MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwfseqlem5 Structured version   Visualization version   GIF version

Theorem pwfseqlem5 10654
Description: Lemma for pwfseq 10655. Although in some ways pwfseqlem4 10653 is the "main" part of the proof, one last aspect which makes up a remark in the original text is by far the hardest part to formalize. The main proof relies on the existence of an injection 𝐾 from the set of finite sequences on an infinite set π‘₯ to π‘₯. Now this alone would not be difficult to prove; this is mostly the claim of fseqen 10018. However, what is needed for the proof is a canonical injection on these sets, so we have to start from scratch pulling together explicit bijections from the lemmas.

If one attempts such a program, it will mostly go through, but there is one key step which is inherently nonconstructive, namely the proof of infxpen 10005. The resolution is not obvious, but it turns out that reversing an infinite ordinal's Cantor normal form absorbs all the non-leading terms (cnfcom3c 9697), which can be used to construct a pairing function explicitly using properties of the ordinal exponential (infxpenc 10009). (Contributed by Mario Carneiro, 31-May-2015.)

Hypotheses
Ref Expression
pwfseqlem5.g (πœ‘ β†’ 𝐺:𝒫 𝐴–1-1β†’βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛))
pwfseqlem5.x (πœ‘ β†’ 𝑋 βŠ† 𝐴)
pwfseqlem5.h (πœ‘ β†’ 𝐻:ω–1-1-onto→𝑋)
pwfseqlem5.ps (πœ“ ↔ ((𝑑 βŠ† 𝐴 ∧ π‘Ÿ βŠ† (𝑑 Γ— 𝑑) ∧ π‘Ÿ We 𝑑) ∧ Ο‰ β‰Ό 𝑑))
pwfseqlem5.n (πœ‘ β†’ βˆ€π‘ ∈ (harβ€˜π’« 𝐴)(Ο‰ βŠ† 𝑏 β†’ (π‘β€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏))
pwfseqlem5.o 𝑂 = OrdIso(π‘Ÿ, 𝑑)
pwfseqlem5.t 𝑇 = (𝑒 ∈ dom 𝑂, 𝑣 ∈ dom 𝑂 ↦ ⟨(π‘‚β€˜π‘’), (π‘‚β€˜π‘£)⟩)
pwfseqlem5.p 𝑃 = ((𝑂 ∘ (π‘β€˜dom 𝑂)) ∘ ◑𝑇)
pwfseqlem5.s 𝑆 = seqΟ‰((π‘˜ ∈ V, 𝑓 ∈ V ↦ (π‘₯ ∈ (𝑑 ↑m suc π‘˜) ↦ ((π‘“β€˜(π‘₯ β†Ύ π‘˜))𝑃(π‘₯β€˜π‘˜)))), {βŸ¨βˆ…, (π‘‚β€˜βˆ…)⟩})
pwfseqlem5.q 𝑄 = (𝑦 ∈ βˆͺ 𝑛 ∈ Ο‰ (𝑑 ↑m 𝑛) ↦ ⟨dom 𝑦, ((π‘†β€˜dom 𝑦)β€˜π‘¦)⟩)
pwfseqlem5.i 𝐼 = (π‘₯ ∈ Ο‰, 𝑦 ∈ 𝑑 ↦ ⟨(π‘‚β€˜π‘₯), π‘¦βŸ©)
pwfseqlem5.k 𝐾 = ((𝑃 ∘ 𝐼) ∘ 𝑄)
Assertion
Ref Expression
pwfseqlem5 Β¬ πœ‘
Distinct variable groups:   𝑛,𝑏,𝐺   π‘Ÿ,𝑏,𝑑,𝐻   𝑓,π‘˜,π‘₯,𝑃   𝑓,𝑏,π‘˜,𝑒,𝑣,π‘₯,𝑦,𝑛,π‘Ÿ,𝑑   πœ‘,𝑏,π‘˜,𝑛,π‘Ÿ,𝑑,π‘₯,𝑦   𝐾,𝑏,𝑛   𝑁,𝑏   πœ“,π‘˜,𝑛,π‘₯,𝑦   𝑆,𝑛,𝑦   𝐴,𝑏,𝑛,π‘Ÿ,𝑑   𝑂,𝑏,𝑒,𝑣,π‘₯,𝑦
Allowed substitution hints:   πœ‘(𝑣,𝑒,𝑓)   πœ“(𝑣,𝑒,𝑑,𝑓,π‘Ÿ,𝑏)   𝐴(π‘₯,𝑦,𝑣,𝑒,𝑓,π‘˜)   𝑃(𝑦,𝑣,𝑒,𝑑,𝑛,π‘Ÿ,𝑏)   𝑄(π‘₯,𝑦,𝑣,𝑒,𝑑,𝑓,π‘˜,𝑛,π‘Ÿ,𝑏)   𝑆(π‘₯,𝑣,𝑒,𝑑,𝑓,π‘˜,π‘Ÿ,𝑏)   𝑇(π‘₯,𝑦,𝑣,𝑒,𝑑,𝑓,π‘˜,𝑛,π‘Ÿ,𝑏)   𝐺(π‘₯,𝑦,𝑣,𝑒,𝑑,𝑓,π‘˜,π‘Ÿ)   𝐻(π‘₯,𝑦,𝑣,𝑒,𝑓,π‘˜,𝑛)   𝐼(π‘₯,𝑦,𝑣,𝑒,𝑑,𝑓,π‘˜,𝑛,π‘Ÿ,𝑏)   𝐾(π‘₯,𝑦,𝑣,𝑒,𝑑,𝑓,π‘˜,π‘Ÿ)   𝑁(π‘₯,𝑦,𝑣,𝑒,𝑑,𝑓,π‘˜,𝑛,π‘Ÿ)   𝑂(𝑑,𝑓,π‘˜,𝑛,π‘Ÿ)   𝑋(π‘₯,𝑦,𝑣,𝑒,𝑑,𝑓,π‘˜,𝑛,π‘Ÿ,𝑏)

Proof of Theorem pwfseqlem5
Dummy variables π‘Ž 𝑐 𝑑 𝑖 𝑗 π‘š 𝑠 𝑀 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwfseqlem5.g . 2 (πœ‘ β†’ 𝐺:𝒫 𝐴–1-1β†’βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛))
2 pwfseqlem5.x . 2 (πœ‘ β†’ 𝑋 βŠ† 𝐴)
3 pwfseqlem5.h . 2 (πœ‘ β†’ 𝐻:ω–1-1-onto→𝑋)
4 pwfseqlem5.ps . 2 (πœ“ ↔ ((𝑑 βŠ† 𝐴 ∧ π‘Ÿ βŠ† (𝑑 Γ— 𝑑) ∧ π‘Ÿ We 𝑑) ∧ Ο‰ β‰Ό 𝑑))
5 vex 3478 . . . . . . . . . . 11 𝑑 ∈ V
6 simprl3 1220 . . . . . . . . . . . 12 ((πœ‘ ∧ ((𝑑 βŠ† 𝐴 ∧ π‘Ÿ βŠ† (𝑑 Γ— 𝑑) ∧ π‘Ÿ We 𝑑) ∧ Ο‰ β‰Ό 𝑑)) β†’ π‘Ÿ We 𝑑)
74, 6sylan2b 594 . . . . . . . . . . 11 ((πœ‘ ∧ πœ“) β†’ π‘Ÿ We 𝑑)
8 pwfseqlem5.o . . . . . . . . . . . 12 𝑂 = OrdIso(π‘Ÿ, 𝑑)
98oiiso 9528 . . . . . . . . . . 11 ((𝑑 ∈ V ∧ π‘Ÿ We 𝑑) β†’ 𝑂 Isom E , π‘Ÿ (dom 𝑂, 𝑑))
105, 7, 9sylancr 587 . . . . . . . . . 10 ((πœ‘ ∧ πœ“) β†’ 𝑂 Isom E , π‘Ÿ (dom 𝑂, 𝑑))
11 isof1o 7316 . . . . . . . . . 10 (𝑂 Isom E , π‘Ÿ (dom 𝑂, 𝑑) β†’ 𝑂:dom 𝑂–1-1-onto→𝑑)
1210, 11syl 17 . . . . . . . . 9 ((πœ‘ ∧ πœ“) β†’ 𝑂:dom 𝑂–1-1-onto→𝑑)
13 cardom 9977 . . . . . . . . . . . 12 (cardβ€˜Ο‰) = Ο‰
14 simprr 771 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ ((𝑑 βŠ† 𝐴 ∧ π‘Ÿ βŠ† (𝑑 Γ— 𝑑) ∧ π‘Ÿ We 𝑑) ∧ Ο‰ β‰Ό 𝑑)) β†’ Ο‰ β‰Ό 𝑑)
154, 14sylan2b 594 . . . . . . . . . . . . . 14 ((πœ‘ ∧ πœ“) β†’ Ο‰ β‰Ό 𝑑)
168oien 9529 . . . . . . . . . . . . . . . 16 ((𝑑 ∈ V ∧ π‘Ÿ We 𝑑) β†’ dom 𝑂 β‰ˆ 𝑑)
175, 7, 16sylancr 587 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ πœ“) β†’ dom 𝑂 β‰ˆ 𝑑)
1817ensymd 8997 . . . . . . . . . . . . . 14 ((πœ‘ ∧ πœ“) β†’ 𝑑 β‰ˆ dom 𝑂)
19 domentr 9005 . . . . . . . . . . . . . 14 ((Ο‰ β‰Ό 𝑑 ∧ 𝑑 β‰ˆ dom 𝑂) β†’ Ο‰ β‰Ό dom 𝑂)
2015, 18, 19syl2anc 584 . . . . . . . . . . . . 13 ((πœ‘ ∧ πœ“) β†’ Ο‰ β‰Ό dom 𝑂)
21 omelon 9637 . . . . . . . . . . . . . . 15 Ο‰ ∈ On
22 onenon 9940 . . . . . . . . . . . . . . 15 (Ο‰ ∈ On β†’ Ο‰ ∈ dom card)
2321, 22ax-mp 5 . . . . . . . . . . . . . 14 Ο‰ ∈ dom card
248oion 9527 . . . . . . . . . . . . . . . 16 (𝑑 ∈ V β†’ dom 𝑂 ∈ On)
2524elv 3480 . . . . . . . . . . . . . . 15 dom 𝑂 ∈ On
26 onenon 9940 . . . . . . . . . . . . . . 15 (dom 𝑂 ∈ On β†’ dom 𝑂 ∈ dom card)
2725, 26mp1i 13 . . . . . . . . . . . . . 14 ((πœ‘ ∧ πœ“) β†’ dom 𝑂 ∈ dom card)
28 carddom2 9968 . . . . . . . . . . . . . 14 ((Ο‰ ∈ dom card ∧ dom 𝑂 ∈ dom card) β†’ ((cardβ€˜Ο‰) βŠ† (cardβ€˜dom 𝑂) ↔ Ο‰ β‰Ό dom 𝑂))
2923, 27, 28sylancr 587 . . . . . . . . . . . . 13 ((πœ‘ ∧ πœ“) β†’ ((cardβ€˜Ο‰) βŠ† (cardβ€˜dom 𝑂) ↔ Ο‰ β‰Ό dom 𝑂))
3020, 29mpbird 256 . . . . . . . . . . . 12 ((πœ‘ ∧ πœ“) β†’ (cardβ€˜Ο‰) βŠ† (cardβ€˜dom 𝑂))
3113, 30eqsstrrid 4030 . . . . . . . . . . 11 ((πœ‘ ∧ πœ“) β†’ Ο‰ βŠ† (cardβ€˜dom 𝑂))
32 cardonle 9948 . . . . . . . . . . . 12 (dom 𝑂 ∈ On β†’ (cardβ€˜dom 𝑂) βŠ† dom 𝑂)
3325, 32mp1i 13 . . . . . . . . . . 11 ((πœ‘ ∧ πœ“) β†’ (cardβ€˜dom 𝑂) βŠ† dom 𝑂)
3431, 33sstrd 3991 . . . . . . . . . 10 ((πœ‘ ∧ πœ“) β†’ Ο‰ βŠ† dom 𝑂)
35 sseq2 4007 . . . . . . . . . . . 12 (𝑏 = dom 𝑂 β†’ (Ο‰ βŠ† 𝑏 ↔ Ο‰ βŠ† dom 𝑂))
36 fveq2 6888 . . . . . . . . . . . . . 14 (𝑏 = dom 𝑂 β†’ (π‘β€˜π‘) = (π‘β€˜dom 𝑂))
3736f1oeq1d 6825 . . . . . . . . . . . . 13 (𝑏 = dom 𝑂 β†’ ((π‘β€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏 ↔ (π‘β€˜dom 𝑂):(𝑏 Γ— 𝑏)–1-1-onto→𝑏))
38 xpeq12 5700 . . . . . . . . . . . . . . 15 ((𝑏 = dom 𝑂 ∧ 𝑏 = dom 𝑂) β†’ (𝑏 Γ— 𝑏) = (dom 𝑂 Γ— dom 𝑂))
3938anidms 567 . . . . . . . . . . . . . 14 (𝑏 = dom 𝑂 β†’ (𝑏 Γ— 𝑏) = (dom 𝑂 Γ— dom 𝑂))
4039f1oeq2d 6826 . . . . . . . . . . . . 13 (𝑏 = dom 𝑂 β†’ ((π‘β€˜dom 𝑂):(𝑏 Γ— 𝑏)–1-1-onto→𝑏 ↔ (π‘β€˜dom 𝑂):(dom 𝑂 Γ— dom 𝑂)–1-1-onto→𝑏))
41 f1oeq3 6820 . . . . . . . . . . . . 13 (𝑏 = dom 𝑂 β†’ ((π‘β€˜dom 𝑂):(dom 𝑂 Γ— dom 𝑂)–1-1-onto→𝑏 ↔ (π‘β€˜dom 𝑂):(dom 𝑂 Γ— dom 𝑂)–1-1-ontoβ†’dom 𝑂))
4237, 40, 413bitrd 304 . . . . . . . . . . . 12 (𝑏 = dom 𝑂 β†’ ((π‘β€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏 ↔ (π‘β€˜dom 𝑂):(dom 𝑂 Γ— dom 𝑂)–1-1-ontoβ†’dom 𝑂))
4335, 42imbi12d 344 . . . . . . . . . . 11 (𝑏 = dom 𝑂 β†’ ((Ο‰ βŠ† 𝑏 β†’ (π‘β€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏) ↔ (Ο‰ βŠ† dom 𝑂 β†’ (π‘β€˜dom 𝑂):(dom 𝑂 Γ— dom 𝑂)–1-1-ontoβ†’dom 𝑂)))
44 pwfseqlem5.n . . . . . . . . . . . 12 (πœ‘ β†’ βˆ€π‘ ∈ (harβ€˜π’« 𝐴)(Ο‰ βŠ† 𝑏 β†’ (π‘β€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏))
4544adantr 481 . . . . . . . . . . 11 ((πœ‘ ∧ πœ“) β†’ βˆ€π‘ ∈ (harβ€˜π’« 𝐴)(Ο‰ βŠ† 𝑏 β†’ (π‘β€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏))
4625a1i 11 . . . . . . . . . . . 12 ((πœ‘ ∧ πœ“) β†’ dom 𝑂 ∈ On)
471adantr 481 . . . . . . . . . . . . . . . . 17 ((πœ‘ ∧ πœ“) β†’ 𝐺:𝒫 𝐴–1-1β†’βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛))
48 omex 9634 . . . . . . . . . . . . . . . . . 18 Ο‰ ∈ V
49 ovex 7438 . . . . . . . . . . . . . . . . . 18 (𝐴 ↑m 𝑛) ∈ V
5048, 49iunex 7951 . . . . . . . . . . . . . . . . 17 βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛) ∈ V
51 f1dmex 7939 . . . . . . . . . . . . . . . . 17 ((𝐺:𝒫 𝐴–1-1β†’βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛) ∧ βˆͺ 𝑛 ∈ Ο‰ (𝐴 ↑m 𝑛) ∈ V) β†’ 𝒫 𝐴 ∈ V)
5247, 50, 51sylancl 586 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ πœ“) β†’ 𝒫 𝐴 ∈ V)
53 pwexb 7749 . . . . . . . . . . . . . . . 16 (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V)
5452, 53sylibr 233 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ πœ“) β†’ 𝐴 ∈ V)
55 simprl1 1218 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ ((𝑑 βŠ† 𝐴 ∧ π‘Ÿ βŠ† (𝑑 Γ— 𝑑) ∧ π‘Ÿ We 𝑑) ∧ Ο‰ β‰Ό 𝑑)) β†’ 𝑑 βŠ† 𝐴)
564, 55sylan2b 594 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ πœ“) β†’ 𝑑 βŠ† 𝐴)
57 ssdomg 8992 . . . . . . . . . . . . . . 15 (𝐴 ∈ V β†’ (𝑑 βŠ† 𝐴 β†’ 𝑑 β‰Ό 𝐴))
5854, 56, 57sylc 65 . . . . . . . . . . . . . 14 ((πœ‘ ∧ πœ“) β†’ 𝑑 β‰Ό 𝐴)
59 canth2g 9127 . . . . . . . . . . . . . . 15 (𝐴 ∈ V β†’ 𝐴 β‰Ί 𝒫 𝐴)
60 sdomdom 8972 . . . . . . . . . . . . . . 15 (𝐴 β‰Ί 𝒫 𝐴 β†’ 𝐴 β‰Ό 𝒫 𝐴)
6154, 59, 603syl 18 . . . . . . . . . . . . . 14 ((πœ‘ ∧ πœ“) β†’ 𝐴 β‰Ό 𝒫 𝐴)
62 domtr 8999 . . . . . . . . . . . . . 14 ((𝑑 β‰Ό 𝐴 ∧ 𝐴 β‰Ό 𝒫 𝐴) β†’ 𝑑 β‰Ό 𝒫 𝐴)
6358, 61, 62syl2anc 584 . . . . . . . . . . . . 13 ((πœ‘ ∧ πœ“) β†’ 𝑑 β‰Ό 𝒫 𝐴)
64 endomtr 9004 . . . . . . . . . . . . 13 ((dom 𝑂 β‰ˆ 𝑑 ∧ 𝑑 β‰Ό 𝒫 𝐴) β†’ dom 𝑂 β‰Ό 𝒫 𝐴)
6517, 63, 64syl2anc 584 . . . . . . . . . . . 12 ((πœ‘ ∧ πœ“) β†’ dom 𝑂 β‰Ό 𝒫 𝐴)
66 elharval 9552 . . . . . . . . . . . 12 (dom 𝑂 ∈ (harβ€˜π’« 𝐴) ↔ (dom 𝑂 ∈ On ∧ dom 𝑂 β‰Ό 𝒫 𝐴))
6746, 65, 66sylanbrc 583 . . . . . . . . . . 11 ((πœ‘ ∧ πœ“) β†’ dom 𝑂 ∈ (harβ€˜π’« 𝐴))
6843, 45, 67rspcdva 3613 . . . . . . . . . 10 ((πœ‘ ∧ πœ“) β†’ (Ο‰ βŠ† dom 𝑂 β†’ (π‘β€˜dom 𝑂):(dom 𝑂 Γ— dom 𝑂)–1-1-ontoβ†’dom 𝑂))
6934, 68mpd 15 . . . . . . . . 9 ((πœ‘ ∧ πœ“) β†’ (π‘β€˜dom 𝑂):(dom 𝑂 Γ— dom 𝑂)–1-1-ontoβ†’dom 𝑂)
70 f1oco 6853 . . . . . . . . 9 ((𝑂:dom 𝑂–1-1-onto→𝑑 ∧ (π‘β€˜dom 𝑂):(dom 𝑂 Γ— dom 𝑂)–1-1-ontoβ†’dom 𝑂) β†’ (𝑂 ∘ (π‘β€˜dom 𝑂)):(dom 𝑂 Γ— dom 𝑂)–1-1-onto→𝑑)
7112, 69, 70syl2anc 584 . . . . . . . 8 ((πœ‘ ∧ πœ“) β†’ (𝑂 ∘ (π‘β€˜dom 𝑂)):(dom 𝑂 Γ— dom 𝑂)–1-1-onto→𝑑)
72 f1of 6830 . . . . . . . . . . . . . . 15 (𝑂:dom 𝑂–1-1-onto→𝑑 β†’ 𝑂:dom π‘‚βŸΆπ‘‘)
7312, 72syl 17 . . . . . . . . . . . . . 14 ((πœ‘ ∧ πœ“) β†’ 𝑂:dom π‘‚βŸΆπ‘‘)
7473feqmptd 6957 . . . . . . . . . . . . 13 ((πœ‘ ∧ πœ“) β†’ 𝑂 = (𝑒 ∈ dom 𝑂 ↦ (π‘‚β€˜π‘’)))
7574f1oeq1d 6825 . . . . . . . . . . . 12 ((πœ‘ ∧ πœ“) β†’ (𝑂:dom 𝑂–1-1-onto→𝑑 ↔ (𝑒 ∈ dom 𝑂 ↦ (π‘‚β€˜π‘’)):dom 𝑂–1-1-onto→𝑑))
7612, 75mpbid 231 . . . . . . . . . . 11 ((πœ‘ ∧ πœ“) β†’ (𝑒 ∈ dom 𝑂 ↦ (π‘‚β€˜π‘’)):dom 𝑂–1-1-onto→𝑑)
7773feqmptd 6957 . . . . . . . . . . . . 13 ((πœ‘ ∧ πœ“) β†’ 𝑂 = (𝑣 ∈ dom 𝑂 ↦ (π‘‚β€˜π‘£)))
7877f1oeq1d 6825 . . . . . . . . . . . 12 ((πœ‘ ∧ πœ“) β†’ (𝑂:dom 𝑂–1-1-onto→𝑑 ↔ (𝑣 ∈ dom 𝑂 ↦ (π‘‚β€˜π‘£)):dom 𝑂–1-1-onto→𝑑))
7912, 78mpbid 231 . . . . . . . . . . 11 ((πœ‘ ∧ πœ“) β†’ (𝑣 ∈ dom 𝑂 ↦ (π‘‚β€˜π‘£)):dom 𝑂–1-1-onto→𝑑)
8076, 79xpf1o 9135 . . . . . . . . . 10 ((πœ‘ ∧ πœ“) β†’ (𝑒 ∈ dom 𝑂, 𝑣 ∈ dom 𝑂 ↦ ⟨(π‘‚β€˜π‘’), (π‘‚β€˜π‘£)⟩):(dom 𝑂 Γ— dom 𝑂)–1-1-ontoβ†’(𝑑 Γ— 𝑑))
81 pwfseqlem5.t . . . . . . . . . . 11 𝑇 = (𝑒 ∈ dom 𝑂, 𝑣 ∈ dom 𝑂 ↦ ⟨(π‘‚β€˜π‘’), (π‘‚β€˜π‘£)⟩)
82 f1oeq1 6818 . . . . . . . . . . 11 (𝑇 = (𝑒 ∈ dom 𝑂, 𝑣 ∈ dom 𝑂 ↦ ⟨(π‘‚β€˜π‘’), (π‘‚β€˜π‘£)⟩) β†’ (𝑇:(dom 𝑂 Γ— dom 𝑂)–1-1-ontoβ†’(𝑑 Γ— 𝑑) ↔ (𝑒 ∈ dom 𝑂, 𝑣 ∈ dom 𝑂 ↦ ⟨(π‘‚β€˜π‘’), (π‘‚β€˜π‘£)⟩):(dom 𝑂 Γ— dom 𝑂)–1-1-ontoβ†’(𝑑 Γ— 𝑑)))
8381, 82ax-mp 5 . . . . . . . . . 10 (𝑇:(dom 𝑂 Γ— dom 𝑂)–1-1-ontoβ†’(𝑑 Γ— 𝑑) ↔ (𝑒 ∈ dom 𝑂, 𝑣 ∈ dom 𝑂 ↦ ⟨(π‘‚β€˜π‘’), (π‘‚β€˜π‘£)⟩):(dom 𝑂 Γ— dom 𝑂)–1-1-ontoβ†’(𝑑 Γ— 𝑑))
8480, 83sylibr 233 . . . . . . . . 9 ((πœ‘ ∧ πœ“) β†’ 𝑇:(dom 𝑂 Γ— dom 𝑂)–1-1-ontoβ†’(𝑑 Γ— 𝑑))
85 f1ocnv 6842 . . . . . . . . 9 (𝑇:(dom 𝑂 Γ— dom 𝑂)–1-1-ontoβ†’(𝑑 Γ— 𝑑) β†’ ◑𝑇:(𝑑 Γ— 𝑑)–1-1-ontoβ†’(dom 𝑂 Γ— dom 𝑂))
8684, 85syl 17 . . . . . . . 8 ((πœ‘ ∧ πœ“) β†’ ◑𝑇:(𝑑 Γ— 𝑑)–1-1-ontoβ†’(dom 𝑂 Γ— dom 𝑂))
87 f1oco 6853 . . . . . . . 8 (((𝑂 ∘ (π‘β€˜dom 𝑂)):(dom 𝑂 Γ— dom 𝑂)–1-1-onto→𝑑 ∧ ◑𝑇:(𝑑 Γ— 𝑑)–1-1-ontoβ†’(dom 𝑂 Γ— dom 𝑂)) β†’ ((𝑂 ∘ (π‘β€˜dom 𝑂)) ∘ ◑𝑇):(𝑑 Γ— 𝑑)–1-1-onto→𝑑)
8871, 86, 87syl2anc 584 . . . . . . 7 ((πœ‘ ∧ πœ“) β†’ ((𝑂 ∘ (π‘β€˜dom 𝑂)) ∘ ◑𝑇):(𝑑 Γ— 𝑑)–1-1-onto→𝑑)
89 pwfseqlem5.p . . . . . . . 8 𝑃 = ((𝑂 ∘ (π‘β€˜dom 𝑂)) ∘ ◑𝑇)
90 f1oeq1 6818 . . . . . . . 8 (𝑃 = ((𝑂 ∘ (π‘β€˜dom 𝑂)) ∘ ◑𝑇) β†’ (𝑃:(𝑑 Γ— 𝑑)–1-1-onto→𝑑 ↔ ((𝑂 ∘ (π‘β€˜dom 𝑂)) ∘ ◑𝑇):(𝑑 Γ— 𝑑)–1-1-onto→𝑑))
9189, 90ax-mp 5 . . . . . . 7 (𝑃:(𝑑 Γ— 𝑑)–1-1-onto→𝑑 ↔ ((𝑂 ∘ (π‘β€˜dom 𝑂)) ∘ ◑𝑇):(𝑑 Γ— 𝑑)–1-1-onto→𝑑)
9288, 91sylibr 233 . . . . . 6 ((πœ‘ ∧ πœ“) β†’ 𝑃:(𝑑 Γ— 𝑑)–1-1-onto→𝑑)
93 f1of1 6829 . . . . . 6 (𝑃:(𝑑 Γ— 𝑑)–1-1-onto→𝑑 β†’ 𝑃:(𝑑 Γ— 𝑑)–1-1→𝑑)
9492, 93syl 17 . . . . 5 ((πœ‘ ∧ πœ“) β†’ 𝑃:(𝑑 Γ— 𝑑)–1-1→𝑑)
95 f1of1 6829 . . . . . . . . . . . . 13 (𝑂:dom 𝑂–1-1-onto→𝑑 β†’ 𝑂:dom 𝑂–1-1→𝑑)
9612, 95syl 17 . . . . . . . . . . . 12 ((πœ‘ ∧ πœ“) β†’ 𝑂:dom 𝑂–1-1→𝑑)
97 f1ssres 6792 . . . . . . . . . . . 12 ((𝑂:dom 𝑂–1-1→𝑑 ∧ Ο‰ βŠ† dom 𝑂) β†’ (𝑂 β†Ύ Ο‰):ω–1-1→𝑑)
9896, 34, 97syl2anc 584 . . . . . . . . . . 11 ((πœ‘ ∧ πœ“) β†’ (𝑂 β†Ύ Ο‰):ω–1-1→𝑑)
99 f1f1orn 6841 . . . . . . . . . . 11 ((𝑂 β†Ύ Ο‰):ω–1-1→𝑑 β†’ (𝑂 β†Ύ Ο‰):ω–1-1-ontoβ†’ran (𝑂 β†Ύ Ο‰))
10098, 99syl 17 . . . . . . . . . 10 ((πœ‘ ∧ πœ“) β†’ (𝑂 β†Ύ Ο‰):ω–1-1-ontoβ†’ran (𝑂 β†Ύ Ο‰))
10173, 34feqresmpt 6958 . . . . . . . . . . 11 ((πœ‘ ∧ πœ“) β†’ (𝑂 β†Ύ Ο‰) = (π‘₯ ∈ Ο‰ ↦ (π‘‚β€˜π‘₯)))
102101f1oeq1d 6825 . . . . . . . . . 10 ((πœ‘ ∧ πœ“) β†’ ((𝑂 β†Ύ Ο‰):ω–1-1-ontoβ†’ran (𝑂 β†Ύ Ο‰) ↔ (π‘₯ ∈ Ο‰ ↦ (π‘‚β€˜π‘₯)):ω–1-1-ontoβ†’ran (𝑂 β†Ύ Ο‰)))
103100, 102mpbid 231 . . . . . . . . 9 ((πœ‘ ∧ πœ“) β†’ (π‘₯ ∈ Ο‰ ↦ (π‘‚β€˜π‘₯)):ω–1-1-ontoβ†’ran (𝑂 β†Ύ Ο‰))
104 mptresid 6048 . . . . . . . . . . 11 ( I β†Ύ 𝑑) = (𝑦 ∈ 𝑑 ↦ 𝑦)
105104eqcomi 2741 . . . . . . . . . 10 (𝑦 ∈ 𝑑 ↦ 𝑦) = ( I β†Ύ 𝑑)
106 f1oi 6868 . . . . . . . . . . 11 ( I β†Ύ 𝑑):𝑑–1-1-onto→𝑑
107 f1oeq1 6818 . . . . . . . . . . 11 ((𝑦 ∈ 𝑑 ↦ 𝑦) = ( I β†Ύ 𝑑) β†’ ((𝑦 ∈ 𝑑 ↦ 𝑦):𝑑–1-1-onto→𝑑 ↔ ( I β†Ύ 𝑑):𝑑–1-1-onto→𝑑))
108106, 107mpbiri 257 . . . . . . . . . 10 ((𝑦 ∈ 𝑑 ↦ 𝑦) = ( I β†Ύ 𝑑) β†’ (𝑦 ∈ 𝑑 ↦ 𝑦):𝑑–1-1-onto→𝑑)
109105, 108mp1i 13 . . . . . . . . 9 ((πœ‘ ∧ πœ“) β†’ (𝑦 ∈ 𝑑 ↦ 𝑦):𝑑–1-1-onto→𝑑)
110103, 109xpf1o 9135 . . . . . . . 8 ((πœ‘ ∧ πœ“) β†’ (π‘₯ ∈ Ο‰, 𝑦 ∈ 𝑑 ↦ ⟨(π‘‚β€˜π‘₯), π‘¦βŸ©):(Ο‰ Γ— 𝑑)–1-1-ontoβ†’(ran (𝑂 β†Ύ Ο‰) Γ— 𝑑))
111 pwfseqlem5.i . . . . . . . . 9 𝐼 = (π‘₯ ∈ Ο‰, 𝑦 ∈ 𝑑 ↦ ⟨(π‘‚β€˜π‘₯), π‘¦βŸ©)
112 f1oeq1 6818 . . . . . . . . 9 (𝐼 = (π‘₯ ∈ Ο‰, 𝑦 ∈ 𝑑 ↦ ⟨(π‘‚β€˜π‘₯), π‘¦βŸ©) β†’ (𝐼:(Ο‰ Γ— 𝑑)–1-1-ontoβ†’(ran (𝑂 β†Ύ Ο‰) Γ— 𝑑) ↔ (π‘₯ ∈ Ο‰, 𝑦 ∈ 𝑑 ↦ ⟨(π‘‚β€˜π‘₯), π‘¦βŸ©):(Ο‰ Γ— 𝑑)–1-1-ontoβ†’(ran (𝑂 β†Ύ Ο‰) Γ— 𝑑)))
113111, 112ax-mp 5 . . . . . . . 8 (𝐼:(Ο‰ Γ— 𝑑)–1-1-ontoβ†’(ran (𝑂 β†Ύ Ο‰) Γ— 𝑑) ↔ (π‘₯ ∈ Ο‰, 𝑦 ∈ 𝑑 ↦ ⟨(π‘‚β€˜π‘₯), π‘¦βŸ©):(Ο‰ Γ— 𝑑)–1-1-ontoβ†’(ran (𝑂 β†Ύ Ο‰) Γ— 𝑑))
114110, 113sylibr 233 . . . . . . 7 ((πœ‘ ∧ πœ“) β†’ 𝐼:(Ο‰ Γ— 𝑑)–1-1-ontoβ†’(ran (𝑂 β†Ύ Ο‰) Γ— 𝑑))
115 f1of1 6829 . . . . . . 7 (𝐼:(Ο‰ Γ— 𝑑)–1-1-ontoβ†’(ran (𝑂 β†Ύ Ο‰) Γ— 𝑑) β†’ 𝐼:(Ο‰ Γ— 𝑑)–1-1β†’(ran (𝑂 β†Ύ Ο‰) Γ— 𝑑))
116114, 115syl 17 . . . . . 6 ((πœ‘ ∧ πœ“) β†’ 𝐼:(Ο‰ Γ— 𝑑)–1-1β†’(ran (𝑂 β†Ύ Ο‰) Γ— 𝑑))
117 f1f 6784 . . . . . . 7 ((𝑂 β†Ύ Ο‰):ω–1-1→𝑑 β†’ (𝑂 β†Ύ Ο‰):Ο‰βŸΆπ‘‘)
118 frn 6721 . . . . . . 7 ((𝑂 β†Ύ Ο‰):Ο‰βŸΆπ‘‘ β†’ ran (𝑂 β†Ύ Ο‰) βŠ† 𝑑)
119 xpss1 5694 . . . . . . 7 (ran (𝑂 β†Ύ Ο‰) βŠ† 𝑑 β†’ (ran (𝑂 β†Ύ Ο‰) Γ— 𝑑) βŠ† (𝑑 Γ— 𝑑))
12098, 117, 118, 1194syl 19 . . . . . 6 ((πœ‘ ∧ πœ“) β†’ (ran (𝑂 β†Ύ Ο‰) Γ— 𝑑) βŠ† (𝑑 Γ— 𝑑))
121 f1ss 6790 . . . . . 6 ((𝐼:(Ο‰ Γ— 𝑑)–1-1β†’(ran (𝑂 β†Ύ Ο‰) Γ— 𝑑) ∧ (ran (𝑂 β†Ύ Ο‰) Γ— 𝑑) βŠ† (𝑑 Γ— 𝑑)) β†’ 𝐼:(Ο‰ Γ— 𝑑)–1-1β†’(𝑑 Γ— 𝑑))
122116, 120, 121syl2anc 584 . . . . 5 ((πœ‘ ∧ πœ“) β†’ 𝐼:(Ο‰ Γ— 𝑑)–1-1β†’(𝑑 Γ— 𝑑))
123 f1co 6796 . . . . 5 ((𝑃:(𝑑 Γ— 𝑑)–1-1→𝑑 ∧ 𝐼:(Ο‰ Γ— 𝑑)–1-1β†’(𝑑 Γ— 𝑑)) β†’ (𝑃 ∘ 𝐼):(Ο‰ Γ— 𝑑)–1-1→𝑑)
12494, 122, 123syl2anc 584 . . . 4 ((πœ‘ ∧ πœ“) β†’ (𝑃 ∘ 𝐼):(Ο‰ Γ— 𝑑)–1-1→𝑑)
1255a1i 11 . . . . 5 ((πœ‘ ∧ πœ“) β†’ 𝑑 ∈ V)
126 peano1 7875 . . . . . . . 8 βˆ… ∈ Ο‰
127126a1i 11 . . . . . . 7 ((πœ‘ ∧ πœ“) β†’ βˆ… ∈ Ο‰)
12834, 127sseldd 3982 . . . . . 6 ((πœ‘ ∧ πœ“) β†’ βˆ… ∈ dom 𝑂)
12973, 128ffvelcdmd 7084 . . . . 5 ((πœ‘ ∧ πœ“) β†’ (π‘‚β€˜βˆ…) ∈ 𝑑)
130 pwfseqlem5.s . . . . 5 𝑆 = seqΟ‰((π‘˜ ∈ V, 𝑓 ∈ V ↦ (π‘₯ ∈ (𝑑 ↑m suc π‘˜) ↦ ((π‘“β€˜(π‘₯ β†Ύ π‘˜))𝑃(π‘₯β€˜π‘˜)))), {βŸ¨βˆ…, (π‘‚β€˜βˆ…)⟩})
131 pwfseqlem5.q . . . . 5 𝑄 = (𝑦 ∈ βˆͺ 𝑛 ∈ Ο‰ (𝑑 ↑m 𝑛) ↦ ⟨dom 𝑦, ((π‘†β€˜dom 𝑦)β€˜π‘¦)⟩)
132125, 129, 92, 130, 131fseqenlem2 10016 . . . 4 ((πœ‘ ∧ πœ“) β†’ 𝑄:βˆͺ 𝑛 ∈ Ο‰ (𝑑 ↑m 𝑛)–1-1β†’(Ο‰ Γ— 𝑑))
133 f1co 6796 . . . 4 (((𝑃 ∘ 𝐼):(Ο‰ Γ— 𝑑)–1-1→𝑑 ∧ 𝑄:βˆͺ 𝑛 ∈ Ο‰ (𝑑 ↑m 𝑛)–1-1β†’(Ο‰ Γ— 𝑑)) β†’ ((𝑃 ∘ 𝐼) ∘ 𝑄):βˆͺ 𝑛 ∈ Ο‰ (𝑑 ↑m 𝑛)–1-1→𝑑)
134124, 132, 133syl2anc 584 . . 3 ((πœ‘ ∧ πœ“) β†’ ((𝑃 ∘ 𝐼) ∘ 𝑄):βˆͺ 𝑛 ∈ Ο‰ (𝑑 ↑m 𝑛)–1-1→𝑑)
135 pwfseqlem5.k . . . 4 𝐾 = ((𝑃 ∘ 𝐼) ∘ 𝑄)
136 f1eq1 6779 . . . 4 (𝐾 = ((𝑃 ∘ 𝐼) ∘ 𝑄) β†’ (𝐾:βˆͺ 𝑛 ∈ Ο‰ (𝑑 ↑m 𝑛)–1-1→𝑑 ↔ ((𝑃 ∘ 𝐼) ∘ 𝑄):βˆͺ 𝑛 ∈ Ο‰ (𝑑 ↑m 𝑛)–1-1→𝑑))
137135, 136ax-mp 5 . . 3 (𝐾:βˆͺ 𝑛 ∈ Ο‰ (𝑑 ↑m 𝑛)–1-1→𝑑 ↔ ((𝑃 ∘ 𝐼) ∘ 𝑄):βˆͺ 𝑛 ∈ Ο‰ (𝑑 ↑m 𝑛)–1-1→𝑑)
138134, 137sylibr 233 . 2 ((πœ‘ ∧ πœ“) β†’ 𝐾:βˆͺ 𝑛 ∈ Ο‰ (𝑑 ↑m 𝑛)–1-1→𝑑)
139 eqid 2732 . 2 (πΊβ€˜{𝑖 ∈ 𝑑 ∣ ((β—‘πΎβ€˜π‘–) ∈ ran 𝐺 ∧ Β¬ 𝑖 ∈ (β—‘πΊβ€˜(β—‘πΎβ€˜π‘–)))}) = (πΊβ€˜{𝑖 ∈ 𝑑 ∣ ((β—‘πΎβ€˜π‘–) ∈ ran 𝐺 ∧ Β¬ 𝑖 ∈ (β—‘πΊβ€˜(β—‘πΎβ€˜π‘–)))})
140 eqid 2732 . 2 (𝑑 ∈ V, π‘Ÿ ∈ V ↦ if(𝑑 ∈ Fin, (π»β€˜(cardβ€˜π‘‘)), ((πΊβ€˜{𝑖 ∈ 𝑑 ∣ ((β—‘πΎβ€˜π‘–) ∈ ran 𝐺 ∧ Β¬ 𝑖 ∈ (β—‘πΊβ€˜(β—‘πΎβ€˜π‘–)))})β€˜βˆ© {𝑧 ∈ Ο‰ ∣ Β¬ ((πΊβ€˜{𝑖 ∈ 𝑑 ∣ ((β—‘πΎβ€˜π‘–) ∈ ran 𝐺 ∧ Β¬ 𝑖 ∈ (β—‘πΊβ€˜(β—‘πΎβ€˜π‘–)))})β€˜π‘§) ∈ 𝑑}))) = (𝑑 ∈ V, π‘Ÿ ∈ V ↦ if(𝑑 ∈ Fin, (π»β€˜(cardβ€˜π‘‘)), ((πΊβ€˜{𝑖 ∈ 𝑑 ∣ ((β—‘πΎβ€˜π‘–) ∈ ran 𝐺 ∧ Β¬ 𝑖 ∈ (β—‘πΊβ€˜(β—‘πΎβ€˜π‘–)))})β€˜βˆ© {𝑧 ∈ Ο‰ ∣ Β¬ ((πΊβ€˜{𝑖 ∈ 𝑑 ∣ ((β—‘πΎβ€˜π‘–) ∈ ran 𝐺 ∧ Β¬ 𝑖 ∈ (β—‘πΊβ€˜(β—‘πΎβ€˜π‘–)))})β€˜π‘§) ∈ 𝑑})))
141 eqid 2732 . . 3 {βŸ¨π‘, π‘‘βŸ© ∣ ((𝑐 βŠ† 𝐴 ∧ 𝑑 βŠ† (𝑐 Γ— 𝑐)) ∧ (𝑑 We 𝑐 ∧ βˆ€π‘š ∈ 𝑐 [(◑𝑑 β€œ {π‘š}) / 𝑗](𝑗(𝑑 ∈ V, π‘Ÿ ∈ V ↦ if(𝑑 ∈ Fin, (π»β€˜(cardβ€˜π‘‘)), ((πΊβ€˜{𝑖 ∈ 𝑑 ∣ ((β—‘πΎβ€˜π‘–) ∈ ran 𝐺 ∧ Β¬ 𝑖 ∈ (β—‘πΊβ€˜(β—‘πΎβ€˜π‘–)))})β€˜βˆ© {𝑧 ∈ Ο‰ ∣ Β¬ ((πΊβ€˜{𝑖 ∈ 𝑑 ∣ ((β—‘πΎβ€˜π‘–) ∈ ran 𝐺 ∧ Β¬ 𝑖 ∈ (β—‘πΊβ€˜(β—‘πΎβ€˜π‘–)))})β€˜π‘§) ∈ 𝑑})))(𝑑 ∩ (𝑗 Γ— 𝑗))) = π‘š))} = {βŸ¨π‘, π‘‘βŸ© ∣ ((𝑐 βŠ† 𝐴 ∧ 𝑑 βŠ† (𝑐 Γ— 𝑐)) ∧ (𝑑 We 𝑐 ∧ βˆ€π‘š ∈ 𝑐 [(◑𝑑 β€œ {π‘š}) / 𝑗](𝑗(𝑑 ∈ V, π‘Ÿ ∈ V ↦ if(𝑑 ∈ Fin, (π»β€˜(cardβ€˜π‘‘)), ((πΊβ€˜{𝑖 ∈ 𝑑 ∣ ((β—‘πΎβ€˜π‘–) ∈ ran 𝐺 ∧ Β¬ 𝑖 ∈ (β—‘πΊβ€˜(β—‘πΎβ€˜π‘–)))})β€˜βˆ© {𝑧 ∈ Ο‰ ∣ Β¬ ((πΊβ€˜{𝑖 ∈ 𝑑 ∣ ((β—‘πΎβ€˜π‘–) ∈ ran 𝐺 ∧ Β¬ 𝑖 ∈ (β—‘πΊβ€˜(β—‘πΎβ€˜π‘–)))})β€˜π‘§) ∈ 𝑑})))(𝑑 ∩ (𝑗 Γ— 𝑗))) = π‘š))}
142141fpwwe2cbv 10621 . 2 {βŸ¨π‘, π‘‘βŸ© ∣ ((𝑐 βŠ† 𝐴 ∧ 𝑑 βŠ† (𝑐 Γ— 𝑐)) ∧ (𝑑 We 𝑐 ∧ βˆ€π‘š ∈ 𝑐 [(◑𝑑 β€œ {π‘š}) / 𝑗](𝑗(𝑑 ∈ V, π‘Ÿ ∈ V ↦ if(𝑑 ∈ Fin, (π»β€˜(cardβ€˜π‘‘)), ((πΊβ€˜{𝑖 ∈ 𝑑 ∣ ((β—‘πΎβ€˜π‘–) ∈ ran 𝐺 ∧ Β¬ 𝑖 ∈ (β—‘πΊβ€˜(β—‘πΎβ€˜π‘–)))})β€˜βˆ© {𝑧 ∈ Ο‰ ∣ Β¬ ((πΊβ€˜{𝑖 ∈ 𝑑 ∣ ((β—‘πΎβ€˜π‘–) ∈ ran 𝐺 ∧ Β¬ 𝑖 ∈ (β—‘πΊβ€˜(β—‘πΎβ€˜π‘–)))})β€˜π‘§) ∈ 𝑑})))(𝑑 ∩ (𝑗 Γ— 𝑗))) = π‘š))} = {βŸ¨π‘Ž, π‘ βŸ© ∣ ((π‘Ž βŠ† 𝐴 ∧ 𝑠 βŠ† (π‘Ž Γ— π‘Ž)) ∧ (𝑠 We π‘Ž ∧ βˆ€π‘ ∈ π‘Ž [(◑𝑠 β€œ {𝑏}) / 𝑀](𝑀(𝑑 ∈ V, π‘Ÿ ∈ V ↦ if(𝑑 ∈ Fin, (π»β€˜(cardβ€˜π‘‘)), ((πΊβ€˜{𝑖 ∈ 𝑑 ∣ ((β—‘πΎβ€˜π‘–) ∈ ran 𝐺 ∧ Β¬ 𝑖 ∈ (β—‘πΊβ€˜(β—‘πΎβ€˜π‘–)))})β€˜βˆ© {𝑧 ∈ Ο‰ ∣ Β¬ ((πΊβ€˜{𝑖 ∈ 𝑑 ∣ ((β—‘πΎβ€˜π‘–) ∈ ran 𝐺 ∧ Β¬ 𝑖 ∈ (β—‘πΊβ€˜(β—‘πΎβ€˜π‘–)))})β€˜π‘§) ∈ 𝑑})))(𝑠 ∩ (𝑀 Γ— 𝑀))) = 𝑏))}
143 eqid 2732 . 2 βˆͺ dom {βŸ¨π‘, π‘‘βŸ© ∣ ((𝑐 βŠ† 𝐴 ∧ 𝑑 βŠ† (𝑐 Γ— 𝑐)) ∧ (𝑑 We 𝑐 ∧ βˆ€π‘š ∈ 𝑐 [(◑𝑑 β€œ {π‘š}) / 𝑗](𝑗(𝑑 ∈ V, π‘Ÿ ∈ V ↦ if(𝑑 ∈ Fin, (π»β€˜(cardβ€˜π‘‘)), ((πΊβ€˜{𝑖 ∈ 𝑑 ∣ ((β—‘πΎβ€˜π‘–) ∈ ran 𝐺 ∧ Β¬ 𝑖 ∈ (β—‘πΊβ€˜(β—‘πΎβ€˜π‘–)))})β€˜βˆ© {𝑧 ∈ Ο‰ ∣ Β¬ ((πΊβ€˜{𝑖 ∈ 𝑑 ∣ ((β—‘πΎβ€˜π‘–) ∈ ran 𝐺 ∧ Β¬ 𝑖 ∈ (β—‘πΊβ€˜(β—‘πΎβ€˜π‘–)))})β€˜π‘§) ∈ 𝑑})))(𝑑 ∩ (𝑗 Γ— 𝑗))) = π‘š))} = βˆͺ dom {βŸ¨π‘, π‘‘βŸ© ∣ ((𝑐 βŠ† 𝐴 ∧ 𝑑 βŠ† (𝑐 Γ— 𝑐)) ∧ (𝑑 We 𝑐 ∧ βˆ€π‘š ∈ 𝑐 [(◑𝑑 β€œ {π‘š}) / 𝑗](𝑗(𝑑 ∈ V, π‘Ÿ ∈ V ↦ if(𝑑 ∈ Fin, (π»β€˜(cardβ€˜π‘‘)), ((πΊβ€˜{𝑖 ∈ 𝑑 ∣ ((β—‘πΎβ€˜π‘–) ∈ ran 𝐺 ∧ Β¬ 𝑖 ∈ (β—‘πΊβ€˜(β—‘πΎβ€˜π‘–)))})β€˜βˆ© {𝑧 ∈ Ο‰ ∣ Β¬ ((πΊβ€˜{𝑖 ∈ 𝑑 ∣ ((β—‘πΎβ€˜π‘–) ∈ ran 𝐺 ∧ Β¬ 𝑖 ∈ (β—‘πΊβ€˜(β—‘πΎβ€˜π‘–)))})β€˜π‘§) ∈ 𝑑})))(𝑑 ∩ (𝑗 Γ— 𝑗))) = π‘š))}
1441, 2, 3, 4, 138, 139, 140, 142, 143pwfseqlem4 10653 1 Β¬ πœ‘
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  {crab 3432  Vcvv 3474  [wsbc 3776   ∩ cin 3946   βŠ† wss 3947  βˆ…c0 4321  ifcif 4527  π’« cpw 4601  {csn 4627  βŸ¨cop 4633  βˆͺ cuni 4907  βˆ© cint 4949  βˆͺ ciun 4996   class class class wbr 5147  {copab 5209   ↦ cmpt 5230   I cid 5572   E cep 5578   We wwe 5629   Γ— cxp 5673  β—‘ccnv 5674  dom cdm 5675  ran crn 5676   β†Ύ cres 5677   β€œ cima 5678   ∘ ccom 5679  Oncon0 6361  suc csuc 6363  βŸΆwf 6536  β€“1-1β†’wf1 6537  β€“1-1-ontoβ†’wf1o 6539  β€˜cfv 6540   Isom wiso 6541  (class class class)co 7405   ∈ cmpo 7407  Ο‰com 7851  seqΟ‰cseqom 8443   ↑m cmap 8816   β‰ˆ cen 8932   β‰Ό cdom 8933   β‰Ί csdm 8934  Fincfn 8935  OrdIsocoi 9500  harchar 9547  cardccrd 9926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-seqom 8444  df-1o 8462  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-oi 9501  df-har 9548  df-card 9930
This theorem is referenced by:  pwfseq  10655
  Copyright terms: Public domain W3C validator