Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mgccole1 | Structured version Visualization version GIF version |
Description: An inequality for the kernel operator 𝐺 ∘ 𝐹. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
Ref | Expression |
---|---|
mgcoval.1 | ⊢ 𝐴 = (Base‘𝑉) |
mgcoval.2 | ⊢ 𝐵 = (Base‘𝑊) |
mgcoval.3 | ⊢ ≤ = (le‘𝑉) |
mgcoval.4 | ⊢ ≲ = (le‘𝑊) |
mgcval.1 | ⊢ 𝐻 = (𝑉MGalConn𝑊) |
mgcval.2 | ⊢ (𝜑 → 𝑉 ∈ Proset ) |
mgcval.3 | ⊢ (𝜑 → 𝑊 ∈ Proset ) |
mgccole.1 | ⊢ (𝜑 → 𝐹𝐻𝐺) |
mgccole1.2 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
Ref | Expression |
---|---|
mgccole1 | ⊢ (𝜑 → 𝑋 ≤ (𝐺‘(𝐹‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgcval.3 | . . 3 ⊢ (𝜑 → 𝑊 ∈ Proset ) | |
2 | mgccole.1 | . . . . . 6 ⊢ (𝜑 → 𝐹𝐻𝐺) | |
3 | mgcoval.1 | . . . . . . 7 ⊢ 𝐴 = (Base‘𝑉) | |
4 | mgcoval.2 | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑊) | |
5 | mgcoval.3 | . . . . . . 7 ⊢ ≤ = (le‘𝑉) | |
6 | mgcoval.4 | . . . . . . 7 ⊢ ≲ = (le‘𝑊) | |
7 | mgcval.1 | . . . . . . 7 ⊢ 𝐻 = (𝑉MGalConn𝑊) | |
8 | mgcval.2 | . . . . . . 7 ⊢ (𝜑 → 𝑉 ∈ Proset ) | |
9 | 3, 4, 5, 6, 7, 8, 1 | mgcval 31265 | . . . . . 6 ⊢ (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦))))) |
10 | 2, 9 | mpbid 231 | . . . . 5 ⊢ (𝜑 → ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦)))) |
11 | 10 | simplld 765 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
12 | mgccole1.2 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
13 | 11, 12 | ffvelrnd 6962 | . . 3 ⊢ (𝜑 → (𝐹‘𝑋) ∈ 𝐵) |
14 | 4, 6 | prsref 18017 | . . 3 ⊢ ((𝑊 ∈ Proset ∧ (𝐹‘𝑋) ∈ 𝐵) → (𝐹‘𝑋) ≲ (𝐹‘𝑋)) |
15 | 1, 13, 14 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐹‘𝑋) ≲ (𝐹‘𝑋)) |
16 | fveq2 6774 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
17 | 16 | breq1d 5084 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) ≲ 𝑦 ↔ (𝐹‘𝑋) ≲ 𝑦)) |
18 | breq1 5077 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑥 ≤ (𝐺‘𝑦) ↔ 𝑋 ≤ (𝐺‘𝑦))) | |
19 | 17, 18 | bibi12d 346 | . . . . 5 ⊢ (𝑥 = 𝑋 → (((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦)) ↔ ((𝐹‘𝑋) ≲ 𝑦 ↔ 𝑋 ≤ (𝐺‘𝑦)))) |
20 | 19 | ralbidv 3112 | . . . 4 ⊢ (𝑥 = 𝑋 → (∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦)) ↔ ∀𝑦 ∈ 𝐵 ((𝐹‘𝑋) ≲ 𝑦 ↔ 𝑋 ≤ (𝐺‘𝑦)))) |
21 | 10 | simprd 496 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦))) |
22 | 20, 21, 12 | rspcdva 3562 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 ((𝐹‘𝑋) ≲ 𝑦 ↔ 𝑋 ≤ (𝐺‘𝑦))) |
23 | simpr 485 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑋)) → 𝑦 = (𝐹‘𝑋)) | |
24 | 23 | breq2d 5086 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑋)) → ((𝐹‘𝑋) ≲ 𝑦 ↔ (𝐹‘𝑋) ≲ (𝐹‘𝑋))) |
25 | 23 | fveq2d 6778 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑋)) → (𝐺‘𝑦) = (𝐺‘(𝐹‘𝑋))) |
26 | 25 | breq2d 5086 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑋)) → (𝑋 ≤ (𝐺‘𝑦) ↔ 𝑋 ≤ (𝐺‘(𝐹‘𝑋)))) |
27 | 24, 26 | bibi12d 346 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑋)) → (((𝐹‘𝑋) ≲ 𝑦 ↔ 𝑋 ≤ (𝐺‘𝑦)) ↔ ((𝐹‘𝑋) ≲ (𝐹‘𝑋) ↔ 𝑋 ≤ (𝐺‘(𝐹‘𝑋))))) |
28 | 13, 27 | rspcdv 3553 | . . 3 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 ((𝐹‘𝑋) ≲ 𝑦 ↔ 𝑋 ≤ (𝐺‘𝑦)) → ((𝐹‘𝑋) ≲ (𝐹‘𝑋) ↔ 𝑋 ≤ (𝐺‘(𝐹‘𝑋))))) |
29 | 22, 28 | mpd 15 | . 2 ⊢ (𝜑 → ((𝐹‘𝑋) ≲ (𝐹‘𝑋) ↔ 𝑋 ≤ (𝐺‘(𝐹‘𝑋)))) |
30 | 15, 29 | mpbid 231 | 1 ⊢ (𝜑 → 𝑋 ≤ (𝐺‘(𝐹‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 class class class wbr 5074 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 lecple 16969 Proset cproset 18011 MGalConncmgc 31257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 df-proset 18013 df-mgc 31259 |
This theorem is referenced by: mgcmnt1 31270 mgcmntco 31272 dfmgc2 31274 mgcf1olem1 31279 mgcf1olem2 31280 |
Copyright terms: Public domain | W3C validator |