Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgccole1 Structured version   Visualization version   GIF version

Theorem mgccole1 32975
Description: An inequality for the kernel operator 𝐺𝐹. (Contributed by Thierry Arnoux, 26-Apr-2024.)
Hypotheses
Ref Expression
mgcoval.1 𝐴 = (Base‘𝑉)
mgcoval.2 𝐵 = (Base‘𝑊)
mgcoval.3 = (le‘𝑉)
mgcoval.4 = (le‘𝑊)
mgcval.1 𝐻 = (𝑉MGalConn𝑊)
mgcval.2 (𝜑𝑉 ∈ Proset )
mgcval.3 (𝜑𝑊 ∈ Proset )
mgccole.1 (𝜑𝐹𝐻𝐺)
mgccole1.2 (𝜑𝑋𝐴)
Assertion
Ref Expression
mgccole1 (𝜑𝑋 (𝐺‘(𝐹𝑋)))

Proof of Theorem mgccole1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgcval.3 . . 3 (𝜑𝑊 ∈ Proset )
2 mgccole.1 . . . . . 6 (𝜑𝐹𝐻𝐺)
3 mgcoval.1 . . . . . . 7 𝐴 = (Base‘𝑉)
4 mgcoval.2 . . . . . . 7 𝐵 = (Base‘𝑊)
5 mgcoval.3 . . . . . . 7 = (le‘𝑉)
6 mgcoval.4 . . . . . . 7 = (le‘𝑊)
7 mgcval.1 . . . . . . 7 𝐻 = (𝑉MGalConn𝑊)
8 mgcval.2 . . . . . . 7 (𝜑𝑉 ∈ Proset )
93, 4, 5, 6, 7, 8, 1mgcval 32972 . . . . . 6 (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)))))
102, 9mpbid 232 . . . . 5 (𝜑 → ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦))))
1110simplld 767 . . . 4 (𝜑𝐹:𝐴𝐵)
12 mgccole1.2 . . . 4 (𝜑𝑋𝐴)
1311, 12ffvelcdmd 7080 . . 3 (𝜑 → (𝐹𝑋) ∈ 𝐵)
144, 6prsref 18315 . . 3 ((𝑊 ∈ Proset ∧ (𝐹𝑋) ∈ 𝐵) → (𝐹𝑋) (𝐹𝑋))
151, 13, 14syl2anc 584 . 2 (𝜑 → (𝐹𝑋) (𝐹𝑋))
16 fveq2 6881 . . . . . . 7 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
1716breq1d 5134 . . . . . 6 (𝑥 = 𝑋 → ((𝐹𝑥) 𝑦 ↔ (𝐹𝑋) 𝑦))
18 breq1 5127 . . . . . 6 (𝑥 = 𝑋 → (𝑥 (𝐺𝑦) ↔ 𝑋 (𝐺𝑦)))
1917, 18bibi12d 345 . . . . 5 (𝑥 = 𝑋 → (((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)) ↔ ((𝐹𝑋) 𝑦𝑋 (𝐺𝑦))))
2019ralbidv 3164 . . . 4 (𝑥 = 𝑋 → (∀𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)) ↔ ∀𝑦𝐵 ((𝐹𝑋) 𝑦𝑋 (𝐺𝑦))))
2110simprd 495 . . . 4 (𝜑 → ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)))
2220, 21, 12rspcdva 3607 . . 3 (𝜑 → ∀𝑦𝐵 ((𝐹𝑋) 𝑦𝑋 (𝐺𝑦)))
23 simpr 484 . . . . . 6 ((𝜑𝑦 = (𝐹𝑋)) → 𝑦 = (𝐹𝑋))
2423breq2d 5136 . . . . 5 ((𝜑𝑦 = (𝐹𝑋)) → ((𝐹𝑋) 𝑦 ↔ (𝐹𝑋) (𝐹𝑋)))
2523fveq2d 6885 . . . . . 6 ((𝜑𝑦 = (𝐹𝑋)) → (𝐺𝑦) = (𝐺‘(𝐹𝑋)))
2625breq2d 5136 . . . . 5 ((𝜑𝑦 = (𝐹𝑋)) → (𝑋 (𝐺𝑦) ↔ 𝑋 (𝐺‘(𝐹𝑋))))
2724, 26bibi12d 345 . . . 4 ((𝜑𝑦 = (𝐹𝑋)) → (((𝐹𝑋) 𝑦𝑋 (𝐺𝑦)) ↔ ((𝐹𝑋) (𝐹𝑋) ↔ 𝑋 (𝐺‘(𝐹𝑋)))))
2813, 27rspcdv 3598 . . 3 (𝜑 → (∀𝑦𝐵 ((𝐹𝑋) 𝑦𝑋 (𝐺𝑦)) → ((𝐹𝑋) (𝐹𝑋) ↔ 𝑋 (𝐺‘(𝐹𝑋)))))
2922, 28mpd 15 . 2 (𝜑 → ((𝐹𝑋) (𝐹𝑋) ↔ 𝑋 (𝐺‘(𝐹𝑋))))
3015, 29mpbid 232 1 (𝜑𝑋 (𝐺‘(𝐹𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052   class class class wbr 5124  wf 6532  cfv 6536  (class class class)co 7410  Basecbs 17233  lecple 17283   Proset cproset 18309  MGalConncmgc 32964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-map 8847  df-proset 18311  df-mgc 32966
This theorem is referenced by:  mgcmnt1  32977  mgcmntco  32979  dfmgc2  32981  mgcf1olem1  32986  mgcf1olem2  32987
  Copyright terms: Public domain W3C validator