Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgccole1 Structured version   Visualization version   GIF version

Theorem mgccole1 32916
Description: An inequality for the kernel operator 𝐺𝐹. (Contributed by Thierry Arnoux, 26-Apr-2024.)
Hypotheses
Ref Expression
mgcoval.1 𝐴 = (Base‘𝑉)
mgcoval.2 𝐵 = (Base‘𝑊)
mgcoval.3 = (le‘𝑉)
mgcoval.4 = (le‘𝑊)
mgcval.1 𝐻 = (𝑉MGalConn𝑊)
mgcval.2 (𝜑𝑉 ∈ Proset )
mgcval.3 (𝜑𝑊 ∈ Proset )
mgccole.1 (𝜑𝐹𝐻𝐺)
mgccole1.2 (𝜑𝑋𝐴)
Assertion
Ref Expression
mgccole1 (𝜑𝑋 (𝐺‘(𝐹𝑋)))

Proof of Theorem mgccole1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgcval.3 . . 3 (𝜑𝑊 ∈ Proset )
2 mgccole.1 . . . . . 6 (𝜑𝐹𝐻𝐺)
3 mgcoval.1 . . . . . . 7 𝐴 = (Base‘𝑉)
4 mgcoval.2 . . . . . . 7 𝐵 = (Base‘𝑊)
5 mgcoval.3 . . . . . . 7 = (le‘𝑉)
6 mgcoval.4 . . . . . . 7 = (le‘𝑊)
7 mgcval.1 . . . . . . 7 𝐻 = (𝑉MGalConn𝑊)
8 mgcval.2 . . . . . . 7 (𝜑𝑉 ∈ Proset )
93, 4, 5, 6, 7, 8, 1mgcval 32913 . . . . . 6 (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)))))
102, 9mpbid 232 . . . . 5 (𝜑 → ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦))))
1110simplld 767 . . . 4 (𝜑𝐹:𝐴𝐵)
12 mgccole1.2 . . . 4 (𝜑𝑋𝐴)
1311, 12ffvelcdmd 7057 . . 3 (𝜑 → (𝐹𝑋) ∈ 𝐵)
144, 6prsref 18259 . . 3 ((𝑊 ∈ Proset ∧ (𝐹𝑋) ∈ 𝐵) → (𝐹𝑋) (𝐹𝑋))
151, 13, 14syl2anc 584 . 2 (𝜑 → (𝐹𝑋) (𝐹𝑋))
16 fveq2 6858 . . . . . . 7 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
1716breq1d 5117 . . . . . 6 (𝑥 = 𝑋 → ((𝐹𝑥) 𝑦 ↔ (𝐹𝑋) 𝑦))
18 breq1 5110 . . . . . 6 (𝑥 = 𝑋 → (𝑥 (𝐺𝑦) ↔ 𝑋 (𝐺𝑦)))
1917, 18bibi12d 345 . . . . 5 (𝑥 = 𝑋 → (((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)) ↔ ((𝐹𝑋) 𝑦𝑋 (𝐺𝑦))))
2019ralbidv 3156 . . . 4 (𝑥 = 𝑋 → (∀𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)) ↔ ∀𝑦𝐵 ((𝐹𝑋) 𝑦𝑋 (𝐺𝑦))))
2110simprd 495 . . . 4 (𝜑 → ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)))
2220, 21, 12rspcdva 3589 . . 3 (𝜑 → ∀𝑦𝐵 ((𝐹𝑋) 𝑦𝑋 (𝐺𝑦)))
23 simpr 484 . . . . . 6 ((𝜑𝑦 = (𝐹𝑋)) → 𝑦 = (𝐹𝑋))
2423breq2d 5119 . . . . 5 ((𝜑𝑦 = (𝐹𝑋)) → ((𝐹𝑋) 𝑦 ↔ (𝐹𝑋) (𝐹𝑋)))
2523fveq2d 6862 . . . . . 6 ((𝜑𝑦 = (𝐹𝑋)) → (𝐺𝑦) = (𝐺‘(𝐹𝑋)))
2625breq2d 5119 . . . . 5 ((𝜑𝑦 = (𝐹𝑋)) → (𝑋 (𝐺𝑦) ↔ 𝑋 (𝐺‘(𝐹𝑋))))
2724, 26bibi12d 345 . . . 4 ((𝜑𝑦 = (𝐹𝑋)) → (((𝐹𝑋) 𝑦𝑋 (𝐺𝑦)) ↔ ((𝐹𝑋) (𝐹𝑋) ↔ 𝑋 (𝐺‘(𝐹𝑋)))))
2813, 27rspcdv 3580 . . 3 (𝜑 → (∀𝑦𝐵 ((𝐹𝑋) 𝑦𝑋 (𝐺𝑦)) → ((𝐹𝑋) (𝐹𝑋) ↔ 𝑋 (𝐺‘(𝐹𝑋)))))
2922, 28mpd 15 . 2 (𝜑 → ((𝐹𝑋) (𝐹𝑋) ↔ 𝑋 (𝐺‘(𝐹𝑋))))
3015, 29mpbid 232 1 (𝜑𝑋 (𝐺‘(𝐹𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5107  wf 6507  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227   Proset cproset 18253  MGalConncmgc 32905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-proset 18255  df-mgc 32907
This theorem is referenced by:  mgcmnt1  32918  mgcmntco  32920  dfmgc2  32922  mgcf1olem1  32927  mgcf1olem2  32928
  Copyright terms: Public domain W3C validator