Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgccole1 Structured version   Visualization version   GIF version

Theorem mgccole1 32889
Description: An inequality for the kernel operator 𝐺𝐹. (Contributed by Thierry Arnoux, 26-Apr-2024.)
Hypotheses
Ref Expression
mgcoval.1 𝐴 = (Base‘𝑉)
mgcoval.2 𝐵 = (Base‘𝑊)
mgcoval.3 = (le‘𝑉)
mgcoval.4 = (le‘𝑊)
mgcval.1 𝐻 = (𝑉MGalConn𝑊)
mgcval.2 (𝜑𝑉 ∈ Proset )
mgcval.3 (𝜑𝑊 ∈ Proset )
mgccole.1 (𝜑𝐹𝐻𝐺)
mgccole1.2 (𝜑𝑋𝐴)
Assertion
Ref Expression
mgccole1 (𝜑𝑋 (𝐺‘(𝐹𝑋)))

Proof of Theorem mgccole1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgcval.3 . . 3 (𝜑𝑊 ∈ Proset )
2 mgccole.1 . . . . . 6 (𝜑𝐹𝐻𝐺)
3 mgcoval.1 . . . . . . 7 𝐴 = (Base‘𝑉)
4 mgcoval.2 . . . . . . 7 𝐵 = (Base‘𝑊)
5 mgcoval.3 . . . . . . 7 = (le‘𝑉)
6 mgcoval.4 . . . . . . 7 = (le‘𝑊)
7 mgcval.1 . . . . . . 7 𝐻 = (𝑉MGalConn𝑊)
8 mgcval.2 . . . . . . 7 (𝜑𝑉 ∈ Proset )
93, 4, 5, 6, 7, 8, 1mgcval 32886 . . . . . 6 (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)))))
102, 9mpbid 232 . . . . 5 (𝜑 → ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦))))
1110simplld 767 . . . 4 (𝜑𝐹:𝐴𝐵)
12 mgccole1.2 . . . 4 (𝜑𝑋𝐴)
1311, 12ffvelcdmd 7039 . . 3 (𝜑 → (𝐹𝑋) ∈ 𝐵)
144, 6prsref 18235 . . 3 ((𝑊 ∈ Proset ∧ (𝐹𝑋) ∈ 𝐵) → (𝐹𝑋) (𝐹𝑋))
151, 13, 14syl2anc 584 . 2 (𝜑 → (𝐹𝑋) (𝐹𝑋))
16 fveq2 6840 . . . . . . 7 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
1716breq1d 5112 . . . . . 6 (𝑥 = 𝑋 → ((𝐹𝑥) 𝑦 ↔ (𝐹𝑋) 𝑦))
18 breq1 5105 . . . . . 6 (𝑥 = 𝑋 → (𝑥 (𝐺𝑦) ↔ 𝑋 (𝐺𝑦)))
1917, 18bibi12d 345 . . . . 5 (𝑥 = 𝑋 → (((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)) ↔ ((𝐹𝑋) 𝑦𝑋 (𝐺𝑦))))
2019ralbidv 3156 . . . 4 (𝑥 = 𝑋 → (∀𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)) ↔ ∀𝑦𝐵 ((𝐹𝑋) 𝑦𝑋 (𝐺𝑦))))
2110simprd 495 . . . 4 (𝜑 → ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)))
2220, 21, 12rspcdva 3586 . . 3 (𝜑 → ∀𝑦𝐵 ((𝐹𝑋) 𝑦𝑋 (𝐺𝑦)))
23 simpr 484 . . . . . 6 ((𝜑𝑦 = (𝐹𝑋)) → 𝑦 = (𝐹𝑋))
2423breq2d 5114 . . . . 5 ((𝜑𝑦 = (𝐹𝑋)) → ((𝐹𝑋) 𝑦 ↔ (𝐹𝑋) (𝐹𝑋)))
2523fveq2d 6844 . . . . . 6 ((𝜑𝑦 = (𝐹𝑋)) → (𝐺𝑦) = (𝐺‘(𝐹𝑋)))
2625breq2d 5114 . . . . 5 ((𝜑𝑦 = (𝐹𝑋)) → (𝑋 (𝐺𝑦) ↔ 𝑋 (𝐺‘(𝐹𝑋))))
2724, 26bibi12d 345 . . . 4 ((𝜑𝑦 = (𝐹𝑋)) → (((𝐹𝑋) 𝑦𝑋 (𝐺𝑦)) ↔ ((𝐹𝑋) (𝐹𝑋) ↔ 𝑋 (𝐺‘(𝐹𝑋)))))
2813, 27rspcdv 3577 . . 3 (𝜑 → (∀𝑦𝐵 ((𝐹𝑋) 𝑦𝑋 (𝐺𝑦)) → ((𝐹𝑋) (𝐹𝑋) ↔ 𝑋 (𝐺‘(𝐹𝑋)))))
2922, 28mpd 15 . 2 (𝜑 → ((𝐹𝑋) (𝐹𝑋) ↔ 𝑋 (𝐺‘(𝐹𝑋))))
3015, 29mpbid 232 1 (𝜑𝑋 (𝐺‘(𝐹𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5102  wf 6495  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203   Proset cproset 18229  MGalConncmgc 32878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-map 8778  df-proset 18231  df-mgc 32880
This theorem is referenced by:  mgcmnt1  32891  mgcmntco  32893  dfmgc2  32895  mgcf1olem1  32900  mgcf1olem2  32901
  Copyright terms: Public domain W3C validator