Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgccole1 Structured version   Visualization version   GIF version

Theorem mgccole1 31268
Description: An inequality for the kernel operator 𝐺𝐹. (Contributed by Thierry Arnoux, 26-Apr-2024.)
Hypotheses
Ref Expression
mgcoval.1 𝐴 = (Base‘𝑉)
mgcoval.2 𝐵 = (Base‘𝑊)
mgcoval.3 = (le‘𝑉)
mgcoval.4 = (le‘𝑊)
mgcval.1 𝐻 = (𝑉MGalConn𝑊)
mgcval.2 (𝜑𝑉 ∈ Proset )
mgcval.3 (𝜑𝑊 ∈ Proset )
mgccole.1 (𝜑𝐹𝐻𝐺)
mgccole1.2 (𝜑𝑋𝐴)
Assertion
Ref Expression
mgccole1 (𝜑𝑋 (𝐺‘(𝐹𝑋)))

Proof of Theorem mgccole1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgcval.3 . . 3 (𝜑𝑊 ∈ Proset )
2 mgccole.1 . . . . . 6 (𝜑𝐹𝐻𝐺)
3 mgcoval.1 . . . . . . 7 𝐴 = (Base‘𝑉)
4 mgcoval.2 . . . . . . 7 𝐵 = (Base‘𝑊)
5 mgcoval.3 . . . . . . 7 = (le‘𝑉)
6 mgcoval.4 . . . . . . 7 = (le‘𝑊)
7 mgcval.1 . . . . . . 7 𝐻 = (𝑉MGalConn𝑊)
8 mgcval.2 . . . . . . 7 (𝜑𝑉 ∈ Proset )
93, 4, 5, 6, 7, 8, 1mgcval 31265 . . . . . 6 (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)))))
102, 9mpbid 231 . . . . 5 (𝜑 → ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦))))
1110simplld 765 . . . 4 (𝜑𝐹:𝐴𝐵)
12 mgccole1.2 . . . 4 (𝜑𝑋𝐴)
1311, 12ffvelrnd 6962 . . 3 (𝜑 → (𝐹𝑋) ∈ 𝐵)
144, 6prsref 18017 . . 3 ((𝑊 ∈ Proset ∧ (𝐹𝑋) ∈ 𝐵) → (𝐹𝑋) (𝐹𝑋))
151, 13, 14syl2anc 584 . 2 (𝜑 → (𝐹𝑋) (𝐹𝑋))
16 fveq2 6774 . . . . . . 7 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
1716breq1d 5084 . . . . . 6 (𝑥 = 𝑋 → ((𝐹𝑥) 𝑦 ↔ (𝐹𝑋) 𝑦))
18 breq1 5077 . . . . . 6 (𝑥 = 𝑋 → (𝑥 (𝐺𝑦) ↔ 𝑋 (𝐺𝑦)))
1917, 18bibi12d 346 . . . . 5 (𝑥 = 𝑋 → (((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)) ↔ ((𝐹𝑋) 𝑦𝑋 (𝐺𝑦))))
2019ralbidv 3112 . . . 4 (𝑥 = 𝑋 → (∀𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)) ↔ ∀𝑦𝐵 ((𝐹𝑋) 𝑦𝑋 (𝐺𝑦))))
2110simprd 496 . . . 4 (𝜑 → ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)))
2220, 21, 12rspcdva 3562 . . 3 (𝜑 → ∀𝑦𝐵 ((𝐹𝑋) 𝑦𝑋 (𝐺𝑦)))
23 simpr 485 . . . . . 6 ((𝜑𝑦 = (𝐹𝑋)) → 𝑦 = (𝐹𝑋))
2423breq2d 5086 . . . . 5 ((𝜑𝑦 = (𝐹𝑋)) → ((𝐹𝑋) 𝑦 ↔ (𝐹𝑋) (𝐹𝑋)))
2523fveq2d 6778 . . . . . 6 ((𝜑𝑦 = (𝐹𝑋)) → (𝐺𝑦) = (𝐺‘(𝐹𝑋)))
2625breq2d 5086 . . . . 5 ((𝜑𝑦 = (𝐹𝑋)) → (𝑋 (𝐺𝑦) ↔ 𝑋 (𝐺‘(𝐹𝑋))))
2724, 26bibi12d 346 . . . 4 ((𝜑𝑦 = (𝐹𝑋)) → (((𝐹𝑋) 𝑦𝑋 (𝐺𝑦)) ↔ ((𝐹𝑋) (𝐹𝑋) ↔ 𝑋 (𝐺‘(𝐹𝑋)))))
2813, 27rspcdv 3553 . . 3 (𝜑 → (∀𝑦𝐵 ((𝐹𝑋) 𝑦𝑋 (𝐺𝑦)) → ((𝐹𝑋) (𝐹𝑋) ↔ 𝑋 (𝐺‘(𝐹𝑋)))))
2922, 28mpd 15 . 2 (𝜑 → ((𝐹𝑋) (𝐹𝑋) ↔ 𝑋 (𝐺‘(𝐹𝑋))))
3015, 29mpbid 231 1 (𝜑𝑋 (𝐺‘(𝐹𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064   class class class wbr 5074  wf 6429  cfv 6433  (class class class)co 7275  Basecbs 16912  lecple 16969   Proset cproset 18011  MGalConncmgc 31257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-proset 18013  df-mgc 31259
This theorem is referenced by:  mgcmnt1  31270  mgcmntco  31272  dfmgc2  31274  mgcf1olem1  31279  mgcf1olem2  31280
  Copyright terms: Public domain W3C validator