Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prsdm Structured version   Visualization version   GIF version

Theorem prsdm 33860
Description: Domain of the relation of a proset. (Contributed by Thierry Arnoux, 11-Sep-2015.)
Hypotheses
Ref Expression
ordtNEW.b 𝐵 = (Base‘𝐾)
ordtNEW.l = ((le‘𝐾) ∩ (𝐵 × 𝐵))
Assertion
Ref Expression
prsdm (𝐾 ∈ Proset → dom = 𝐵)

Proof of Theorem prsdm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordtNEW.l . . . . 5 = ((le‘𝐾) ∩ (𝐵 × 𝐵))
21dmeqi 5929 . . . 4 dom = dom ((le‘𝐾) ∩ (𝐵 × 𝐵))
32eleq2i 2836 . . 3 (𝑥 ∈ dom 𝑥 ∈ dom ((le‘𝐾) ∩ (𝐵 × 𝐵)))
4 vex 3492 . . . . 5 𝑥 ∈ V
54eldm2 5926 . . . 4 (𝑥 ∈ dom ((le‘𝐾) ∩ (𝐵 × 𝐵)) ↔ ∃𝑦𝑥, 𝑦⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵)))
6 ordtNEW.b . . . . . . . . . 10 𝐵 = (Base‘𝐾)
7 eqid 2740 . . . . . . . . . 10 (le‘𝐾) = (le‘𝐾)
86, 7prsref 18369 . . . . . . . . 9 ((𝐾 ∈ Proset ∧ 𝑥𝐵) → 𝑥(le‘𝐾)𝑥)
9 df-br 5167 . . . . . . . . 9 (𝑥(le‘𝐾)𝑥 ↔ ⟨𝑥, 𝑥⟩ ∈ (le‘𝐾))
108, 9sylib 218 . . . . . . . 8 ((𝐾 ∈ Proset ∧ 𝑥𝐵) → ⟨𝑥, 𝑥⟩ ∈ (le‘𝐾))
11 simpr 484 . . . . . . . . 9 ((𝐾 ∈ Proset ∧ 𝑥𝐵) → 𝑥𝐵)
1211, 11opelxpd 5739 . . . . . . . 8 ((𝐾 ∈ Proset ∧ 𝑥𝐵) → ⟨𝑥, 𝑥⟩ ∈ (𝐵 × 𝐵))
1310, 12elind 4223 . . . . . . 7 ((𝐾 ∈ Proset ∧ 𝑥𝐵) → ⟨𝑥, 𝑥⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵)))
14 opeq2 4898 . . . . . . . . 9 (𝑦 = 𝑥 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑥⟩)
1514eleq1d 2829 . . . . . . . 8 (𝑦 = 𝑥 → (⟨𝑥, 𝑦⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵)) ↔ ⟨𝑥, 𝑥⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵))))
164, 15spcev 3619 . . . . . . 7 (⟨𝑥, 𝑥⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵)) → ∃𝑦𝑥, 𝑦⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵)))
1713, 16syl 17 . . . . . 6 ((𝐾 ∈ Proset ∧ 𝑥𝐵) → ∃𝑦𝑥, 𝑦⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵)))
1817ex 412 . . . . 5 (𝐾 ∈ Proset → (𝑥𝐵 → ∃𝑦𝑥, 𝑦⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵))))
19 elinel2 4225 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵)) → ⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵))
20 opelxp1 5742 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐵) → 𝑥𝐵)
2119, 20syl 17 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵)) → 𝑥𝐵)
2221exlimiv 1929 . . . . 5 (∃𝑦𝑥, 𝑦⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵)) → 𝑥𝐵)
2318, 22impbid1 225 . . . 4 (𝐾 ∈ Proset → (𝑥𝐵 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ ((le‘𝐾) ∩ (𝐵 × 𝐵))))
245, 23bitr4id 290 . . 3 (𝐾 ∈ Proset → (𝑥 ∈ dom ((le‘𝐾) ∩ (𝐵 × 𝐵)) ↔ 𝑥𝐵))
253, 24bitrid 283 . 2 (𝐾 ∈ Proset → (𝑥 ∈ dom 𝑥𝐵))
2625eqrdv 2738 1 (𝐾 ∈ Proset → dom = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1777  wcel 2108  cin 3975  cop 4654   class class class wbr 5166   × cxp 5698  dom cdm 5700  cfv 6573  Basecbs 17258  lecple 17318   Proset cproset 18363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-dm 5710  df-iota 6525  df-fv 6581  df-proset 18365
This theorem is referenced by:  prsssdm  33863  ordtprsval  33864  ordtprsuni  33865  ordtrestNEW  33867  ordtconnlem1  33870
  Copyright terms: Public domain W3C validator