Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgccole2 Structured version   Visualization version   GIF version

Theorem mgccole2 31851
Description: Inequality for the closure operator (𝐹𝐺) of the Galois connection 𝐻. (Contributed by Thierry Arnoux, 26-Apr-2024.)
Hypotheses
Ref Expression
mgcoval.1 𝐴 = (Base‘𝑉)
mgcoval.2 𝐵 = (Base‘𝑊)
mgcoval.3 = (le‘𝑉)
mgcoval.4 = (le‘𝑊)
mgcval.1 𝐻 = (𝑉MGalConn𝑊)
mgcval.2 (𝜑𝑉 ∈ Proset )
mgcval.3 (𝜑𝑊 ∈ Proset )
mgccole.1 (𝜑𝐹𝐻𝐺)
mgccole2.1 (𝜑𝑌𝐵)
Assertion
Ref Expression
mgccole2 (𝜑 → (𝐹‘(𝐺𝑌)) 𝑌)

Proof of Theorem mgccole2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgcval.2 . . 3 (𝜑𝑉 ∈ Proset )
2 mgccole.1 . . . . . 6 (𝜑𝐹𝐻𝐺)
3 mgcoval.1 . . . . . . 7 𝐴 = (Base‘𝑉)
4 mgcoval.2 . . . . . . 7 𝐵 = (Base‘𝑊)
5 mgcoval.3 . . . . . . 7 = (le‘𝑉)
6 mgcoval.4 . . . . . . 7 = (le‘𝑊)
7 mgcval.1 . . . . . . 7 𝐻 = (𝑉MGalConn𝑊)
8 mgcval.3 . . . . . . 7 (𝜑𝑊 ∈ Proset )
93, 4, 5, 6, 7, 1, 8mgcval 31847 . . . . . 6 (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)))))
102, 9mpbid 231 . . . . 5 (𝜑 → ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦))))
1110simplrd 768 . . . 4 (𝜑𝐺:𝐵𝐴)
12 mgccole2.1 . . . 4 (𝜑𝑌𝐵)
1311, 12ffvelcdmd 7036 . . 3 (𝜑 → (𝐺𝑌) ∈ 𝐴)
143, 5prsref 18188 . . 3 ((𝑉 ∈ Proset ∧ (𝐺𝑌) ∈ 𝐴) → (𝐺𝑌) (𝐺𝑌))
151, 13, 14syl2anc 584 . 2 (𝜑 → (𝐺𝑌) (𝐺𝑌))
1610simprd 496 . . . 4 (𝜑 → ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)))
17 fveq2 6842 . . . . . . . . 9 (𝑥 = (𝐺𝑌) → (𝐹𝑥) = (𝐹‘(𝐺𝑌)))
1817breq1d 5115 . . . . . . . 8 (𝑥 = (𝐺𝑌) → ((𝐹𝑥) 𝑦 ↔ (𝐹‘(𝐺𝑌)) 𝑦))
19 breq1 5108 . . . . . . . 8 (𝑥 = (𝐺𝑌) → (𝑥 (𝐺𝑦) ↔ (𝐺𝑌) (𝐺𝑦)))
2018, 19bibi12d 345 . . . . . . 7 (𝑥 = (𝐺𝑌) → (((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)) ↔ ((𝐹‘(𝐺𝑌)) 𝑦 ↔ (𝐺𝑌) (𝐺𝑦))))
2120adantl 482 . . . . . 6 ((𝜑𝑥 = (𝐺𝑌)) → (((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)) ↔ ((𝐹‘(𝐺𝑌)) 𝑦 ↔ (𝐺𝑌) (𝐺𝑦))))
2221ralbidv 3174 . . . . 5 ((𝜑𝑥 = (𝐺𝑌)) → (∀𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)) ↔ ∀𝑦𝐵 ((𝐹‘(𝐺𝑌)) 𝑦 ↔ (𝐺𝑌) (𝐺𝑦))))
2313, 22rspcdv 3573 . . . 4 (𝜑 → (∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)) → ∀𝑦𝐵 ((𝐹‘(𝐺𝑌)) 𝑦 ↔ (𝐺𝑌) (𝐺𝑦))))
2416, 23mpd 15 . . 3 (𝜑 → ∀𝑦𝐵 ((𝐹‘(𝐺𝑌)) 𝑦 ↔ (𝐺𝑌) (𝐺𝑦)))
25 simpr 485 . . . . . 6 ((𝜑𝑦 = 𝑌) → 𝑦 = 𝑌)
2625breq2d 5117 . . . . 5 ((𝜑𝑦 = 𝑌) → ((𝐹‘(𝐺𝑌)) 𝑦 ↔ (𝐹‘(𝐺𝑌)) 𝑌))
27 fveq2 6842 . . . . . . 7 (𝑦 = 𝑌 → (𝐺𝑦) = (𝐺𝑌))
2827adantl 482 . . . . . 6 ((𝜑𝑦 = 𝑌) → (𝐺𝑦) = (𝐺𝑌))
2928breq2d 5117 . . . . 5 ((𝜑𝑦 = 𝑌) → ((𝐺𝑌) (𝐺𝑦) ↔ (𝐺𝑌) (𝐺𝑌)))
3026, 29bibi12d 345 . . . 4 ((𝜑𝑦 = 𝑌) → (((𝐹‘(𝐺𝑌)) 𝑦 ↔ (𝐺𝑌) (𝐺𝑦)) ↔ ((𝐹‘(𝐺𝑌)) 𝑌 ↔ (𝐺𝑌) (𝐺𝑌))))
3112, 30rspcdv 3573 . . 3 (𝜑 → (∀𝑦𝐵 ((𝐹‘(𝐺𝑌)) 𝑦 ↔ (𝐺𝑌) (𝐺𝑦)) → ((𝐹‘(𝐺𝑌)) 𝑌 ↔ (𝐺𝑌) (𝐺𝑌))))
3224, 31mpd 15 . 2 (𝜑 → ((𝐹‘(𝐺𝑌)) 𝑌 ↔ (𝐺𝑌) (𝐺𝑌)))
3315, 32mpbird 256 1 (𝜑 → (𝐹‘(𝐺𝑌)) 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064   class class class wbr 5105  wf 6492  cfv 6496  (class class class)co 7357  Basecbs 17083  lecple 17140   Proset cproset 18182  MGalConncmgc 31839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-map 8767  df-proset 18184  df-mgc 31841
This theorem is referenced by:  mgcmnt2  31853  mgcmntco  31854  dfmgc2  31856  mgcf1olem1  31861  mgcf1olem2  31862
  Copyright terms: Public domain W3C validator