Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mgccole1 | Structured version Visualization version GIF version |
Description: An inequality for the kernel operator 𝐺 ∘ 𝐹. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
Ref | Expression |
---|---|
mgcoval.1 | ⊢ 𝐴 = (Base‘𝑉) |
mgcoval.2 | ⊢ 𝐵 = (Base‘𝑊) |
mgcoval.3 | ⊢ ≤ = (le‘𝑉) |
mgcoval.4 | ⊢ ≲ = (le‘𝑊) |
mgcval.1 | ⊢ 𝐻 = (𝑉MGalConn𝑊) |
mgcval.2 | ⊢ (𝜑 → 𝑉 ∈ Proset ) |
mgcval.3 | ⊢ (𝜑 → 𝑊 ∈ Proset ) |
mgccole.1 | ⊢ (𝜑 → 𝐹𝐻𝐺) |
mgccole1.2 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
Ref | Expression |
---|---|
mgccole1 | ⊢ (𝜑 → 𝑋 ≤ (𝐺‘(𝐹‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgcval.3 | . . 3 ⊢ (𝜑 → 𝑊 ∈ Proset ) | |
2 | mgccole.1 | . . . . . 6 ⊢ (𝜑 → 𝐹𝐻𝐺) | |
3 | mgcoval.1 | . . . . . . 7 ⊢ 𝐴 = (Base‘𝑉) | |
4 | mgcoval.2 | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑊) | |
5 | mgcoval.3 | . . . . . . 7 ⊢ ≤ = (le‘𝑉) | |
6 | mgcoval.4 | . . . . . . 7 ⊢ ≲ = (le‘𝑊) | |
7 | mgcval.1 | . . . . . . 7 ⊢ 𝐻 = (𝑉MGalConn𝑊) | |
8 | mgcval.2 | . . . . . . 7 ⊢ (𝜑 → 𝑉 ∈ Proset ) | |
9 | 3, 4, 5, 6, 7, 8, 1 | mgcval 30791 | . . . . . 6 ⊢ (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦))))) |
10 | 2, 9 | mpbid 235 | . . . . 5 ⊢ (𝜑 → ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦)))) |
11 | 10 | simplld 767 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
12 | mgccole1.2 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
13 | 11, 12 | ffvelrnd 6843 | . . 3 ⊢ (𝜑 → (𝐹‘𝑋) ∈ 𝐵) |
14 | 4, 6 | prsref 17608 | . . 3 ⊢ ((𝑊 ∈ Proset ∧ (𝐹‘𝑋) ∈ 𝐵) → (𝐹‘𝑋) ≲ (𝐹‘𝑋)) |
15 | 1, 13, 14 | syl2anc 587 | . 2 ⊢ (𝜑 → (𝐹‘𝑋) ≲ (𝐹‘𝑋)) |
16 | fveq2 6658 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
17 | 16 | breq1d 5042 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) ≲ 𝑦 ↔ (𝐹‘𝑋) ≲ 𝑦)) |
18 | breq1 5035 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑥 ≤ (𝐺‘𝑦) ↔ 𝑋 ≤ (𝐺‘𝑦))) | |
19 | 17, 18 | bibi12d 349 | . . . . 5 ⊢ (𝑥 = 𝑋 → (((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦)) ↔ ((𝐹‘𝑋) ≲ 𝑦 ↔ 𝑋 ≤ (𝐺‘𝑦)))) |
20 | 19 | ralbidv 3126 | . . . 4 ⊢ (𝑥 = 𝑋 → (∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦)) ↔ ∀𝑦 ∈ 𝐵 ((𝐹‘𝑋) ≲ 𝑦 ↔ 𝑋 ≤ (𝐺‘𝑦)))) |
21 | 10 | simprd 499 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦))) |
22 | 20, 21, 12 | rspcdva 3543 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 ((𝐹‘𝑋) ≲ 𝑦 ↔ 𝑋 ≤ (𝐺‘𝑦))) |
23 | simpr 488 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑋)) → 𝑦 = (𝐹‘𝑋)) | |
24 | 23 | breq2d 5044 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑋)) → ((𝐹‘𝑋) ≲ 𝑦 ↔ (𝐹‘𝑋) ≲ (𝐹‘𝑋))) |
25 | 23 | fveq2d 6662 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑋)) → (𝐺‘𝑦) = (𝐺‘(𝐹‘𝑋))) |
26 | 25 | breq2d 5044 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑋)) → (𝑋 ≤ (𝐺‘𝑦) ↔ 𝑋 ≤ (𝐺‘(𝐹‘𝑋)))) |
27 | 24, 26 | bibi12d 349 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑋)) → (((𝐹‘𝑋) ≲ 𝑦 ↔ 𝑋 ≤ (𝐺‘𝑦)) ↔ ((𝐹‘𝑋) ≲ (𝐹‘𝑋) ↔ 𝑋 ≤ (𝐺‘(𝐹‘𝑋))))) |
28 | 13, 27 | rspcdv 3533 | . . 3 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 ((𝐹‘𝑋) ≲ 𝑦 ↔ 𝑋 ≤ (𝐺‘𝑦)) → ((𝐹‘𝑋) ≲ (𝐹‘𝑋) ↔ 𝑋 ≤ (𝐺‘(𝐹‘𝑋))))) |
29 | 22, 28 | mpd 15 | . 2 ⊢ (𝜑 → ((𝐹‘𝑋) ≲ (𝐹‘𝑋) ↔ 𝑋 ≤ (𝐺‘(𝐹‘𝑋)))) |
30 | 15, 29 | mpbid 235 | 1 ⊢ (𝜑 → 𝑋 ≤ (𝐺‘(𝐹‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∀wral 3070 class class class wbr 5032 ⟶wf 6331 ‘cfv 6335 (class class class)co 7150 Basecbs 16541 lecple 16630 Proset cproset 17602 MGalConncmgc 30783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-fv 6343 df-ov 7153 df-oprab 7154 df-mpo 7155 df-map 8418 df-proset 17604 df-mgc 30785 |
This theorem is referenced by: mgcmnt1 30796 mgcmntco 30798 dfmgc2 30800 mgcf1olem1 30805 mgcf1olem2 30806 |
Copyright terms: Public domain | W3C validator |