MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwfseqlem5 Structured version   Visualization version   GIF version

Theorem pwfseqlem5 10732
Description: Lemma for pwfseq 10733. Although in some ways pwfseqlem4 10731 is the "main" part of the proof, one last aspect which makes up a remark in the original text is by far the hardest part to formalize. The main proof relies on the existence of an injection 𝐾 from the set of finite sequences on an infinite set 𝑥 to 𝑥. Now this alone would not be difficult to prove; this is mostly the claim of fseqen 10096. However, what is needed for the proof is a canonical injection on these sets, so we have to start from scratch pulling together explicit bijections from the lemmas.

If one attempts such a program, it will mostly go through, but there is one key step which is inherently nonconstructive, namely the proof of infxpen 10083. The resolution is not obvious, but it turns out that reversing an infinite ordinal's Cantor normal form absorbs all the non-leading terms (cnfcom3c 9775), which can be used to construct a pairing function explicitly using properties of the ordinal exponential (infxpenc 10087). (Contributed by Mario Carneiro, 31-May-2015.)

Hypotheses
Ref Expression
pwfseqlem5.g (𝜑𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛))
pwfseqlem5.x (𝜑𝑋𝐴)
pwfseqlem5.h (𝜑𝐻:ω–1-1-onto𝑋)
pwfseqlem5.ps (𝜓 ↔ ((𝑡𝐴𝑟 ⊆ (𝑡 × 𝑡) ∧ 𝑟 We 𝑡) ∧ ω ≼ 𝑡))
pwfseqlem5.n (𝜑 → ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑁𝑏):(𝑏 × 𝑏)–1-1-onto𝑏))
pwfseqlem5.o 𝑂 = OrdIso(𝑟, 𝑡)
pwfseqlem5.t 𝑇 = (𝑢 ∈ dom 𝑂, 𝑣 ∈ dom 𝑂 ↦ ⟨(𝑂𝑢), (𝑂𝑣)⟩)
pwfseqlem5.p 𝑃 = ((𝑂 ∘ (𝑁‘dom 𝑂)) ∘ 𝑇)
pwfseqlem5.s 𝑆 = seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝑡m suc 𝑘) ↦ ((𝑓‘(𝑥𝑘))𝑃(𝑥𝑘)))), {⟨∅, (𝑂‘∅)⟩})
pwfseqlem5.q 𝑄 = (𝑦 𝑛 ∈ ω (𝑡m 𝑛) ↦ ⟨dom 𝑦, ((𝑆‘dom 𝑦)‘𝑦)⟩)
pwfseqlem5.i 𝐼 = (𝑥 ∈ ω, 𝑦𝑡 ↦ ⟨(𝑂𝑥), 𝑦⟩)
pwfseqlem5.k 𝐾 = ((𝑃𝐼) ∘ 𝑄)
Assertion
Ref Expression
pwfseqlem5 ¬ 𝜑
Distinct variable groups:   𝑛,𝑏,𝐺   𝑟,𝑏,𝑡,𝐻   𝑓,𝑘,𝑥,𝑃   𝑓,𝑏,𝑘,𝑢,𝑣,𝑥,𝑦,𝑛,𝑟,𝑡   𝜑,𝑏,𝑘,𝑛,𝑟,𝑡,𝑥,𝑦   𝐾,𝑏,𝑛   𝑁,𝑏   𝜓,𝑘,𝑛,𝑥,𝑦   𝑆,𝑛,𝑦   𝐴,𝑏,𝑛,𝑟,𝑡   𝑂,𝑏,𝑢,𝑣,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑣,𝑢,𝑓)   𝜓(𝑣,𝑢,𝑡,𝑓,𝑟,𝑏)   𝐴(𝑥,𝑦,𝑣,𝑢,𝑓,𝑘)   𝑃(𝑦,𝑣,𝑢,𝑡,𝑛,𝑟,𝑏)   𝑄(𝑥,𝑦,𝑣,𝑢,𝑡,𝑓,𝑘,𝑛,𝑟,𝑏)   𝑆(𝑥,𝑣,𝑢,𝑡,𝑓,𝑘,𝑟,𝑏)   𝑇(𝑥,𝑦,𝑣,𝑢,𝑡,𝑓,𝑘,𝑛,𝑟,𝑏)   𝐺(𝑥,𝑦,𝑣,𝑢,𝑡,𝑓,𝑘,𝑟)   𝐻(𝑥,𝑦,𝑣,𝑢,𝑓,𝑘,𝑛)   𝐼(𝑥,𝑦,𝑣,𝑢,𝑡,𝑓,𝑘,𝑛,𝑟,𝑏)   𝐾(𝑥,𝑦,𝑣,𝑢,𝑡,𝑓,𝑘,𝑟)   𝑁(𝑥,𝑦,𝑣,𝑢,𝑡,𝑓,𝑘,𝑛,𝑟)   𝑂(𝑡,𝑓,𝑘,𝑛,𝑟)   𝑋(𝑥,𝑦,𝑣,𝑢,𝑡,𝑓,𝑘,𝑛,𝑟,𝑏)

Proof of Theorem pwfseqlem5
Dummy variables 𝑎 𝑐 𝑑 𝑖 𝑗 𝑚 𝑠 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwfseqlem5.g . 2 (𝜑𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛))
2 pwfseqlem5.x . 2 (𝜑𝑋𝐴)
3 pwfseqlem5.h . 2 (𝜑𝐻:ω–1-1-onto𝑋)
4 pwfseqlem5.ps . 2 (𝜓 ↔ ((𝑡𝐴𝑟 ⊆ (𝑡 × 𝑡) ∧ 𝑟 We 𝑡) ∧ ω ≼ 𝑡))
5 vex 3492 . . . . . . . . . . 11 𝑡 ∈ V
6 simprl3 1220 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑡𝐴𝑟 ⊆ (𝑡 × 𝑡) ∧ 𝑟 We 𝑡) ∧ ω ≼ 𝑡)) → 𝑟 We 𝑡)
74, 6sylan2b 593 . . . . . . . . . . 11 ((𝜑𝜓) → 𝑟 We 𝑡)
8 pwfseqlem5.o . . . . . . . . . . . 12 𝑂 = OrdIso(𝑟, 𝑡)
98oiiso 9606 . . . . . . . . . . 11 ((𝑡 ∈ V ∧ 𝑟 We 𝑡) → 𝑂 Isom E , 𝑟 (dom 𝑂, 𝑡))
105, 7, 9sylancr 586 . . . . . . . . . 10 ((𝜑𝜓) → 𝑂 Isom E , 𝑟 (dom 𝑂, 𝑡))
11 isof1o 7359 . . . . . . . . . 10 (𝑂 Isom E , 𝑟 (dom 𝑂, 𝑡) → 𝑂:dom 𝑂1-1-onto𝑡)
1210, 11syl 17 . . . . . . . . 9 ((𝜑𝜓) → 𝑂:dom 𝑂1-1-onto𝑡)
13 cardom 10055 . . . . . . . . . . . 12 (card‘ω) = ω
14 simprr 772 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑡𝐴𝑟 ⊆ (𝑡 × 𝑡) ∧ 𝑟 We 𝑡) ∧ ω ≼ 𝑡)) → ω ≼ 𝑡)
154, 14sylan2b 593 . . . . . . . . . . . . . 14 ((𝜑𝜓) → ω ≼ 𝑡)
168oien 9607 . . . . . . . . . . . . . . . 16 ((𝑡 ∈ V ∧ 𝑟 We 𝑡) → dom 𝑂𝑡)
175, 7, 16sylancr 586 . . . . . . . . . . . . . . 15 ((𝜑𝜓) → dom 𝑂𝑡)
1817ensymd 9065 . . . . . . . . . . . . . 14 ((𝜑𝜓) → 𝑡 ≈ dom 𝑂)
19 domentr 9073 . . . . . . . . . . . . . 14 ((ω ≼ 𝑡𝑡 ≈ dom 𝑂) → ω ≼ dom 𝑂)
2015, 18, 19syl2anc 583 . . . . . . . . . . . . 13 ((𝜑𝜓) → ω ≼ dom 𝑂)
21 omelon 9715 . . . . . . . . . . . . . . 15 ω ∈ On
22 onenon 10018 . . . . . . . . . . . . . . 15 (ω ∈ On → ω ∈ dom card)
2321, 22ax-mp 5 . . . . . . . . . . . . . 14 ω ∈ dom card
248oion 9605 . . . . . . . . . . . . . . . 16 (𝑡 ∈ V → dom 𝑂 ∈ On)
2524elv 3493 . . . . . . . . . . . . . . 15 dom 𝑂 ∈ On
26 onenon 10018 . . . . . . . . . . . . . . 15 (dom 𝑂 ∈ On → dom 𝑂 ∈ dom card)
2725, 26mp1i 13 . . . . . . . . . . . . . 14 ((𝜑𝜓) → dom 𝑂 ∈ dom card)
28 carddom2 10046 . . . . . . . . . . . . . 14 ((ω ∈ dom card ∧ dom 𝑂 ∈ dom card) → ((card‘ω) ⊆ (card‘dom 𝑂) ↔ ω ≼ dom 𝑂))
2923, 27, 28sylancr 586 . . . . . . . . . . . . 13 ((𝜑𝜓) → ((card‘ω) ⊆ (card‘dom 𝑂) ↔ ω ≼ dom 𝑂))
3020, 29mpbird 257 . . . . . . . . . . . 12 ((𝜑𝜓) → (card‘ω) ⊆ (card‘dom 𝑂))
3113, 30eqsstrrid 4058 . . . . . . . . . . 11 ((𝜑𝜓) → ω ⊆ (card‘dom 𝑂))
32 cardonle 10026 . . . . . . . . . . . 12 (dom 𝑂 ∈ On → (card‘dom 𝑂) ⊆ dom 𝑂)
3325, 32mp1i 13 . . . . . . . . . . 11 ((𝜑𝜓) → (card‘dom 𝑂) ⊆ dom 𝑂)
3431, 33sstrd 4019 . . . . . . . . . 10 ((𝜑𝜓) → ω ⊆ dom 𝑂)
35 sseq2 4035 . . . . . . . . . . . 12 (𝑏 = dom 𝑂 → (ω ⊆ 𝑏 ↔ ω ⊆ dom 𝑂))
36 fveq2 6920 . . . . . . . . . . . . . 14 (𝑏 = dom 𝑂 → (𝑁𝑏) = (𝑁‘dom 𝑂))
3736f1oeq1d 6857 . . . . . . . . . . . . 13 (𝑏 = dom 𝑂 → ((𝑁𝑏):(𝑏 × 𝑏)–1-1-onto𝑏 ↔ (𝑁‘dom 𝑂):(𝑏 × 𝑏)–1-1-onto𝑏))
38 xpeq12 5725 . . . . . . . . . . . . . . 15 ((𝑏 = dom 𝑂𝑏 = dom 𝑂) → (𝑏 × 𝑏) = (dom 𝑂 × dom 𝑂))
3938anidms 566 . . . . . . . . . . . . . 14 (𝑏 = dom 𝑂 → (𝑏 × 𝑏) = (dom 𝑂 × dom 𝑂))
4039f1oeq2d 6858 . . . . . . . . . . . . 13 (𝑏 = dom 𝑂 → ((𝑁‘dom 𝑂):(𝑏 × 𝑏)–1-1-onto𝑏 ↔ (𝑁‘dom 𝑂):(dom 𝑂 × dom 𝑂)–1-1-onto𝑏))
41 f1oeq3 6852 . . . . . . . . . . . . 13 (𝑏 = dom 𝑂 → ((𝑁‘dom 𝑂):(dom 𝑂 × dom 𝑂)–1-1-onto𝑏 ↔ (𝑁‘dom 𝑂):(dom 𝑂 × dom 𝑂)–1-1-onto→dom 𝑂))
4237, 40, 413bitrd 305 . . . . . . . . . . . 12 (𝑏 = dom 𝑂 → ((𝑁𝑏):(𝑏 × 𝑏)–1-1-onto𝑏 ↔ (𝑁‘dom 𝑂):(dom 𝑂 × dom 𝑂)–1-1-onto→dom 𝑂))
4335, 42imbi12d 344 . . . . . . . . . . 11 (𝑏 = dom 𝑂 → ((ω ⊆ 𝑏 → (𝑁𝑏):(𝑏 × 𝑏)–1-1-onto𝑏) ↔ (ω ⊆ dom 𝑂 → (𝑁‘dom 𝑂):(dom 𝑂 × dom 𝑂)–1-1-onto→dom 𝑂)))
44 pwfseqlem5.n . . . . . . . . . . . 12 (𝜑 → ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑁𝑏):(𝑏 × 𝑏)–1-1-onto𝑏))
4544adantr 480 . . . . . . . . . . 11 ((𝜑𝜓) → ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑁𝑏):(𝑏 × 𝑏)–1-1-onto𝑏))
4625a1i 11 . . . . . . . . . . . 12 ((𝜑𝜓) → dom 𝑂 ∈ On)
471adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝜓) → 𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛))
48 omex 9712 . . . . . . . . . . . . . . . . . 18 ω ∈ V
49 ovex 7481 . . . . . . . . . . . . . . . . . 18 (𝐴m 𝑛) ∈ V
5048, 49iunex 8009 . . . . . . . . . . . . . . . . 17 𝑛 ∈ ω (𝐴m 𝑛) ∈ V
51 f1dmex 7997 . . . . . . . . . . . . . . . . 17 ((𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛) ∧ 𝑛 ∈ ω (𝐴m 𝑛) ∈ V) → 𝒫 𝐴 ∈ V)
5247, 50, 51sylancl 585 . . . . . . . . . . . . . . . 16 ((𝜑𝜓) → 𝒫 𝐴 ∈ V)
53 pwexb 7801 . . . . . . . . . . . . . . . 16 (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V)
5452, 53sylibr 234 . . . . . . . . . . . . . . 15 ((𝜑𝜓) → 𝐴 ∈ V)
55 simprl1 1218 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑡𝐴𝑟 ⊆ (𝑡 × 𝑡) ∧ 𝑟 We 𝑡) ∧ ω ≼ 𝑡)) → 𝑡𝐴)
564, 55sylan2b 593 . . . . . . . . . . . . . . 15 ((𝜑𝜓) → 𝑡𝐴)
57 ssdomg 9060 . . . . . . . . . . . . . . 15 (𝐴 ∈ V → (𝑡𝐴𝑡𝐴))
5854, 56, 57sylc 65 . . . . . . . . . . . . . 14 ((𝜑𝜓) → 𝑡𝐴)
59 canth2g 9197 . . . . . . . . . . . . . . 15 (𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴)
60 sdomdom 9040 . . . . . . . . . . . . . . 15 (𝐴 ≺ 𝒫 𝐴𝐴 ≼ 𝒫 𝐴)
6154, 59, 603syl 18 . . . . . . . . . . . . . 14 ((𝜑𝜓) → 𝐴 ≼ 𝒫 𝐴)
62 domtr 9067 . . . . . . . . . . . . . 14 ((𝑡𝐴𝐴 ≼ 𝒫 𝐴) → 𝑡 ≼ 𝒫 𝐴)
6358, 61, 62syl2anc 583 . . . . . . . . . . . . 13 ((𝜑𝜓) → 𝑡 ≼ 𝒫 𝐴)
64 endomtr 9072 . . . . . . . . . . . . 13 ((dom 𝑂𝑡𝑡 ≼ 𝒫 𝐴) → dom 𝑂 ≼ 𝒫 𝐴)
6517, 63, 64syl2anc 583 . . . . . . . . . . . 12 ((𝜑𝜓) → dom 𝑂 ≼ 𝒫 𝐴)
66 elharval 9630 . . . . . . . . . . . 12 (dom 𝑂 ∈ (har‘𝒫 𝐴) ↔ (dom 𝑂 ∈ On ∧ dom 𝑂 ≼ 𝒫 𝐴))
6746, 65, 66sylanbrc 582 . . . . . . . . . . 11 ((𝜑𝜓) → dom 𝑂 ∈ (har‘𝒫 𝐴))
6843, 45, 67rspcdva 3636 . . . . . . . . . 10 ((𝜑𝜓) → (ω ⊆ dom 𝑂 → (𝑁‘dom 𝑂):(dom 𝑂 × dom 𝑂)–1-1-onto→dom 𝑂))
6934, 68mpd 15 . . . . . . . . 9 ((𝜑𝜓) → (𝑁‘dom 𝑂):(dom 𝑂 × dom 𝑂)–1-1-onto→dom 𝑂)
70 f1oco 6885 . . . . . . . . 9 ((𝑂:dom 𝑂1-1-onto𝑡 ∧ (𝑁‘dom 𝑂):(dom 𝑂 × dom 𝑂)–1-1-onto→dom 𝑂) → (𝑂 ∘ (𝑁‘dom 𝑂)):(dom 𝑂 × dom 𝑂)–1-1-onto𝑡)
7112, 69, 70syl2anc 583 . . . . . . . 8 ((𝜑𝜓) → (𝑂 ∘ (𝑁‘dom 𝑂)):(dom 𝑂 × dom 𝑂)–1-1-onto𝑡)
72 f1of 6862 . . . . . . . . . . . . . . 15 (𝑂:dom 𝑂1-1-onto𝑡𝑂:dom 𝑂𝑡)
7312, 72syl 17 . . . . . . . . . . . . . 14 ((𝜑𝜓) → 𝑂:dom 𝑂𝑡)
7473feqmptd 6990 . . . . . . . . . . . . 13 ((𝜑𝜓) → 𝑂 = (𝑢 ∈ dom 𝑂 ↦ (𝑂𝑢)))
7574f1oeq1d 6857 . . . . . . . . . . . 12 ((𝜑𝜓) → (𝑂:dom 𝑂1-1-onto𝑡 ↔ (𝑢 ∈ dom 𝑂 ↦ (𝑂𝑢)):dom 𝑂1-1-onto𝑡))
7612, 75mpbid 232 . . . . . . . . . . 11 ((𝜑𝜓) → (𝑢 ∈ dom 𝑂 ↦ (𝑂𝑢)):dom 𝑂1-1-onto𝑡)
7773feqmptd 6990 . . . . . . . . . . . . 13 ((𝜑𝜓) → 𝑂 = (𝑣 ∈ dom 𝑂 ↦ (𝑂𝑣)))
7877f1oeq1d 6857 . . . . . . . . . . . 12 ((𝜑𝜓) → (𝑂:dom 𝑂1-1-onto𝑡 ↔ (𝑣 ∈ dom 𝑂 ↦ (𝑂𝑣)):dom 𝑂1-1-onto𝑡))
7912, 78mpbid 232 . . . . . . . . . . 11 ((𝜑𝜓) → (𝑣 ∈ dom 𝑂 ↦ (𝑂𝑣)):dom 𝑂1-1-onto𝑡)
8076, 79xpf1o 9205 . . . . . . . . . 10 ((𝜑𝜓) → (𝑢 ∈ dom 𝑂, 𝑣 ∈ dom 𝑂 ↦ ⟨(𝑂𝑢), (𝑂𝑣)⟩):(dom 𝑂 × dom 𝑂)–1-1-onto→(𝑡 × 𝑡))
81 pwfseqlem5.t . . . . . . . . . . 11 𝑇 = (𝑢 ∈ dom 𝑂, 𝑣 ∈ dom 𝑂 ↦ ⟨(𝑂𝑢), (𝑂𝑣)⟩)
82 f1oeq1 6850 . . . . . . . . . . 11 (𝑇 = (𝑢 ∈ dom 𝑂, 𝑣 ∈ dom 𝑂 ↦ ⟨(𝑂𝑢), (𝑂𝑣)⟩) → (𝑇:(dom 𝑂 × dom 𝑂)–1-1-onto→(𝑡 × 𝑡) ↔ (𝑢 ∈ dom 𝑂, 𝑣 ∈ dom 𝑂 ↦ ⟨(𝑂𝑢), (𝑂𝑣)⟩):(dom 𝑂 × dom 𝑂)–1-1-onto→(𝑡 × 𝑡)))
8381, 82ax-mp 5 . . . . . . . . . 10 (𝑇:(dom 𝑂 × dom 𝑂)–1-1-onto→(𝑡 × 𝑡) ↔ (𝑢 ∈ dom 𝑂, 𝑣 ∈ dom 𝑂 ↦ ⟨(𝑂𝑢), (𝑂𝑣)⟩):(dom 𝑂 × dom 𝑂)–1-1-onto→(𝑡 × 𝑡))
8480, 83sylibr 234 . . . . . . . . 9 ((𝜑𝜓) → 𝑇:(dom 𝑂 × dom 𝑂)–1-1-onto→(𝑡 × 𝑡))
85 f1ocnv 6874 . . . . . . . . 9 (𝑇:(dom 𝑂 × dom 𝑂)–1-1-onto→(𝑡 × 𝑡) → 𝑇:(𝑡 × 𝑡)–1-1-onto→(dom 𝑂 × dom 𝑂))
8684, 85syl 17 . . . . . . . 8 ((𝜑𝜓) → 𝑇:(𝑡 × 𝑡)–1-1-onto→(dom 𝑂 × dom 𝑂))
87 f1oco 6885 . . . . . . . 8 (((𝑂 ∘ (𝑁‘dom 𝑂)):(dom 𝑂 × dom 𝑂)–1-1-onto𝑡𝑇:(𝑡 × 𝑡)–1-1-onto→(dom 𝑂 × dom 𝑂)) → ((𝑂 ∘ (𝑁‘dom 𝑂)) ∘ 𝑇):(𝑡 × 𝑡)–1-1-onto𝑡)
8871, 86, 87syl2anc 583 . . . . . . 7 ((𝜑𝜓) → ((𝑂 ∘ (𝑁‘dom 𝑂)) ∘ 𝑇):(𝑡 × 𝑡)–1-1-onto𝑡)
89 pwfseqlem5.p . . . . . . . 8 𝑃 = ((𝑂 ∘ (𝑁‘dom 𝑂)) ∘ 𝑇)
90 f1oeq1 6850 . . . . . . . 8 (𝑃 = ((𝑂 ∘ (𝑁‘dom 𝑂)) ∘ 𝑇) → (𝑃:(𝑡 × 𝑡)–1-1-onto𝑡 ↔ ((𝑂 ∘ (𝑁‘dom 𝑂)) ∘ 𝑇):(𝑡 × 𝑡)–1-1-onto𝑡))
9189, 90ax-mp 5 . . . . . . 7 (𝑃:(𝑡 × 𝑡)–1-1-onto𝑡 ↔ ((𝑂 ∘ (𝑁‘dom 𝑂)) ∘ 𝑇):(𝑡 × 𝑡)–1-1-onto𝑡)
9288, 91sylibr 234 . . . . . 6 ((𝜑𝜓) → 𝑃:(𝑡 × 𝑡)–1-1-onto𝑡)
93 f1of1 6861 . . . . . 6 (𝑃:(𝑡 × 𝑡)–1-1-onto𝑡𝑃:(𝑡 × 𝑡)–1-1𝑡)
9492, 93syl 17 . . . . 5 ((𝜑𝜓) → 𝑃:(𝑡 × 𝑡)–1-1𝑡)
95 f1of1 6861 . . . . . . . . . . . . 13 (𝑂:dom 𝑂1-1-onto𝑡𝑂:dom 𝑂1-1𝑡)
9612, 95syl 17 . . . . . . . . . . . 12 ((𝜑𝜓) → 𝑂:dom 𝑂1-1𝑡)
97 f1ssres 6824 . . . . . . . . . . . 12 ((𝑂:dom 𝑂1-1𝑡 ∧ ω ⊆ dom 𝑂) → (𝑂 ↾ ω):ω–1-1𝑡)
9896, 34, 97syl2anc 583 . . . . . . . . . . 11 ((𝜑𝜓) → (𝑂 ↾ ω):ω–1-1𝑡)
99 f1f1orn 6873 . . . . . . . . . . 11 ((𝑂 ↾ ω):ω–1-1𝑡 → (𝑂 ↾ ω):ω–1-1-onto→ran (𝑂 ↾ ω))
10098, 99syl 17 . . . . . . . . . 10 ((𝜑𝜓) → (𝑂 ↾ ω):ω–1-1-onto→ran (𝑂 ↾ ω))
10173, 34feqresmpt 6991 . . . . . . . . . . 11 ((𝜑𝜓) → (𝑂 ↾ ω) = (𝑥 ∈ ω ↦ (𝑂𝑥)))
102101f1oeq1d 6857 . . . . . . . . . 10 ((𝜑𝜓) → ((𝑂 ↾ ω):ω–1-1-onto→ran (𝑂 ↾ ω) ↔ (𝑥 ∈ ω ↦ (𝑂𝑥)):ω–1-1-onto→ran (𝑂 ↾ ω)))
103100, 102mpbid 232 . . . . . . . . 9 ((𝜑𝜓) → (𝑥 ∈ ω ↦ (𝑂𝑥)):ω–1-1-onto→ran (𝑂 ↾ ω))
104 mptresid 6080 . . . . . . . . . . 11 ( I ↾ 𝑡) = (𝑦𝑡𝑦)
105104eqcomi 2749 . . . . . . . . . 10 (𝑦𝑡𝑦) = ( I ↾ 𝑡)
106 f1oi 6900 . . . . . . . . . . 11 ( I ↾ 𝑡):𝑡1-1-onto𝑡
107 f1oeq1 6850 . . . . . . . . . . 11 ((𝑦𝑡𝑦) = ( I ↾ 𝑡) → ((𝑦𝑡𝑦):𝑡1-1-onto𝑡 ↔ ( I ↾ 𝑡):𝑡1-1-onto𝑡))
108106, 107mpbiri 258 . . . . . . . . . 10 ((𝑦𝑡𝑦) = ( I ↾ 𝑡) → (𝑦𝑡𝑦):𝑡1-1-onto𝑡)
109105, 108mp1i 13 . . . . . . . . 9 ((𝜑𝜓) → (𝑦𝑡𝑦):𝑡1-1-onto𝑡)
110103, 109xpf1o 9205 . . . . . . . 8 ((𝜑𝜓) → (𝑥 ∈ ω, 𝑦𝑡 ↦ ⟨(𝑂𝑥), 𝑦⟩):(ω × 𝑡)–1-1-onto→(ran (𝑂 ↾ ω) × 𝑡))
111 pwfseqlem5.i . . . . . . . . 9 𝐼 = (𝑥 ∈ ω, 𝑦𝑡 ↦ ⟨(𝑂𝑥), 𝑦⟩)
112 f1oeq1 6850 . . . . . . . . 9 (𝐼 = (𝑥 ∈ ω, 𝑦𝑡 ↦ ⟨(𝑂𝑥), 𝑦⟩) → (𝐼:(ω × 𝑡)–1-1-onto→(ran (𝑂 ↾ ω) × 𝑡) ↔ (𝑥 ∈ ω, 𝑦𝑡 ↦ ⟨(𝑂𝑥), 𝑦⟩):(ω × 𝑡)–1-1-onto→(ran (𝑂 ↾ ω) × 𝑡)))
113111, 112ax-mp 5 . . . . . . . 8 (𝐼:(ω × 𝑡)–1-1-onto→(ran (𝑂 ↾ ω) × 𝑡) ↔ (𝑥 ∈ ω, 𝑦𝑡 ↦ ⟨(𝑂𝑥), 𝑦⟩):(ω × 𝑡)–1-1-onto→(ran (𝑂 ↾ ω) × 𝑡))
114110, 113sylibr 234 . . . . . . 7 ((𝜑𝜓) → 𝐼:(ω × 𝑡)–1-1-onto→(ran (𝑂 ↾ ω) × 𝑡))
115 f1of1 6861 . . . . . . 7 (𝐼:(ω × 𝑡)–1-1-onto→(ran (𝑂 ↾ ω) × 𝑡) → 𝐼:(ω × 𝑡)–1-1→(ran (𝑂 ↾ ω) × 𝑡))
116114, 115syl 17 . . . . . 6 ((𝜑𝜓) → 𝐼:(ω × 𝑡)–1-1→(ran (𝑂 ↾ ω) × 𝑡))
117 f1f 6817 . . . . . . 7 ((𝑂 ↾ ω):ω–1-1𝑡 → (𝑂 ↾ ω):ω⟶𝑡)
118 frn 6754 . . . . . . 7 ((𝑂 ↾ ω):ω⟶𝑡 → ran (𝑂 ↾ ω) ⊆ 𝑡)
119 xpss1 5719 . . . . . . 7 (ran (𝑂 ↾ ω) ⊆ 𝑡 → (ran (𝑂 ↾ ω) × 𝑡) ⊆ (𝑡 × 𝑡))
12098, 117, 118, 1194syl 19 . . . . . 6 ((𝜑𝜓) → (ran (𝑂 ↾ ω) × 𝑡) ⊆ (𝑡 × 𝑡))
121 f1ss 6822 . . . . . 6 ((𝐼:(ω × 𝑡)–1-1→(ran (𝑂 ↾ ω) × 𝑡) ∧ (ran (𝑂 ↾ ω) × 𝑡) ⊆ (𝑡 × 𝑡)) → 𝐼:(ω × 𝑡)–1-1→(𝑡 × 𝑡))
122116, 120, 121syl2anc 583 . . . . 5 ((𝜑𝜓) → 𝐼:(ω × 𝑡)–1-1→(𝑡 × 𝑡))
123 f1co 6828 . . . . 5 ((𝑃:(𝑡 × 𝑡)–1-1𝑡𝐼:(ω × 𝑡)–1-1→(𝑡 × 𝑡)) → (𝑃𝐼):(ω × 𝑡)–1-1𝑡)
12494, 122, 123syl2anc 583 . . . 4 ((𝜑𝜓) → (𝑃𝐼):(ω × 𝑡)–1-1𝑡)
1255a1i 11 . . . . 5 ((𝜑𝜓) → 𝑡 ∈ V)
126 peano1 7927 . . . . . . . 8 ∅ ∈ ω
127126a1i 11 . . . . . . 7 ((𝜑𝜓) → ∅ ∈ ω)
12834, 127sseldd 4009 . . . . . 6 ((𝜑𝜓) → ∅ ∈ dom 𝑂)
12973, 128ffvelcdmd 7119 . . . . 5 ((𝜑𝜓) → (𝑂‘∅) ∈ 𝑡)
130 pwfseqlem5.s . . . . 5 𝑆 = seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝑡m suc 𝑘) ↦ ((𝑓‘(𝑥𝑘))𝑃(𝑥𝑘)))), {⟨∅, (𝑂‘∅)⟩})
131 pwfseqlem5.q . . . . 5 𝑄 = (𝑦 𝑛 ∈ ω (𝑡m 𝑛) ↦ ⟨dom 𝑦, ((𝑆‘dom 𝑦)‘𝑦)⟩)
132125, 129, 92, 130, 131fseqenlem2 10094 . . . 4 ((𝜑𝜓) → 𝑄: 𝑛 ∈ ω (𝑡m 𝑛)–1-1→(ω × 𝑡))
133 f1co 6828 . . . 4 (((𝑃𝐼):(ω × 𝑡)–1-1𝑡𝑄: 𝑛 ∈ ω (𝑡m 𝑛)–1-1→(ω × 𝑡)) → ((𝑃𝐼) ∘ 𝑄): 𝑛 ∈ ω (𝑡m 𝑛)–1-1𝑡)
134124, 132, 133syl2anc 583 . . 3 ((𝜑𝜓) → ((𝑃𝐼) ∘ 𝑄): 𝑛 ∈ ω (𝑡m 𝑛)–1-1𝑡)
135 pwfseqlem5.k . . . 4 𝐾 = ((𝑃𝐼) ∘ 𝑄)
136 f1eq1 6812 . . . 4 (𝐾 = ((𝑃𝐼) ∘ 𝑄) → (𝐾: 𝑛 ∈ ω (𝑡m 𝑛)–1-1𝑡 ↔ ((𝑃𝐼) ∘ 𝑄): 𝑛 ∈ ω (𝑡m 𝑛)–1-1𝑡))
137135, 136ax-mp 5 . . 3 (𝐾: 𝑛 ∈ ω (𝑡m 𝑛)–1-1𝑡 ↔ ((𝑃𝐼) ∘ 𝑄): 𝑛 ∈ ω (𝑡m 𝑛)–1-1𝑡)
138134, 137sylibr 234 . 2 ((𝜑𝜓) → 𝐾: 𝑛 ∈ ω (𝑡m 𝑛)–1-1𝑡)
139 eqid 2740 . 2 (𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))}) = (𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})
140 eqid 2740 . 2 (𝑡 ∈ V, 𝑟 ∈ V ↦ if(𝑡 ∈ Fin, (𝐻‘(card‘𝑡)), ((𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})‘ {𝑧 ∈ ω ∣ ¬ ((𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})‘𝑧) ∈ 𝑡}))) = (𝑡 ∈ V, 𝑟 ∈ V ↦ if(𝑡 ∈ Fin, (𝐻‘(card‘𝑡)), ((𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})‘ {𝑧 ∈ ω ∣ ¬ ((𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})‘𝑧) ∈ 𝑡})))
141 eqid 2740 . . 3 {⟨𝑐, 𝑑⟩ ∣ ((𝑐𝐴𝑑 ⊆ (𝑐 × 𝑐)) ∧ (𝑑 We 𝑐 ∧ ∀𝑚𝑐 [(𝑑 “ {𝑚}) / 𝑗](𝑗(𝑡 ∈ V, 𝑟 ∈ V ↦ if(𝑡 ∈ Fin, (𝐻‘(card‘𝑡)), ((𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})‘ {𝑧 ∈ ω ∣ ¬ ((𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})‘𝑧) ∈ 𝑡})))(𝑑 ∩ (𝑗 × 𝑗))) = 𝑚))} = {⟨𝑐, 𝑑⟩ ∣ ((𝑐𝐴𝑑 ⊆ (𝑐 × 𝑐)) ∧ (𝑑 We 𝑐 ∧ ∀𝑚𝑐 [(𝑑 “ {𝑚}) / 𝑗](𝑗(𝑡 ∈ V, 𝑟 ∈ V ↦ if(𝑡 ∈ Fin, (𝐻‘(card‘𝑡)), ((𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})‘ {𝑧 ∈ ω ∣ ¬ ((𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})‘𝑧) ∈ 𝑡})))(𝑑 ∩ (𝑗 × 𝑗))) = 𝑚))}
142141fpwwe2cbv 10699 . 2 {⟨𝑐, 𝑑⟩ ∣ ((𝑐𝐴𝑑 ⊆ (𝑐 × 𝑐)) ∧ (𝑑 We 𝑐 ∧ ∀𝑚𝑐 [(𝑑 “ {𝑚}) / 𝑗](𝑗(𝑡 ∈ V, 𝑟 ∈ V ↦ if(𝑡 ∈ Fin, (𝐻‘(card‘𝑡)), ((𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})‘ {𝑧 ∈ ω ∣ ¬ ((𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})‘𝑧) ∈ 𝑡})))(𝑑 ∩ (𝑗 × 𝑗))) = 𝑚))} = {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑏𝑎 [(𝑠 “ {𝑏}) / 𝑤](𝑤(𝑡 ∈ V, 𝑟 ∈ V ↦ if(𝑡 ∈ Fin, (𝐻‘(card‘𝑡)), ((𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})‘ {𝑧 ∈ ω ∣ ¬ ((𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})‘𝑧) ∈ 𝑡})))(𝑠 ∩ (𝑤 × 𝑤))) = 𝑏))}
143 eqid 2740 . 2 dom {⟨𝑐, 𝑑⟩ ∣ ((𝑐𝐴𝑑 ⊆ (𝑐 × 𝑐)) ∧ (𝑑 We 𝑐 ∧ ∀𝑚𝑐 [(𝑑 “ {𝑚}) / 𝑗](𝑗(𝑡 ∈ V, 𝑟 ∈ V ↦ if(𝑡 ∈ Fin, (𝐻‘(card‘𝑡)), ((𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})‘ {𝑧 ∈ ω ∣ ¬ ((𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})‘𝑧) ∈ 𝑡})))(𝑑 ∩ (𝑗 × 𝑗))) = 𝑚))} = dom {⟨𝑐, 𝑑⟩ ∣ ((𝑐𝐴𝑑 ⊆ (𝑐 × 𝑐)) ∧ (𝑑 We 𝑐 ∧ ∀𝑚𝑐 [(𝑑 “ {𝑚}) / 𝑗](𝑗(𝑡 ∈ V, 𝑟 ∈ V ↦ if(𝑡 ∈ Fin, (𝐻‘(card‘𝑡)), ((𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})‘ {𝑧 ∈ ω ∣ ¬ ((𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})‘𝑧) ∈ 𝑡})))(𝑑 ∩ (𝑗 × 𝑗))) = 𝑚))}
1441, 2, 3, 4, 138, 139, 140, 142, 143pwfseqlem4 10731 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  {crab 3443  Vcvv 3488  [wsbc 3804  cin 3975  wss 3976  c0 4352  ifcif 4548  𝒫 cpw 4622  {csn 4648  cop 4654   cuni 4931   cint 4970   ciun 5015   class class class wbr 5166  {copab 5228  cmpt 5249   I cid 5592   E cep 5598   We wwe 5651   × cxp 5698  ccnv 5699  dom cdm 5700  ran crn 5701  cres 5702  cima 5703  ccom 5704  Oncon0 6395  suc csuc 6397  wf 6569  1-1wf1 6570  1-1-ontowf1o 6572  cfv 6573   Isom wiso 6574  (class class class)co 7448  cmpo 7450  ωcom 7903  seqωcseqom 8503  m cmap 8884  cen 9000  cdom 9001  csdm 9002  Fincfn 9003  OrdIsocoi 9578  harchar 9625  cardccrd 10004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-seqom 8504  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-oi 9579  df-har 9626  df-card 10008
This theorem is referenced by:  pwfseq  10733
  Copyright terms: Public domain W3C validator