset 17800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-xp 5557  df-dm 5561  df-iota 6338  df-fv 6388  df-proset 17802
This theorem is referenced by:  prsssdm  31581  ordtprsval  31582  ordtprsuni  31583  ordtrestNEW  31585  ordtconnlem1  31588
  Copyright terms: Public domain W3C validator