Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgccole2 Structured version   Visualization version   GIF version

Theorem mgccole2 32924
Description: Inequality for the closure operator (𝐹𝐺) of the Galois connection 𝐻. (Contributed by Thierry Arnoux, 26-Apr-2024.)
Hypotheses
Ref Expression
mgcoval.1 𝐴 = (Base‘𝑉)
mgcoval.2 𝐵 = (Base‘𝑊)
mgcoval.3 = (le‘𝑉)
mgcoval.4 = (le‘𝑊)
mgcval.1 𝐻 = (𝑉MGalConn𝑊)
mgcval.2 (𝜑𝑉 ∈ Proset )
mgcval.3 (𝜑𝑊 ∈ Proset )
mgccole.1 (𝜑𝐹𝐻𝐺)
mgccole2.1 (𝜑𝑌𝐵)
Assertion
Ref Expression
mgccole2 (𝜑 → (𝐹‘(𝐺𝑌)) 𝑌)

Proof of Theorem mgccole2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgcval.2 . . 3 (𝜑𝑉 ∈ Proset )
2 mgccole.1 . . . . . 6 (𝜑𝐹𝐻𝐺)
3 mgcoval.1 . . . . . . 7 𝐴 = (Base‘𝑉)
4 mgcoval.2 . . . . . . 7 𝐵 = (Base‘𝑊)
5 mgcoval.3 . . . . . . 7 = (le‘𝑉)
6 mgcoval.4 . . . . . . 7 = (le‘𝑊)
7 mgcval.1 . . . . . . 7 𝐻 = (𝑉MGalConn𝑊)
8 mgcval.3 . . . . . . 7 (𝜑𝑊 ∈ Proset )
93, 4, 5, 6, 7, 1, 8mgcval 32920 . . . . . 6 (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)))))
102, 9mpbid 232 . . . . 5 (𝜑 → ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦))))
1110simplrd 769 . . . 4 (𝜑𝐺:𝐵𝐴)
12 mgccole2.1 . . . 4 (𝜑𝑌𝐵)
1311, 12ffvelcdmd 7060 . . 3 (𝜑 → (𝐺𝑌) ∈ 𝐴)
143, 5prsref 18266 . . 3 ((𝑉 ∈ Proset ∧ (𝐺𝑌) ∈ 𝐴) → (𝐺𝑌) (𝐺𝑌))
151, 13, 14syl2anc 584 . 2 (𝜑 → (𝐺𝑌) (𝐺𝑌))
1610simprd 495 . . . 4 (𝜑 → ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)))
17 fveq2 6861 . . . . . . . . 9 (𝑥 = (𝐺𝑌) → (𝐹𝑥) = (𝐹‘(𝐺𝑌)))
1817breq1d 5120 . . . . . . . 8 (𝑥 = (𝐺𝑌) → ((𝐹𝑥) 𝑦 ↔ (𝐹‘(𝐺𝑌)) 𝑦))
19 breq1 5113 . . . . . . . 8 (𝑥 = (𝐺𝑌) → (𝑥 (𝐺𝑦) ↔ (𝐺𝑌) (𝐺𝑦)))
2018, 19bibi12d 345 . . . . . . 7 (𝑥 = (𝐺𝑌) → (((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)) ↔ ((𝐹‘(𝐺𝑌)) 𝑦 ↔ (𝐺𝑌) (𝐺𝑦))))
2120adantl 481 . . . . . 6 ((𝜑𝑥 = (𝐺𝑌)) → (((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)) ↔ ((𝐹‘(𝐺𝑌)) 𝑦 ↔ (𝐺𝑌) (𝐺𝑦))))
2221ralbidv 3157 . . . . 5 ((𝜑𝑥 = (𝐺𝑌)) → (∀𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)) ↔ ∀𝑦𝐵 ((𝐹‘(𝐺𝑌)) 𝑦 ↔ (𝐺𝑌) (𝐺𝑦))))
2313, 22rspcdv 3583 . . . 4 (𝜑 → (∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)) → ∀𝑦𝐵 ((𝐹‘(𝐺𝑌)) 𝑦 ↔ (𝐺𝑌) (𝐺𝑦))))
2416, 23mpd 15 . . 3 (𝜑 → ∀𝑦𝐵 ((𝐹‘(𝐺𝑌)) 𝑦 ↔ (𝐺𝑌) (𝐺𝑦)))
25 simpr 484 . . . . . 6 ((𝜑𝑦 = 𝑌) → 𝑦 = 𝑌)
2625breq2d 5122 . . . . 5 ((𝜑𝑦 = 𝑌) → ((𝐹‘(𝐺𝑌)) 𝑦 ↔ (𝐹‘(𝐺𝑌)) 𝑌))
27 fveq2 6861 . . . . . . 7 (𝑦 = 𝑌 → (𝐺𝑦) = (𝐺𝑌))
2827adantl 481 . . . . . 6 ((𝜑𝑦 = 𝑌) → (𝐺𝑦) = (𝐺𝑌))
2928breq2d 5122 . . . . 5 ((𝜑𝑦 = 𝑌) → ((𝐺𝑌) (𝐺𝑦) ↔ (𝐺𝑌) (𝐺𝑌)))
3026, 29bibi12d 345 . . . 4 ((𝜑𝑦 = 𝑌) → (((𝐹‘(𝐺𝑌)) 𝑦 ↔ (𝐺𝑌) (𝐺𝑦)) ↔ ((𝐹‘(𝐺𝑌)) 𝑌 ↔ (𝐺𝑌) (𝐺𝑌))))
3112, 30rspcdv 3583 . . 3 (𝜑 → (∀𝑦𝐵 ((𝐹‘(𝐺𝑌)) 𝑦 ↔ (𝐺𝑌) (𝐺𝑦)) → ((𝐹‘(𝐺𝑌)) 𝑌 ↔ (𝐺𝑌) (𝐺𝑌))))
3224, 31mpd 15 . 2 (𝜑 → ((𝐹‘(𝐺𝑌)) 𝑌 ↔ (𝐺𝑌) (𝐺𝑌)))
3315, 32mpbird 257 1 (𝜑 → (𝐹‘(𝐺𝑌)) 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045   class class class wbr 5110  wf 6510  cfv 6514  (class class class)co 7390  Basecbs 17186  lecple 17234   Proset cproset 18260  MGalConncmgc 32912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-proset 18262  df-mgc 32914
This theorem is referenced by:  mgcmnt2  32926  mgcmntco  32927  dfmgc2  32929  mgcf1olem1  32934  mgcf1olem2  32935
  Copyright terms: Public domain W3C validator