Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgccole2 Structured version   Visualization version   GIF version

Theorem mgccole2 32946
Description: Inequality for the closure operator (𝐹𝐺) of the Galois connection 𝐻. (Contributed by Thierry Arnoux, 26-Apr-2024.)
Hypotheses
Ref Expression
mgcoval.1 𝐴 = (Base‘𝑉)
mgcoval.2 𝐵 = (Base‘𝑊)
mgcoval.3 = (le‘𝑉)
mgcoval.4 = (le‘𝑊)
mgcval.1 𝐻 = (𝑉MGalConn𝑊)
mgcval.2 (𝜑𝑉 ∈ Proset )
mgcval.3 (𝜑𝑊 ∈ Proset )
mgccole.1 (𝜑𝐹𝐻𝐺)
mgccole2.1 (𝜑𝑌𝐵)
Assertion
Ref Expression
mgccole2 (𝜑 → (𝐹‘(𝐺𝑌)) 𝑌)

Proof of Theorem mgccole2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgcval.2 . . 3 (𝜑𝑉 ∈ Proset )
2 mgccole.1 . . . . . 6 (𝜑𝐹𝐻𝐺)
3 mgcoval.1 . . . . . . 7 𝐴 = (Base‘𝑉)
4 mgcoval.2 . . . . . . 7 𝐵 = (Base‘𝑊)
5 mgcoval.3 . . . . . . 7 = (le‘𝑉)
6 mgcoval.4 . . . . . . 7 = (le‘𝑊)
7 mgcval.1 . . . . . . 7 𝐻 = (𝑉MGalConn𝑊)
8 mgcval.3 . . . . . . 7 (𝜑𝑊 ∈ Proset )
93, 4, 5, 6, 7, 1, 8mgcval 32942 . . . . . 6 (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)))))
102, 9mpbid 232 . . . . 5 (𝜑 → ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦))))
1110simplrd 769 . . . 4 (𝜑𝐺:𝐵𝐴)
12 mgccole2.1 . . . 4 (𝜑𝑌𝐵)
1311, 12ffvelcdmd 7023 . . 3 (𝜑 → (𝐺𝑌) ∈ 𝐴)
143, 5prsref 18222 . . 3 ((𝑉 ∈ Proset ∧ (𝐺𝑌) ∈ 𝐴) → (𝐺𝑌) (𝐺𝑌))
151, 13, 14syl2anc 584 . 2 (𝜑 → (𝐺𝑌) (𝐺𝑌))
1610simprd 495 . . . 4 (𝜑 → ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)))
17 fveq2 6826 . . . . . . . . 9 (𝑥 = (𝐺𝑌) → (𝐹𝑥) = (𝐹‘(𝐺𝑌)))
1817breq1d 5105 . . . . . . . 8 (𝑥 = (𝐺𝑌) → ((𝐹𝑥) 𝑦 ↔ (𝐹‘(𝐺𝑌)) 𝑦))
19 breq1 5098 . . . . . . . 8 (𝑥 = (𝐺𝑌) → (𝑥 (𝐺𝑦) ↔ (𝐺𝑌) (𝐺𝑦)))
2018, 19bibi12d 345 . . . . . . 7 (𝑥 = (𝐺𝑌) → (((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)) ↔ ((𝐹‘(𝐺𝑌)) 𝑦 ↔ (𝐺𝑌) (𝐺𝑦))))
2120adantl 481 . . . . . 6 ((𝜑𝑥 = (𝐺𝑌)) → (((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)) ↔ ((𝐹‘(𝐺𝑌)) 𝑦 ↔ (𝐺𝑌) (𝐺𝑦))))
2221ralbidv 3152 . . . . 5 ((𝜑𝑥 = (𝐺𝑌)) → (∀𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)) ↔ ∀𝑦𝐵 ((𝐹‘(𝐺𝑌)) 𝑦 ↔ (𝐺𝑌) (𝐺𝑦))))
2313, 22rspcdv 3571 . . . 4 (𝜑 → (∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)) → ∀𝑦𝐵 ((𝐹‘(𝐺𝑌)) 𝑦 ↔ (𝐺𝑌) (𝐺𝑦))))
2416, 23mpd 15 . . 3 (𝜑 → ∀𝑦𝐵 ((𝐹‘(𝐺𝑌)) 𝑦 ↔ (𝐺𝑌) (𝐺𝑦)))
25 simpr 484 . . . . . 6 ((𝜑𝑦 = 𝑌) → 𝑦 = 𝑌)
2625breq2d 5107 . . . . 5 ((𝜑𝑦 = 𝑌) → ((𝐹‘(𝐺𝑌)) 𝑦 ↔ (𝐹‘(𝐺𝑌)) 𝑌))
27 fveq2 6826 . . . . . . 7 (𝑦 = 𝑌 → (𝐺𝑦) = (𝐺𝑌))
2827adantl 481 . . . . . 6 ((𝜑𝑦 = 𝑌) → (𝐺𝑦) = (𝐺𝑌))
2928breq2d 5107 . . . . 5 ((𝜑𝑦 = 𝑌) → ((𝐺𝑌) (𝐺𝑦) ↔ (𝐺𝑌) (𝐺𝑌)))
3026, 29bibi12d 345 . . . 4 ((𝜑𝑦 = 𝑌) → (((𝐹‘(𝐺𝑌)) 𝑦 ↔ (𝐺𝑌) (𝐺𝑦)) ↔ ((𝐹‘(𝐺𝑌)) 𝑌 ↔ (𝐺𝑌) (𝐺𝑌))))
3112, 30rspcdv 3571 . . 3 (𝜑 → (∀𝑦𝐵 ((𝐹‘(𝐺𝑌)) 𝑦 ↔ (𝐺𝑌) (𝐺𝑦)) → ((𝐹‘(𝐺𝑌)) 𝑌 ↔ (𝐺𝑌) (𝐺𝑌))))
3224, 31mpd 15 . 2 (𝜑 → ((𝐹‘(𝐺𝑌)) 𝑌 ↔ (𝐺𝑌) (𝐺𝑌)))
3315, 32mpbird 257 1 (𝜑 → (𝐹‘(𝐺𝑌)) 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5095  wf 6482  cfv 6486  (class class class)co 7353  Basecbs 17138  lecple 17186   Proset cproset 18216  MGalConncmgc 32934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-map 8762  df-proset 18218  df-mgc 32936
This theorem is referenced by:  mgcmnt2  32948  mgcmntco  32949  dfmgc2  32951  mgcf1olem1  32956  mgcf1olem2  32957
  Copyright terms: Public domain W3C validator