MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwfseqlem5 Structured version   Visualization version   GIF version

Theorem pwfseqlem5 10546
Description: Lemma for pwfseq 10547. Although in some ways pwfseqlem4 10545 is the "main" part of the proof, one last aspect which makes up a remark in the original text is by far the hardest part to formalize. The main proof relies on the existence of an injection 𝐾 from the set of finite sequences on an infinite set 𝑥 to 𝑥. Now this alone would not be difficult to prove; this is mostly the claim of fseqen 9910. However, what is needed for the proof is a canonical injection on these sets, so we have to start from scratch pulling together explicit bijections from the lemmas.

If one attempts such a program, it will mostly go through, but there is one key step which is inherently nonconstructive, namely the proof of infxpen 9897. The resolution is not obvious, but it turns out that reversing an infinite ordinal's Cantor normal form absorbs all the non-leading terms (cnfcom3c 9591), which can be used to construct a pairing function explicitly using properties of the ordinal exponential (infxpenc 9901). (Contributed by Mario Carneiro, 31-May-2015.)

Hypotheses
Ref Expression
pwfseqlem5.g (𝜑𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛))
pwfseqlem5.x (𝜑𝑋𝐴)
pwfseqlem5.h (𝜑𝐻:ω–1-1-onto𝑋)
pwfseqlem5.ps (𝜓 ↔ ((𝑡𝐴𝑟 ⊆ (𝑡 × 𝑡) ∧ 𝑟 We 𝑡) ∧ ω ≼ 𝑡))
pwfseqlem5.n (𝜑 → ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑁𝑏):(𝑏 × 𝑏)–1-1-onto𝑏))
pwfseqlem5.o 𝑂 = OrdIso(𝑟, 𝑡)
pwfseqlem5.t 𝑇 = (𝑢 ∈ dom 𝑂, 𝑣 ∈ dom 𝑂 ↦ ⟨(𝑂𝑢), (𝑂𝑣)⟩)
pwfseqlem5.p 𝑃 = ((𝑂 ∘ (𝑁‘dom 𝑂)) ∘ 𝑇)
pwfseqlem5.s 𝑆 = seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝑡m suc 𝑘) ↦ ((𝑓‘(𝑥𝑘))𝑃(𝑥𝑘)))), {⟨∅, (𝑂‘∅)⟩})
pwfseqlem5.q 𝑄 = (𝑦 𝑛 ∈ ω (𝑡m 𝑛) ↦ ⟨dom 𝑦, ((𝑆‘dom 𝑦)‘𝑦)⟩)
pwfseqlem5.i 𝐼 = (𝑥 ∈ ω, 𝑦𝑡 ↦ ⟨(𝑂𝑥), 𝑦⟩)
pwfseqlem5.k 𝐾 = ((𝑃𝐼) ∘ 𝑄)
Assertion
Ref Expression
pwfseqlem5 ¬ 𝜑
Distinct variable groups:   𝑛,𝑏,𝐺   𝑟,𝑏,𝑡,𝐻   𝑓,𝑘,𝑥,𝑃   𝑓,𝑏,𝑘,𝑢,𝑣,𝑥,𝑦,𝑛,𝑟,𝑡   𝜑,𝑏,𝑘,𝑛,𝑟,𝑡,𝑥,𝑦   𝐾,𝑏,𝑛   𝑁,𝑏   𝜓,𝑘,𝑛,𝑥,𝑦   𝑆,𝑛,𝑦   𝐴,𝑏,𝑛,𝑟,𝑡   𝑂,𝑏,𝑢,𝑣,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑣,𝑢,𝑓)   𝜓(𝑣,𝑢,𝑡,𝑓,𝑟,𝑏)   𝐴(𝑥,𝑦,𝑣,𝑢,𝑓,𝑘)   𝑃(𝑦,𝑣,𝑢,𝑡,𝑛,𝑟,𝑏)   𝑄(𝑥,𝑦,𝑣,𝑢,𝑡,𝑓,𝑘,𝑛,𝑟,𝑏)   𝑆(𝑥,𝑣,𝑢,𝑡,𝑓,𝑘,𝑟,𝑏)   𝑇(𝑥,𝑦,𝑣,𝑢,𝑡,𝑓,𝑘,𝑛,𝑟,𝑏)   𝐺(𝑥,𝑦,𝑣,𝑢,𝑡,𝑓,𝑘,𝑟)   𝐻(𝑥,𝑦,𝑣,𝑢,𝑓,𝑘,𝑛)   𝐼(𝑥,𝑦,𝑣,𝑢,𝑡,𝑓,𝑘,𝑛,𝑟,𝑏)   𝐾(𝑥,𝑦,𝑣,𝑢,𝑡,𝑓,𝑘,𝑟)   𝑁(𝑥,𝑦,𝑣,𝑢,𝑡,𝑓,𝑘,𝑛,𝑟)   𝑂(𝑡,𝑓,𝑘,𝑛,𝑟)   𝑋(𝑥,𝑦,𝑣,𝑢,𝑡,𝑓,𝑘,𝑛,𝑟,𝑏)

Proof of Theorem pwfseqlem5
Dummy variables 𝑎 𝑐 𝑑 𝑖 𝑗 𝑚 𝑠 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwfseqlem5.g . 2 (𝜑𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛))
2 pwfseqlem5.x . 2 (𝜑𝑋𝐴)
3 pwfseqlem5.h . 2 (𝜑𝐻:ω–1-1-onto𝑋)
4 pwfseqlem5.ps . 2 (𝜓 ↔ ((𝑡𝐴𝑟 ⊆ (𝑡 × 𝑡) ∧ 𝑟 We 𝑡) ∧ ω ≼ 𝑡))
5 vex 3438 . . . . . . . . . . 11 𝑡 ∈ V
6 simprl3 1221 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑡𝐴𝑟 ⊆ (𝑡 × 𝑡) ∧ 𝑟 We 𝑡) ∧ ω ≼ 𝑡)) → 𝑟 We 𝑡)
74, 6sylan2b 594 . . . . . . . . . . 11 ((𝜑𝜓) → 𝑟 We 𝑡)
8 pwfseqlem5.o . . . . . . . . . . . 12 𝑂 = OrdIso(𝑟, 𝑡)
98oiiso 9418 . . . . . . . . . . 11 ((𝑡 ∈ V ∧ 𝑟 We 𝑡) → 𝑂 Isom E , 𝑟 (dom 𝑂, 𝑡))
105, 7, 9sylancr 587 . . . . . . . . . 10 ((𝜑𝜓) → 𝑂 Isom E , 𝑟 (dom 𝑂, 𝑡))
11 isof1o 7252 . . . . . . . . . 10 (𝑂 Isom E , 𝑟 (dom 𝑂, 𝑡) → 𝑂:dom 𝑂1-1-onto𝑡)
1210, 11syl 17 . . . . . . . . 9 ((𝜑𝜓) → 𝑂:dom 𝑂1-1-onto𝑡)
13 cardom 9871 . . . . . . . . . . . 12 (card‘ω) = ω
14 simprr 772 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑡𝐴𝑟 ⊆ (𝑡 × 𝑡) ∧ 𝑟 We 𝑡) ∧ ω ≼ 𝑡)) → ω ≼ 𝑡)
154, 14sylan2b 594 . . . . . . . . . . . . . 14 ((𝜑𝜓) → ω ≼ 𝑡)
168oien 9419 . . . . . . . . . . . . . . . 16 ((𝑡 ∈ V ∧ 𝑟 We 𝑡) → dom 𝑂𝑡)
175, 7, 16sylancr 587 . . . . . . . . . . . . . . 15 ((𝜑𝜓) → dom 𝑂𝑡)
1817ensymd 8922 . . . . . . . . . . . . . 14 ((𝜑𝜓) → 𝑡 ≈ dom 𝑂)
19 domentr 8930 . . . . . . . . . . . . . 14 ((ω ≼ 𝑡𝑡 ≈ dom 𝑂) → ω ≼ dom 𝑂)
2015, 18, 19syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝜓) → ω ≼ dom 𝑂)
21 omelon 9531 . . . . . . . . . . . . . . 15 ω ∈ On
22 onenon 9834 . . . . . . . . . . . . . . 15 (ω ∈ On → ω ∈ dom card)
2321, 22ax-mp 5 . . . . . . . . . . . . . 14 ω ∈ dom card
248oion 9417 . . . . . . . . . . . . . . . 16 (𝑡 ∈ V → dom 𝑂 ∈ On)
2524elv 3439 . . . . . . . . . . . . . . 15 dom 𝑂 ∈ On
26 onenon 9834 . . . . . . . . . . . . . . 15 (dom 𝑂 ∈ On → dom 𝑂 ∈ dom card)
2725, 26mp1i 13 . . . . . . . . . . . . . 14 ((𝜑𝜓) → dom 𝑂 ∈ dom card)
28 carddom2 9862 . . . . . . . . . . . . . 14 ((ω ∈ dom card ∧ dom 𝑂 ∈ dom card) → ((card‘ω) ⊆ (card‘dom 𝑂) ↔ ω ≼ dom 𝑂))
2923, 27, 28sylancr 587 . . . . . . . . . . . . 13 ((𝜑𝜓) → ((card‘ω) ⊆ (card‘dom 𝑂) ↔ ω ≼ dom 𝑂))
3020, 29mpbird 257 . . . . . . . . . . . 12 ((𝜑𝜓) → (card‘ω) ⊆ (card‘dom 𝑂))
3113, 30eqsstrrid 3972 . . . . . . . . . . 11 ((𝜑𝜓) → ω ⊆ (card‘dom 𝑂))
32 cardonle 9842 . . . . . . . . . . . 12 (dom 𝑂 ∈ On → (card‘dom 𝑂) ⊆ dom 𝑂)
3325, 32mp1i 13 . . . . . . . . . . 11 ((𝜑𝜓) → (card‘dom 𝑂) ⊆ dom 𝑂)
3431, 33sstrd 3943 . . . . . . . . . 10 ((𝜑𝜓) → ω ⊆ dom 𝑂)
35 sseq2 3959 . . . . . . . . . . . 12 (𝑏 = dom 𝑂 → (ω ⊆ 𝑏 ↔ ω ⊆ dom 𝑂))
36 fveq2 6817 . . . . . . . . . . . . . 14 (𝑏 = dom 𝑂 → (𝑁𝑏) = (𝑁‘dom 𝑂))
3736f1oeq1d 6754 . . . . . . . . . . . . 13 (𝑏 = dom 𝑂 → ((𝑁𝑏):(𝑏 × 𝑏)–1-1-onto𝑏 ↔ (𝑁‘dom 𝑂):(𝑏 × 𝑏)–1-1-onto𝑏))
38 xpeq12 5639 . . . . . . . . . . . . . . 15 ((𝑏 = dom 𝑂𝑏 = dom 𝑂) → (𝑏 × 𝑏) = (dom 𝑂 × dom 𝑂))
3938anidms 566 . . . . . . . . . . . . . 14 (𝑏 = dom 𝑂 → (𝑏 × 𝑏) = (dom 𝑂 × dom 𝑂))
4039f1oeq2d 6755 . . . . . . . . . . . . 13 (𝑏 = dom 𝑂 → ((𝑁‘dom 𝑂):(𝑏 × 𝑏)–1-1-onto𝑏 ↔ (𝑁‘dom 𝑂):(dom 𝑂 × dom 𝑂)–1-1-onto𝑏))
41 f1oeq3 6749 . . . . . . . . . . . . 13 (𝑏 = dom 𝑂 → ((𝑁‘dom 𝑂):(dom 𝑂 × dom 𝑂)–1-1-onto𝑏 ↔ (𝑁‘dom 𝑂):(dom 𝑂 × dom 𝑂)–1-1-onto→dom 𝑂))
4237, 40, 413bitrd 305 . . . . . . . . . . . 12 (𝑏 = dom 𝑂 → ((𝑁𝑏):(𝑏 × 𝑏)–1-1-onto𝑏 ↔ (𝑁‘dom 𝑂):(dom 𝑂 × dom 𝑂)–1-1-onto→dom 𝑂))
4335, 42imbi12d 344 . . . . . . . . . . 11 (𝑏 = dom 𝑂 → ((ω ⊆ 𝑏 → (𝑁𝑏):(𝑏 × 𝑏)–1-1-onto𝑏) ↔ (ω ⊆ dom 𝑂 → (𝑁‘dom 𝑂):(dom 𝑂 × dom 𝑂)–1-1-onto→dom 𝑂)))
44 pwfseqlem5.n . . . . . . . . . . . 12 (𝜑 → ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑁𝑏):(𝑏 × 𝑏)–1-1-onto𝑏))
4544adantr 480 . . . . . . . . . . 11 ((𝜑𝜓) → ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑁𝑏):(𝑏 × 𝑏)–1-1-onto𝑏))
4625a1i 11 . . . . . . . . . . . 12 ((𝜑𝜓) → dom 𝑂 ∈ On)
471adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝜓) → 𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛))
48 omex 9528 . . . . . . . . . . . . . . . . . 18 ω ∈ V
49 ovex 7374 . . . . . . . . . . . . . . . . . 18 (𝐴m 𝑛) ∈ V
5048, 49iunex 7895 . . . . . . . . . . . . . . . . 17 𝑛 ∈ ω (𝐴m 𝑛) ∈ V
51 f1dmex 7884 . . . . . . . . . . . . . . . . 17 ((𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛) ∧ 𝑛 ∈ ω (𝐴m 𝑛) ∈ V) → 𝒫 𝐴 ∈ V)
5247, 50, 51sylancl 586 . . . . . . . . . . . . . . . 16 ((𝜑𝜓) → 𝒫 𝐴 ∈ V)
53 pwexb 7694 . . . . . . . . . . . . . . . 16 (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V)
5452, 53sylibr 234 . . . . . . . . . . . . . . 15 ((𝜑𝜓) → 𝐴 ∈ V)
55 simprl1 1219 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑡𝐴𝑟 ⊆ (𝑡 × 𝑡) ∧ 𝑟 We 𝑡) ∧ ω ≼ 𝑡)) → 𝑡𝐴)
564, 55sylan2b 594 . . . . . . . . . . . . . . 15 ((𝜑𝜓) → 𝑡𝐴)
57 ssdomg 8917 . . . . . . . . . . . . . . 15 (𝐴 ∈ V → (𝑡𝐴𝑡𝐴))
5854, 56, 57sylc 65 . . . . . . . . . . . . . 14 ((𝜑𝜓) → 𝑡𝐴)
59 canth2g 9039 . . . . . . . . . . . . . . 15 (𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴)
60 sdomdom 8897 . . . . . . . . . . . . . . 15 (𝐴 ≺ 𝒫 𝐴𝐴 ≼ 𝒫 𝐴)
6154, 59, 603syl 18 . . . . . . . . . . . . . 14 ((𝜑𝜓) → 𝐴 ≼ 𝒫 𝐴)
62 domtr 8924 . . . . . . . . . . . . . 14 ((𝑡𝐴𝐴 ≼ 𝒫 𝐴) → 𝑡 ≼ 𝒫 𝐴)
6358, 61, 62syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝜓) → 𝑡 ≼ 𝒫 𝐴)
64 endomtr 8929 . . . . . . . . . . . . 13 ((dom 𝑂𝑡𝑡 ≼ 𝒫 𝐴) → dom 𝑂 ≼ 𝒫 𝐴)
6517, 63, 64syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝜓) → dom 𝑂 ≼ 𝒫 𝐴)
66 elharval 9442 . . . . . . . . . . . 12 (dom 𝑂 ∈ (har‘𝒫 𝐴) ↔ (dom 𝑂 ∈ On ∧ dom 𝑂 ≼ 𝒫 𝐴))
6746, 65, 66sylanbrc 583 . . . . . . . . . . 11 ((𝜑𝜓) → dom 𝑂 ∈ (har‘𝒫 𝐴))
6843, 45, 67rspcdva 3576 . . . . . . . . . 10 ((𝜑𝜓) → (ω ⊆ dom 𝑂 → (𝑁‘dom 𝑂):(dom 𝑂 × dom 𝑂)–1-1-onto→dom 𝑂))
6934, 68mpd 15 . . . . . . . . 9 ((𝜑𝜓) → (𝑁‘dom 𝑂):(dom 𝑂 × dom 𝑂)–1-1-onto→dom 𝑂)
70 f1oco 6782 . . . . . . . . 9 ((𝑂:dom 𝑂1-1-onto𝑡 ∧ (𝑁‘dom 𝑂):(dom 𝑂 × dom 𝑂)–1-1-onto→dom 𝑂) → (𝑂 ∘ (𝑁‘dom 𝑂)):(dom 𝑂 × dom 𝑂)–1-1-onto𝑡)
7112, 69, 70syl2anc 584 . . . . . . . 8 ((𝜑𝜓) → (𝑂 ∘ (𝑁‘dom 𝑂)):(dom 𝑂 × dom 𝑂)–1-1-onto𝑡)
72 f1of 6759 . . . . . . . . . . . . . . 15 (𝑂:dom 𝑂1-1-onto𝑡𝑂:dom 𝑂𝑡)
7312, 72syl 17 . . . . . . . . . . . . . 14 ((𝜑𝜓) → 𝑂:dom 𝑂𝑡)
7473feqmptd 6885 . . . . . . . . . . . . 13 ((𝜑𝜓) → 𝑂 = (𝑢 ∈ dom 𝑂 ↦ (𝑂𝑢)))
7574f1oeq1d 6754 . . . . . . . . . . . 12 ((𝜑𝜓) → (𝑂:dom 𝑂1-1-onto𝑡 ↔ (𝑢 ∈ dom 𝑂 ↦ (𝑂𝑢)):dom 𝑂1-1-onto𝑡))
7612, 75mpbid 232 . . . . . . . . . . 11 ((𝜑𝜓) → (𝑢 ∈ dom 𝑂 ↦ (𝑂𝑢)):dom 𝑂1-1-onto𝑡)
7773feqmptd 6885 . . . . . . . . . . . . 13 ((𝜑𝜓) → 𝑂 = (𝑣 ∈ dom 𝑂 ↦ (𝑂𝑣)))
7877f1oeq1d 6754 . . . . . . . . . . . 12 ((𝜑𝜓) → (𝑂:dom 𝑂1-1-onto𝑡 ↔ (𝑣 ∈ dom 𝑂 ↦ (𝑂𝑣)):dom 𝑂1-1-onto𝑡))
7912, 78mpbid 232 . . . . . . . . . . 11 ((𝜑𝜓) → (𝑣 ∈ dom 𝑂 ↦ (𝑂𝑣)):dom 𝑂1-1-onto𝑡)
8076, 79xpf1o 9047 . . . . . . . . . 10 ((𝜑𝜓) → (𝑢 ∈ dom 𝑂, 𝑣 ∈ dom 𝑂 ↦ ⟨(𝑂𝑢), (𝑂𝑣)⟩):(dom 𝑂 × dom 𝑂)–1-1-onto→(𝑡 × 𝑡))
81 pwfseqlem5.t . . . . . . . . . . 11 𝑇 = (𝑢 ∈ dom 𝑂, 𝑣 ∈ dom 𝑂 ↦ ⟨(𝑂𝑢), (𝑂𝑣)⟩)
82 f1oeq1 6747 . . . . . . . . . . 11 (𝑇 = (𝑢 ∈ dom 𝑂, 𝑣 ∈ dom 𝑂 ↦ ⟨(𝑂𝑢), (𝑂𝑣)⟩) → (𝑇:(dom 𝑂 × dom 𝑂)–1-1-onto→(𝑡 × 𝑡) ↔ (𝑢 ∈ dom 𝑂, 𝑣 ∈ dom 𝑂 ↦ ⟨(𝑂𝑢), (𝑂𝑣)⟩):(dom 𝑂 × dom 𝑂)–1-1-onto→(𝑡 × 𝑡)))
8381, 82ax-mp 5 . . . . . . . . . 10 (𝑇:(dom 𝑂 × dom 𝑂)–1-1-onto→(𝑡 × 𝑡) ↔ (𝑢 ∈ dom 𝑂, 𝑣 ∈ dom 𝑂 ↦ ⟨(𝑂𝑢), (𝑂𝑣)⟩):(dom 𝑂 × dom 𝑂)–1-1-onto→(𝑡 × 𝑡))
8480, 83sylibr 234 . . . . . . . . 9 ((𝜑𝜓) → 𝑇:(dom 𝑂 × dom 𝑂)–1-1-onto→(𝑡 × 𝑡))
85 f1ocnv 6771 . . . . . . . . 9 (𝑇:(dom 𝑂 × dom 𝑂)–1-1-onto→(𝑡 × 𝑡) → 𝑇:(𝑡 × 𝑡)–1-1-onto→(dom 𝑂 × dom 𝑂))
8684, 85syl 17 . . . . . . . 8 ((𝜑𝜓) → 𝑇:(𝑡 × 𝑡)–1-1-onto→(dom 𝑂 × dom 𝑂))
87 f1oco 6782 . . . . . . . 8 (((𝑂 ∘ (𝑁‘dom 𝑂)):(dom 𝑂 × dom 𝑂)–1-1-onto𝑡𝑇:(𝑡 × 𝑡)–1-1-onto→(dom 𝑂 × dom 𝑂)) → ((𝑂 ∘ (𝑁‘dom 𝑂)) ∘ 𝑇):(𝑡 × 𝑡)–1-1-onto𝑡)
8871, 86, 87syl2anc 584 . . . . . . 7 ((𝜑𝜓) → ((𝑂 ∘ (𝑁‘dom 𝑂)) ∘ 𝑇):(𝑡 × 𝑡)–1-1-onto𝑡)
89 pwfseqlem5.p . . . . . . . 8 𝑃 = ((𝑂 ∘ (𝑁‘dom 𝑂)) ∘ 𝑇)
90 f1oeq1 6747 . . . . . . . 8 (𝑃 = ((𝑂 ∘ (𝑁‘dom 𝑂)) ∘ 𝑇) → (𝑃:(𝑡 × 𝑡)–1-1-onto𝑡 ↔ ((𝑂 ∘ (𝑁‘dom 𝑂)) ∘ 𝑇):(𝑡 × 𝑡)–1-1-onto𝑡))
9189, 90ax-mp 5 . . . . . . 7 (𝑃:(𝑡 × 𝑡)–1-1-onto𝑡 ↔ ((𝑂 ∘ (𝑁‘dom 𝑂)) ∘ 𝑇):(𝑡 × 𝑡)–1-1-onto𝑡)
9288, 91sylibr 234 . . . . . 6 ((𝜑𝜓) → 𝑃:(𝑡 × 𝑡)–1-1-onto𝑡)
93 f1of1 6758 . . . . . 6 (𝑃:(𝑡 × 𝑡)–1-1-onto𝑡𝑃:(𝑡 × 𝑡)–1-1𝑡)
9492, 93syl 17 . . . . 5 ((𝜑𝜓) → 𝑃:(𝑡 × 𝑡)–1-1𝑡)
95 f1of1 6758 . . . . . . . . . . . . 13 (𝑂:dom 𝑂1-1-onto𝑡𝑂:dom 𝑂1-1𝑡)
9612, 95syl 17 . . . . . . . . . . . 12 ((𝜑𝜓) → 𝑂:dom 𝑂1-1𝑡)
97 f1ssres 6722 . . . . . . . . . . . 12 ((𝑂:dom 𝑂1-1𝑡 ∧ ω ⊆ dom 𝑂) → (𝑂 ↾ ω):ω–1-1𝑡)
9896, 34, 97syl2anc 584 . . . . . . . . . . 11 ((𝜑𝜓) → (𝑂 ↾ ω):ω–1-1𝑡)
99 f1f1orn 6770 . . . . . . . . . . 11 ((𝑂 ↾ ω):ω–1-1𝑡 → (𝑂 ↾ ω):ω–1-1-onto→ran (𝑂 ↾ ω))
10098, 99syl 17 . . . . . . . . . 10 ((𝜑𝜓) → (𝑂 ↾ ω):ω–1-1-onto→ran (𝑂 ↾ ω))
10173, 34feqresmpt 6886 . . . . . . . . . . 11 ((𝜑𝜓) → (𝑂 ↾ ω) = (𝑥 ∈ ω ↦ (𝑂𝑥)))
102101f1oeq1d 6754 . . . . . . . . . 10 ((𝜑𝜓) → ((𝑂 ↾ ω):ω–1-1-onto→ran (𝑂 ↾ ω) ↔ (𝑥 ∈ ω ↦ (𝑂𝑥)):ω–1-1-onto→ran (𝑂 ↾ ω)))
103100, 102mpbid 232 . . . . . . . . 9 ((𝜑𝜓) → (𝑥 ∈ ω ↦ (𝑂𝑥)):ω–1-1-onto→ran (𝑂 ↾ ω))
104 mptresid 5997 . . . . . . . . . . 11 ( I ↾ 𝑡) = (𝑦𝑡𝑦)
105104eqcomi 2739 . . . . . . . . . 10 (𝑦𝑡𝑦) = ( I ↾ 𝑡)
106 f1oi 6797 . . . . . . . . . . 11 ( I ↾ 𝑡):𝑡1-1-onto𝑡
107 f1oeq1 6747 . . . . . . . . . . 11 ((𝑦𝑡𝑦) = ( I ↾ 𝑡) → ((𝑦𝑡𝑦):𝑡1-1-onto𝑡 ↔ ( I ↾ 𝑡):𝑡1-1-onto𝑡))
108106, 107mpbiri 258 . . . . . . . . . 10 ((𝑦𝑡𝑦) = ( I ↾ 𝑡) → (𝑦𝑡𝑦):𝑡1-1-onto𝑡)
109105, 108mp1i 13 . . . . . . . . 9 ((𝜑𝜓) → (𝑦𝑡𝑦):𝑡1-1-onto𝑡)
110103, 109xpf1o 9047 . . . . . . . 8 ((𝜑𝜓) → (𝑥 ∈ ω, 𝑦𝑡 ↦ ⟨(𝑂𝑥), 𝑦⟩):(ω × 𝑡)–1-1-onto→(ran (𝑂 ↾ ω) × 𝑡))
111 pwfseqlem5.i . . . . . . . . 9 𝐼 = (𝑥 ∈ ω, 𝑦𝑡 ↦ ⟨(𝑂𝑥), 𝑦⟩)
112 f1oeq1 6747 . . . . . . . . 9 (𝐼 = (𝑥 ∈ ω, 𝑦𝑡 ↦ ⟨(𝑂𝑥), 𝑦⟩) → (𝐼:(ω × 𝑡)–1-1-onto→(ran (𝑂 ↾ ω) × 𝑡) ↔ (𝑥 ∈ ω, 𝑦𝑡 ↦ ⟨(𝑂𝑥), 𝑦⟩):(ω × 𝑡)–1-1-onto→(ran (𝑂 ↾ ω) × 𝑡)))
113111, 112ax-mp 5 . . . . . . . 8 (𝐼:(ω × 𝑡)–1-1-onto→(ran (𝑂 ↾ ω) × 𝑡) ↔ (𝑥 ∈ ω, 𝑦𝑡 ↦ ⟨(𝑂𝑥), 𝑦⟩):(ω × 𝑡)–1-1-onto→(ran (𝑂 ↾ ω) × 𝑡))
114110, 113sylibr 234 . . . . . . 7 ((𝜑𝜓) → 𝐼:(ω × 𝑡)–1-1-onto→(ran (𝑂 ↾ ω) × 𝑡))
115 f1of1 6758 . . . . . . 7 (𝐼:(ω × 𝑡)–1-1-onto→(ran (𝑂 ↾ ω) × 𝑡) → 𝐼:(ω × 𝑡)–1-1→(ran (𝑂 ↾ ω) × 𝑡))
116114, 115syl 17 . . . . . 6 ((𝜑𝜓) → 𝐼:(ω × 𝑡)–1-1→(ran (𝑂 ↾ ω) × 𝑡))
117 f1f 6715 . . . . . . 7 ((𝑂 ↾ ω):ω–1-1𝑡 → (𝑂 ↾ ω):ω⟶𝑡)
118 frn 6654 . . . . . . 7 ((𝑂 ↾ ω):ω⟶𝑡 → ran (𝑂 ↾ ω) ⊆ 𝑡)
119 xpss1 5633 . . . . . . 7 (ran (𝑂 ↾ ω) ⊆ 𝑡 → (ran (𝑂 ↾ ω) × 𝑡) ⊆ (𝑡 × 𝑡))
12098, 117, 118, 1194syl 19 . . . . . 6 ((𝜑𝜓) → (ran (𝑂 ↾ ω) × 𝑡) ⊆ (𝑡 × 𝑡))
121 f1ss 6720 . . . . . 6 ((𝐼:(ω × 𝑡)–1-1→(ran (𝑂 ↾ ω) × 𝑡) ∧ (ran (𝑂 ↾ ω) × 𝑡) ⊆ (𝑡 × 𝑡)) → 𝐼:(ω × 𝑡)–1-1→(𝑡 × 𝑡))
122116, 120, 121syl2anc 584 . . . . 5 ((𝜑𝜓) → 𝐼:(ω × 𝑡)–1-1→(𝑡 × 𝑡))
123 f1co 6726 . . . . 5 ((𝑃:(𝑡 × 𝑡)–1-1𝑡𝐼:(ω × 𝑡)–1-1→(𝑡 × 𝑡)) → (𝑃𝐼):(ω × 𝑡)–1-1𝑡)
12494, 122, 123syl2anc 584 . . . 4 ((𝜑𝜓) → (𝑃𝐼):(ω × 𝑡)–1-1𝑡)
1255a1i 11 . . . . 5 ((𝜑𝜓) → 𝑡 ∈ V)
126 peano1 7814 . . . . . . . 8 ∅ ∈ ω
127126a1i 11 . . . . . . 7 ((𝜑𝜓) → ∅ ∈ ω)
12834, 127sseldd 3933 . . . . . 6 ((𝜑𝜓) → ∅ ∈ dom 𝑂)
12973, 128ffvelcdmd 7013 . . . . 5 ((𝜑𝜓) → (𝑂‘∅) ∈ 𝑡)
130 pwfseqlem5.s . . . . 5 𝑆 = seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝑡m suc 𝑘) ↦ ((𝑓‘(𝑥𝑘))𝑃(𝑥𝑘)))), {⟨∅, (𝑂‘∅)⟩})
131 pwfseqlem5.q . . . . 5 𝑄 = (𝑦 𝑛 ∈ ω (𝑡m 𝑛) ↦ ⟨dom 𝑦, ((𝑆‘dom 𝑦)‘𝑦)⟩)
132125, 129, 92, 130, 131fseqenlem2 9908 . . . 4 ((𝜑𝜓) → 𝑄: 𝑛 ∈ ω (𝑡m 𝑛)–1-1→(ω × 𝑡))
133 f1co 6726 . . . 4 (((𝑃𝐼):(ω × 𝑡)–1-1𝑡𝑄: 𝑛 ∈ ω (𝑡m 𝑛)–1-1→(ω × 𝑡)) → ((𝑃𝐼) ∘ 𝑄): 𝑛 ∈ ω (𝑡m 𝑛)–1-1𝑡)
134124, 132, 133syl2anc 584 . . 3 ((𝜑𝜓) → ((𝑃𝐼) ∘ 𝑄): 𝑛 ∈ ω (𝑡m 𝑛)–1-1𝑡)
135 pwfseqlem5.k . . . 4 𝐾 = ((𝑃𝐼) ∘ 𝑄)
136 f1eq1 6710 . . . 4 (𝐾 = ((𝑃𝐼) ∘ 𝑄) → (𝐾: 𝑛 ∈ ω (𝑡m 𝑛)–1-1𝑡 ↔ ((𝑃𝐼) ∘ 𝑄): 𝑛 ∈ ω (𝑡m 𝑛)–1-1𝑡))
137135, 136ax-mp 5 . . 3 (𝐾: 𝑛 ∈ ω (𝑡m 𝑛)–1-1𝑡 ↔ ((𝑃𝐼) ∘ 𝑄): 𝑛 ∈ ω (𝑡m 𝑛)–1-1𝑡)
138134, 137sylibr 234 . 2 ((𝜑𝜓) → 𝐾: 𝑛 ∈ ω (𝑡m 𝑛)–1-1𝑡)
139 eqid 2730 . 2 (𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))}) = (𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})
140 eqid 2730 . 2 (𝑡 ∈ V, 𝑟 ∈ V ↦ if(𝑡 ∈ Fin, (𝐻‘(card‘𝑡)), ((𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})‘ {𝑧 ∈ ω ∣ ¬ ((𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})‘𝑧) ∈ 𝑡}))) = (𝑡 ∈ V, 𝑟 ∈ V ↦ if(𝑡 ∈ Fin, (𝐻‘(card‘𝑡)), ((𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})‘ {𝑧 ∈ ω ∣ ¬ ((𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})‘𝑧) ∈ 𝑡})))
141 eqid 2730 . . 3 {⟨𝑐, 𝑑⟩ ∣ ((𝑐𝐴𝑑 ⊆ (𝑐 × 𝑐)) ∧ (𝑑 We 𝑐 ∧ ∀𝑚𝑐 [(𝑑 “ {𝑚}) / 𝑗](𝑗(𝑡 ∈ V, 𝑟 ∈ V ↦ if(𝑡 ∈ Fin, (𝐻‘(card‘𝑡)), ((𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})‘ {𝑧 ∈ ω ∣ ¬ ((𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})‘𝑧) ∈ 𝑡})))(𝑑 ∩ (𝑗 × 𝑗))) = 𝑚))} = {⟨𝑐, 𝑑⟩ ∣ ((𝑐𝐴𝑑 ⊆ (𝑐 × 𝑐)) ∧ (𝑑 We 𝑐 ∧ ∀𝑚𝑐 [(𝑑 “ {𝑚}) / 𝑗](𝑗(𝑡 ∈ V, 𝑟 ∈ V ↦ if(𝑡 ∈ Fin, (𝐻‘(card‘𝑡)), ((𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})‘ {𝑧 ∈ ω ∣ ¬ ((𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})‘𝑧) ∈ 𝑡})))(𝑑 ∩ (𝑗 × 𝑗))) = 𝑚))}
142141fpwwe2cbv 10513 . 2 {⟨𝑐, 𝑑⟩ ∣ ((𝑐𝐴𝑑 ⊆ (𝑐 × 𝑐)) ∧ (𝑑 We 𝑐 ∧ ∀𝑚𝑐 [(𝑑 “ {𝑚}) / 𝑗](𝑗(𝑡 ∈ V, 𝑟 ∈ V ↦ if(𝑡 ∈ Fin, (𝐻‘(card‘𝑡)), ((𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})‘ {𝑧 ∈ ω ∣ ¬ ((𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})‘𝑧) ∈ 𝑡})))(𝑑 ∩ (𝑗 × 𝑗))) = 𝑚))} = {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑏𝑎 [(𝑠 “ {𝑏}) / 𝑤](𝑤(𝑡 ∈ V, 𝑟 ∈ V ↦ if(𝑡 ∈ Fin, (𝐻‘(card‘𝑡)), ((𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})‘ {𝑧 ∈ ω ∣ ¬ ((𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})‘𝑧) ∈ 𝑡})))(𝑠 ∩ (𝑤 × 𝑤))) = 𝑏))}
143 eqid 2730 . 2 dom {⟨𝑐, 𝑑⟩ ∣ ((𝑐𝐴𝑑 ⊆ (𝑐 × 𝑐)) ∧ (𝑑 We 𝑐 ∧ ∀𝑚𝑐 [(𝑑 “ {𝑚}) / 𝑗](𝑗(𝑡 ∈ V, 𝑟 ∈ V ↦ if(𝑡 ∈ Fin, (𝐻‘(card‘𝑡)), ((𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})‘ {𝑧 ∈ ω ∣ ¬ ((𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})‘𝑧) ∈ 𝑡})))(𝑑 ∩ (𝑗 × 𝑗))) = 𝑚))} = dom {⟨𝑐, 𝑑⟩ ∣ ((𝑐𝐴𝑑 ⊆ (𝑐 × 𝑐)) ∧ (𝑑 We 𝑐 ∧ ∀𝑚𝑐 [(𝑑 “ {𝑚}) / 𝑗](𝑗(𝑡 ∈ V, 𝑟 ∈ V ↦ if(𝑡 ∈ Fin, (𝐻‘(card‘𝑡)), ((𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})‘ {𝑧 ∈ ω ∣ ¬ ((𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})‘𝑧) ∈ 𝑡})))(𝑑 ∩ (𝑗 × 𝑗))) = 𝑚))}
1441, 2, 3, 4, 138, 139, 140, 142, 143pwfseqlem4 10545 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2110  wral 3045  {crab 3393  Vcvv 3434  [wsbc 3739  cin 3899  wss 3900  c0 4281  ifcif 4473  𝒫 cpw 4548  {csn 4574  cop 4580   cuni 4857   cint 4895   ciun 4939   class class class wbr 5089  {copab 5151  cmpt 5170   I cid 5508   E cep 5513   We wwe 5566   × cxp 5612  ccnv 5613  dom cdm 5614  ran crn 5615  cres 5616  cima 5617  ccom 5618  Oncon0 6302  suc csuc 6304  wf 6473  1-1wf1 6474  1-1-ontowf1o 6476  cfv 6477   Isom wiso 6478  (class class class)co 7341  cmpo 7343  ωcom 7791  seqωcseqom 8361  m cmap 8745  cen 8861  cdom 8862  csdm 8863  Fincfn 8864  OrdIsocoi 9390  harchar 9437  cardccrd 9820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-seqom 8362  df-1o 8380  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-oi 9391  df-har 9438  df-card 9824
This theorem is referenced by:  pwfseq  10547
  Copyright terms: Public domain W3C validator