MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwfseqlem5 Structured version   Visualization version   GIF version

Theorem pwfseqlem5 10260
Description: Lemma for pwfseq 10261. Although in some ways pwfseqlem4 10259 is the "main" part of the proof, one last aspect which makes up a remark in the original text is by far the hardest part to formalize. The main proof relies on the existence of an injection 𝐾 from the set of finite sequences on an infinite set 𝑥 to 𝑥. Now this alone would not be difficult to prove; this is mostly the claim of fseqen 9624. However, what is needed for the proof is a canonical injection on these sets, so we have to start from scratch pulling together explicit bijections from the lemmas.

If one attempts such a program, it will mostly go through, but there is one key step which is inherently nonconstructive, namely the proof of infxpen 9611. The resolution is not obvious, but it turns out that reversing an infinite ordinal's Cantor normal form absorbs all the non-leading terms (cnfcom3c 9310), which can be used to construct a pairing function explicitly using properties of the ordinal exponential (infxpenc 9615). (Contributed by Mario Carneiro, 31-May-2015.)

Hypotheses
Ref Expression
pwfseqlem5.g (𝜑𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛))
pwfseqlem5.x (𝜑𝑋𝐴)
pwfseqlem5.h (𝜑𝐻:ω–1-1-onto𝑋)
pwfseqlem5.ps (𝜓 ↔ ((𝑡𝐴𝑟 ⊆ (𝑡 × 𝑡) ∧ 𝑟 We 𝑡) ∧ ω ≼ 𝑡))
pwfseqlem5.n (𝜑 → ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑁𝑏):(𝑏 × 𝑏)–1-1-onto𝑏))
pwfseqlem5.o 𝑂 = OrdIso(𝑟, 𝑡)
pwfseqlem5.t 𝑇 = (𝑢 ∈ dom 𝑂, 𝑣 ∈ dom 𝑂 ↦ ⟨(𝑂𝑢), (𝑂𝑣)⟩)
pwfseqlem5.p 𝑃 = ((𝑂 ∘ (𝑁‘dom 𝑂)) ∘ 𝑇)
pwfseqlem5.s 𝑆 = seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝑡m suc 𝑘) ↦ ((𝑓‘(𝑥𝑘))𝑃(𝑥𝑘)))), {⟨∅, (𝑂‘∅)⟩})
pwfseqlem5.q 𝑄 = (𝑦 𝑛 ∈ ω (𝑡m 𝑛) ↦ ⟨dom 𝑦, ((𝑆‘dom 𝑦)‘𝑦)⟩)
pwfseqlem5.i 𝐼 = (𝑥 ∈ ω, 𝑦𝑡 ↦ ⟨(𝑂𝑥), 𝑦⟩)
pwfseqlem5.k 𝐾 = ((𝑃𝐼) ∘ 𝑄)
Assertion
Ref Expression
pwfseqlem5 ¬ 𝜑
Distinct variable groups:   𝑛,𝑏,𝐺   𝑟,𝑏,𝑡,𝐻   𝑓,𝑘,𝑥,𝑃   𝑓,𝑏,𝑘,𝑢,𝑣,𝑥,𝑦,𝑛,𝑟,𝑡   𝜑,𝑏,𝑘,𝑛,𝑟,𝑡,𝑥,𝑦   𝐾,𝑏,𝑛   𝑁,𝑏   𝜓,𝑘,𝑛,𝑥,𝑦   𝑆,𝑛,𝑦   𝐴,𝑏,𝑛,𝑟,𝑡   𝑂,𝑏,𝑢,𝑣,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑣,𝑢,𝑓)   𝜓(𝑣,𝑢,𝑡,𝑓,𝑟,𝑏)   𝐴(𝑥,𝑦,𝑣,𝑢,𝑓,𝑘)   𝑃(𝑦,𝑣,𝑢,𝑡,𝑛,𝑟,𝑏)   𝑄(𝑥,𝑦,𝑣,𝑢,𝑡,𝑓,𝑘,𝑛,𝑟,𝑏)   𝑆(𝑥,𝑣,𝑢,𝑡,𝑓,𝑘,𝑟,𝑏)   𝑇(𝑥,𝑦,𝑣,𝑢,𝑡,𝑓,𝑘,𝑛,𝑟,𝑏)   𝐺(𝑥,𝑦,𝑣,𝑢,𝑡,𝑓,𝑘,𝑟)   𝐻(𝑥,𝑦,𝑣,𝑢,𝑓,𝑘,𝑛)   𝐼(𝑥,𝑦,𝑣,𝑢,𝑡,𝑓,𝑘,𝑛,𝑟,𝑏)   𝐾(𝑥,𝑦,𝑣,𝑢,𝑡,𝑓,𝑘,𝑟)   𝑁(𝑥,𝑦,𝑣,𝑢,𝑡,𝑓,𝑘,𝑛,𝑟)   𝑂(𝑡,𝑓,𝑘,𝑛,𝑟)   𝑋(𝑥,𝑦,𝑣,𝑢,𝑡,𝑓,𝑘,𝑛,𝑟,𝑏)

Proof of Theorem pwfseqlem5
Dummy variables 𝑎 𝑐 𝑑 𝑖 𝑗 𝑚 𝑠 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwfseqlem5.g . 2 (𝜑𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛))
2 pwfseqlem5.x . 2 (𝜑𝑋𝐴)
3 pwfseqlem5.h . 2 (𝜑𝐻:ω–1-1-onto𝑋)
4 pwfseqlem5.ps . 2 (𝜓 ↔ ((𝑡𝐴𝑟 ⊆ (𝑡 × 𝑡) ∧ 𝑟 We 𝑡) ∧ ω ≼ 𝑡))
5 vex 3405 . . . . . . . . . . 11 𝑡 ∈ V
6 simprl3 1222 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑡𝐴𝑟 ⊆ (𝑡 × 𝑡) ∧ 𝑟 We 𝑡) ∧ ω ≼ 𝑡)) → 𝑟 We 𝑡)
74, 6sylan2b 597 . . . . . . . . . . 11 ((𝜑𝜓) → 𝑟 We 𝑡)
8 pwfseqlem5.o . . . . . . . . . . . 12 𝑂 = OrdIso(𝑟, 𝑡)
98oiiso 9142 . . . . . . . . . . 11 ((𝑡 ∈ V ∧ 𝑟 We 𝑡) → 𝑂 Isom E , 𝑟 (dom 𝑂, 𝑡))
105, 7, 9sylancr 590 . . . . . . . . . 10 ((𝜑𝜓) → 𝑂 Isom E , 𝑟 (dom 𝑂, 𝑡))
11 isof1o 7121 . . . . . . . . . 10 (𝑂 Isom E , 𝑟 (dom 𝑂, 𝑡) → 𝑂:dom 𝑂1-1-onto𝑡)
1210, 11syl 17 . . . . . . . . 9 ((𝜑𝜓) → 𝑂:dom 𝑂1-1-onto𝑡)
13 cardom 9585 . . . . . . . . . . . 12 (card‘ω) = ω
14 simprr 773 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑡𝐴𝑟 ⊆ (𝑡 × 𝑡) ∧ 𝑟 We 𝑡) ∧ ω ≼ 𝑡)) → ω ≼ 𝑡)
154, 14sylan2b 597 . . . . . . . . . . . . . 14 ((𝜑𝜓) → ω ≼ 𝑡)
168oien 9143 . . . . . . . . . . . . . . . 16 ((𝑡 ∈ V ∧ 𝑟 We 𝑡) → dom 𝑂𝑡)
175, 7, 16sylancr 590 . . . . . . . . . . . . . . 15 ((𝜑𝜓) → dom 𝑂𝑡)
1817ensymd 8668 . . . . . . . . . . . . . 14 ((𝜑𝜓) → 𝑡 ≈ dom 𝑂)
19 domentr 8676 . . . . . . . . . . . . . 14 ((ω ≼ 𝑡𝑡 ≈ dom 𝑂) → ω ≼ dom 𝑂)
2015, 18, 19syl2anc 587 . . . . . . . . . . . . 13 ((𝜑𝜓) → ω ≼ dom 𝑂)
21 omelon 9250 . . . . . . . . . . . . . . 15 ω ∈ On
22 onenon 9548 . . . . . . . . . . . . . . 15 (ω ∈ On → ω ∈ dom card)
2321, 22ax-mp 5 . . . . . . . . . . . . . 14 ω ∈ dom card
248oion 9141 . . . . . . . . . . . . . . . 16 (𝑡 ∈ V → dom 𝑂 ∈ On)
2524elv 3407 . . . . . . . . . . . . . . 15 dom 𝑂 ∈ On
26 onenon 9548 . . . . . . . . . . . . . . 15 (dom 𝑂 ∈ On → dom 𝑂 ∈ dom card)
2725, 26mp1i 13 . . . . . . . . . . . . . 14 ((𝜑𝜓) → dom 𝑂 ∈ dom card)
28 carddom2 9576 . . . . . . . . . . . . . 14 ((ω ∈ dom card ∧ dom 𝑂 ∈ dom card) → ((card‘ω) ⊆ (card‘dom 𝑂) ↔ ω ≼ dom 𝑂))
2923, 27, 28sylancr 590 . . . . . . . . . . . . 13 ((𝜑𝜓) → ((card‘ω) ⊆ (card‘dom 𝑂) ↔ ω ≼ dom 𝑂))
3020, 29mpbird 260 . . . . . . . . . . . 12 ((𝜑𝜓) → (card‘ω) ⊆ (card‘dom 𝑂))
3113, 30eqsstrrid 3940 . . . . . . . . . . 11 ((𝜑𝜓) → ω ⊆ (card‘dom 𝑂))
32 cardonle 9556 . . . . . . . . . . . 12 (dom 𝑂 ∈ On → (card‘dom 𝑂) ⊆ dom 𝑂)
3325, 32mp1i 13 . . . . . . . . . . 11 ((𝜑𝜓) → (card‘dom 𝑂) ⊆ dom 𝑂)
3431, 33sstrd 3901 . . . . . . . . . 10 ((𝜑𝜓) → ω ⊆ dom 𝑂)
35 sseq2 3917 . . . . . . . . . . . 12 (𝑏 = dom 𝑂 → (ω ⊆ 𝑏 ↔ ω ⊆ dom 𝑂))
36 fveq2 6706 . . . . . . . . . . . . . 14 (𝑏 = dom 𝑂 → (𝑁𝑏) = (𝑁‘dom 𝑂))
3736f1oeq1d 6645 . . . . . . . . . . . . 13 (𝑏 = dom 𝑂 → ((𝑁𝑏):(𝑏 × 𝑏)–1-1-onto𝑏 ↔ (𝑁‘dom 𝑂):(𝑏 × 𝑏)–1-1-onto𝑏))
38 xpeq12 5565 . . . . . . . . . . . . . . 15 ((𝑏 = dom 𝑂𝑏 = dom 𝑂) → (𝑏 × 𝑏) = (dom 𝑂 × dom 𝑂))
3938anidms 570 . . . . . . . . . . . . . 14 (𝑏 = dom 𝑂 → (𝑏 × 𝑏) = (dom 𝑂 × dom 𝑂))
4039f1oeq2d 6646 . . . . . . . . . . . . 13 (𝑏 = dom 𝑂 → ((𝑁‘dom 𝑂):(𝑏 × 𝑏)–1-1-onto𝑏 ↔ (𝑁‘dom 𝑂):(dom 𝑂 × dom 𝑂)–1-1-onto𝑏))
41 f1oeq3 6640 . . . . . . . . . . . . 13 (𝑏 = dom 𝑂 → ((𝑁‘dom 𝑂):(dom 𝑂 × dom 𝑂)–1-1-onto𝑏 ↔ (𝑁‘dom 𝑂):(dom 𝑂 × dom 𝑂)–1-1-onto→dom 𝑂))
4237, 40, 413bitrd 308 . . . . . . . . . . . 12 (𝑏 = dom 𝑂 → ((𝑁𝑏):(𝑏 × 𝑏)–1-1-onto𝑏 ↔ (𝑁‘dom 𝑂):(dom 𝑂 × dom 𝑂)–1-1-onto→dom 𝑂))
4335, 42imbi12d 348 . . . . . . . . . . 11 (𝑏 = dom 𝑂 → ((ω ⊆ 𝑏 → (𝑁𝑏):(𝑏 × 𝑏)–1-1-onto𝑏) ↔ (ω ⊆ dom 𝑂 → (𝑁‘dom 𝑂):(dom 𝑂 × dom 𝑂)–1-1-onto→dom 𝑂)))
44 pwfseqlem5.n . . . . . . . . . . . 12 (𝜑 → ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑁𝑏):(𝑏 × 𝑏)–1-1-onto𝑏))
4544adantr 484 . . . . . . . . . . 11 ((𝜑𝜓) → ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑁𝑏):(𝑏 × 𝑏)–1-1-onto𝑏))
4625a1i 11 . . . . . . . . . . . 12 ((𝜑𝜓) → dom 𝑂 ∈ On)
471adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝜓) → 𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛))
48 omex 9247 . . . . . . . . . . . . . . . . . 18 ω ∈ V
49 ovex 7235 . . . . . . . . . . . . . . . . . 18 (𝐴m 𝑛) ∈ V
5048, 49iunex 7730 . . . . . . . . . . . . . . . . 17 𝑛 ∈ ω (𝐴m 𝑛) ∈ V
51 f1dmex 7719 . . . . . . . . . . . . . . . . 17 ((𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛) ∧ 𝑛 ∈ ω (𝐴m 𝑛) ∈ V) → 𝒫 𝐴 ∈ V)
5247, 50, 51sylancl 589 . . . . . . . . . . . . . . . 16 ((𝜑𝜓) → 𝒫 𝐴 ∈ V)
53 pwexb 7540 . . . . . . . . . . . . . . . 16 (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V)
5452, 53sylibr 237 . . . . . . . . . . . . . . 15 ((𝜑𝜓) → 𝐴 ∈ V)
55 simprl1 1220 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑡𝐴𝑟 ⊆ (𝑡 × 𝑡) ∧ 𝑟 We 𝑡) ∧ ω ≼ 𝑡)) → 𝑡𝐴)
564, 55sylan2b 597 . . . . . . . . . . . . . . 15 ((𝜑𝜓) → 𝑡𝐴)
57 ssdomg 8663 . . . . . . . . . . . . . . 15 (𝐴 ∈ V → (𝑡𝐴𝑡𝐴))
5854, 56, 57sylc 65 . . . . . . . . . . . . . 14 ((𝜑𝜓) → 𝑡𝐴)
59 canth2g 8789 . . . . . . . . . . . . . . 15 (𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴)
60 sdomdom 8645 . . . . . . . . . . . . . . 15 (𝐴 ≺ 𝒫 𝐴𝐴 ≼ 𝒫 𝐴)
6154, 59, 603syl 18 . . . . . . . . . . . . . 14 ((𝜑𝜓) → 𝐴 ≼ 𝒫 𝐴)
62 domtr 8670 . . . . . . . . . . . . . 14 ((𝑡𝐴𝐴 ≼ 𝒫 𝐴) → 𝑡 ≼ 𝒫 𝐴)
6358, 61, 62syl2anc 587 . . . . . . . . . . . . 13 ((𝜑𝜓) → 𝑡 ≼ 𝒫 𝐴)
64 endomtr 8675 . . . . . . . . . . . . 13 ((dom 𝑂𝑡𝑡 ≼ 𝒫 𝐴) → dom 𝑂 ≼ 𝒫 𝐴)
6517, 63, 64syl2anc 587 . . . . . . . . . . . 12 ((𝜑𝜓) → dom 𝑂 ≼ 𝒫 𝐴)
66 elharval 9166 . . . . . . . . . . . 12 (dom 𝑂 ∈ (har‘𝒫 𝐴) ↔ (dom 𝑂 ∈ On ∧ dom 𝑂 ≼ 𝒫 𝐴))
6746, 65, 66sylanbrc 586 . . . . . . . . . . 11 ((𝜑𝜓) → dom 𝑂 ∈ (har‘𝒫 𝐴))
6843, 45, 67rspcdva 3532 . . . . . . . . . 10 ((𝜑𝜓) → (ω ⊆ dom 𝑂 → (𝑁‘dom 𝑂):(dom 𝑂 × dom 𝑂)–1-1-onto→dom 𝑂))
6934, 68mpd 15 . . . . . . . . 9 ((𝜑𝜓) → (𝑁‘dom 𝑂):(dom 𝑂 × dom 𝑂)–1-1-onto→dom 𝑂)
70 f1oco 6672 . . . . . . . . 9 ((𝑂:dom 𝑂1-1-onto𝑡 ∧ (𝑁‘dom 𝑂):(dom 𝑂 × dom 𝑂)–1-1-onto→dom 𝑂) → (𝑂 ∘ (𝑁‘dom 𝑂)):(dom 𝑂 × dom 𝑂)–1-1-onto𝑡)
7112, 69, 70syl2anc 587 . . . . . . . 8 ((𝜑𝜓) → (𝑂 ∘ (𝑁‘dom 𝑂)):(dom 𝑂 × dom 𝑂)–1-1-onto𝑡)
72 f1of 6650 . . . . . . . . . . . . . . 15 (𝑂:dom 𝑂1-1-onto𝑡𝑂:dom 𝑂𝑡)
7312, 72syl 17 . . . . . . . . . . . . . 14 ((𝜑𝜓) → 𝑂:dom 𝑂𝑡)
7473feqmptd 6769 . . . . . . . . . . . . 13 ((𝜑𝜓) → 𝑂 = (𝑢 ∈ dom 𝑂 ↦ (𝑂𝑢)))
7574f1oeq1d 6645 . . . . . . . . . . . 12 ((𝜑𝜓) → (𝑂:dom 𝑂1-1-onto𝑡 ↔ (𝑢 ∈ dom 𝑂 ↦ (𝑂𝑢)):dom 𝑂1-1-onto𝑡))
7612, 75mpbid 235 . . . . . . . . . . 11 ((𝜑𝜓) → (𝑢 ∈ dom 𝑂 ↦ (𝑂𝑢)):dom 𝑂1-1-onto𝑡)
7773feqmptd 6769 . . . . . . . . . . . . 13 ((𝜑𝜓) → 𝑂 = (𝑣 ∈ dom 𝑂 ↦ (𝑂𝑣)))
7877f1oeq1d 6645 . . . . . . . . . . . 12 ((𝜑𝜓) → (𝑂:dom 𝑂1-1-onto𝑡 ↔ (𝑣 ∈ dom 𝑂 ↦ (𝑂𝑣)):dom 𝑂1-1-onto𝑡))
7912, 78mpbid 235 . . . . . . . . . . 11 ((𝜑𝜓) → (𝑣 ∈ dom 𝑂 ↦ (𝑂𝑣)):dom 𝑂1-1-onto𝑡)
8076, 79xpf1o 8797 . . . . . . . . . 10 ((𝜑𝜓) → (𝑢 ∈ dom 𝑂, 𝑣 ∈ dom 𝑂 ↦ ⟨(𝑂𝑢), (𝑂𝑣)⟩):(dom 𝑂 × dom 𝑂)–1-1-onto→(𝑡 × 𝑡))
81 pwfseqlem5.t . . . . . . . . . . 11 𝑇 = (𝑢 ∈ dom 𝑂, 𝑣 ∈ dom 𝑂 ↦ ⟨(𝑂𝑢), (𝑂𝑣)⟩)
82 f1oeq1 6638 . . . . . . . . . . 11 (𝑇 = (𝑢 ∈ dom 𝑂, 𝑣 ∈ dom 𝑂 ↦ ⟨(𝑂𝑢), (𝑂𝑣)⟩) → (𝑇:(dom 𝑂 × dom 𝑂)–1-1-onto→(𝑡 × 𝑡) ↔ (𝑢 ∈ dom 𝑂, 𝑣 ∈ dom 𝑂 ↦ ⟨(𝑂𝑢), (𝑂𝑣)⟩):(dom 𝑂 × dom 𝑂)–1-1-onto→(𝑡 × 𝑡)))
8381, 82ax-mp 5 . . . . . . . . . 10 (𝑇:(dom 𝑂 × dom 𝑂)–1-1-onto→(𝑡 × 𝑡) ↔ (𝑢 ∈ dom 𝑂, 𝑣 ∈ dom 𝑂 ↦ ⟨(𝑂𝑢), (𝑂𝑣)⟩):(dom 𝑂 × dom 𝑂)–1-1-onto→(𝑡 × 𝑡))
8480, 83sylibr 237 . . . . . . . . 9 ((𝜑𝜓) → 𝑇:(dom 𝑂 × dom 𝑂)–1-1-onto→(𝑡 × 𝑡))
85 f1ocnv 6662 . . . . . . . . 9 (𝑇:(dom 𝑂 × dom 𝑂)–1-1-onto→(𝑡 × 𝑡) → 𝑇:(𝑡 × 𝑡)–1-1-onto→(dom 𝑂 × dom 𝑂))
8684, 85syl 17 . . . . . . . 8 ((𝜑𝜓) → 𝑇:(𝑡 × 𝑡)–1-1-onto→(dom 𝑂 × dom 𝑂))
87 f1oco 6672 . . . . . . . 8 (((𝑂 ∘ (𝑁‘dom 𝑂)):(dom 𝑂 × dom 𝑂)–1-1-onto𝑡𝑇:(𝑡 × 𝑡)–1-1-onto→(dom 𝑂 × dom 𝑂)) → ((𝑂 ∘ (𝑁‘dom 𝑂)) ∘ 𝑇):(𝑡 × 𝑡)–1-1-onto𝑡)
8871, 86, 87syl2anc 587 . . . . . . 7 ((𝜑𝜓) → ((𝑂 ∘ (𝑁‘dom 𝑂)) ∘ 𝑇):(𝑡 × 𝑡)–1-1-onto𝑡)
89 pwfseqlem5.p . . . . . . . 8 𝑃 = ((𝑂 ∘ (𝑁‘dom 𝑂)) ∘ 𝑇)
90 f1oeq1 6638 . . . . . . . 8 (𝑃 = ((𝑂 ∘ (𝑁‘dom 𝑂)) ∘ 𝑇) → (𝑃:(𝑡 × 𝑡)–1-1-onto𝑡 ↔ ((𝑂 ∘ (𝑁‘dom 𝑂)) ∘ 𝑇):(𝑡 × 𝑡)–1-1-onto𝑡))
9189, 90ax-mp 5 . . . . . . 7 (𝑃:(𝑡 × 𝑡)–1-1-onto𝑡 ↔ ((𝑂 ∘ (𝑁‘dom 𝑂)) ∘ 𝑇):(𝑡 × 𝑡)–1-1-onto𝑡)
9288, 91sylibr 237 . . . . . 6 ((𝜑𝜓) → 𝑃:(𝑡 × 𝑡)–1-1-onto𝑡)
93 f1of1 6649 . . . . . 6 (𝑃:(𝑡 × 𝑡)–1-1-onto𝑡𝑃:(𝑡 × 𝑡)–1-1𝑡)
9492, 93syl 17 . . . . 5 ((𝜑𝜓) → 𝑃:(𝑡 × 𝑡)–1-1𝑡)
95 f1of1 6649 . . . . . . . . . . . . 13 (𝑂:dom 𝑂1-1-onto𝑡𝑂:dom 𝑂1-1𝑡)
9612, 95syl 17 . . . . . . . . . . . 12 ((𝜑𝜓) → 𝑂:dom 𝑂1-1𝑡)
97 f1ssres 6612 . . . . . . . . . . . 12 ((𝑂:dom 𝑂1-1𝑡 ∧ ω ⊆ dom 𝑂) → (𝑂 ↾ ω):ω–1-1𝑡)
9896, 34, 97syl2anc 587 . . . . . . . . . . 11 ((𝜑𝜓) → (𝑂 ↾ ω):ω–1-1𝑡)
99 f1f1orn 6661 . . . . . . . . . . 11 ((𝑂 ↾ ω):ω–1-1𝑡 → (𝑂 ↾ ω):ω–1-1-onto→ran (𝑂 ↾ ω))
10098, 99syl 17 . . . . . . . . . 10 ((𝜑𝜓) → (𝑂 ↾ ω):ω–1-1-onto→ran (𝑂 ↾ ω))
10173, 34feqresmpt 6770 . . . . . . . . . . 11 ((𝜑𝜓) → (𝑂 ↾ ω) = (𝑥 ∈ ω ↦ (𝑂𝑥)))
102101f1oeq1d 6645 . . . . . . . . . 10 ((𝜑𝜓) → ((𝑂 ↾ ω):ω–1-1-onto→ran (𝑂 ↾ ω) ↔ (𝑥 ∈ ω ↦ (𝑂𝑥)):ω–1-1-onto→ran (𝑂 ↾ ω)))
103100, 102mpbid 235 . . . . . . . . 9 ((𝜑𝜓) → (𝑥 ∈ ω ↦ (𝑂𝑥)):ω–1-1-onto→ran (𝑂 ↾ ω))
104 mptresid 5907 . . . . . . . . . . 11 ( I ↾ 𝑡) = (𝑦𝑡𝑦)
105104eqcomi 2743 . . . . . . . . . 10 (𝑦𝑡𝑦) = ( I ↾ 𝑡)
106 f1oi 6687 . . . . . . . . . . 11 ( I ↾ 𝑡):𝑡1-1-onto𝑡
107 f1oeq1 6638 . . . . . . . . . . 11 ((𝑦𝑡𝑦) = ( I ↾ 𝑡) → ((𝑦𝑡𝑦):𝑡1-1-onto𝑡 ↔ ( I ↾ 𝑡):𝑡1-1-onto𝑡))
108106, 107mpbiri 261 . . . . . . . . . 10 ((𝑦𝑡𝑦) = ( I ↾ 𝑡) → (𝑦𝑡𝑦):𝑡1-1-onto𝑡)
109105, 108mp1i 13 . . . . . . . . 9 ((𝜑𝜓) → (𝑦𝑡𝑦):𝑡1-1-onto𝑡)
110103, 109xpf1o 8797 . . . . . . . 8 ((𝜑𝜓) → (𝑥 ∈ ω, 𝑦𝑡 ↦ ⟨(𝑂𝑥), 𝑦⟩):(ω × 𝑡)–1-1-onto→(ran (𝑂 ↾ ω) × 𝑡))
111 pwfseqlem5.i . . . . . . . . 9 𝐼 = (𝑥 ∈ ω, 𝑦𝑡 ↦ ⟨(𝑂𝑥), 𝑦⟩)
112 f1oeq1 6638 . . . . . . . . 9 (𝐼 = (𝑥 ∈ ω, 𝑦𝑡 ↦ ⟨(𝑂𝑥), 𝑦⟩) → (𝐼:(ω × 𝑡)–1-1-onto→(ran (𝑂 ↾ ω) × 𝑡) ↔ (𝑥 ∈ ω, 𝑦𝑡 ↦ ⟨(𝑂𝑥), 𝑦⟩):(ω × 𝑡)–1-1-onto→(ran (𝑂 ↾ ω) × 𝑡)))
113111, 112ax-mp 5 . . . . . . . 8 (𝐼:(ω × 𝑡)–1-1-onto→(ran (𝑂 ↾ ω) × 𝑡) ↔ (𝑥 ∈ ω, 𝑦𝑡 ↦ ⟨(𝑂𝑥), 𝑦⟩):(ω × 𝑡)–1-1-onto→(ran (𝑂 ↾ ω) × 𝑡))
114110, 113sylibr 237 . . . . . . 7 ((𝜑𝜓) → 𝐼:(ω × 𝑡)–1-1-onto→(ran (𝑂 ↾ ω) × 𝑡))
115 f1of1 6649 . . . . . . 7 (𝐼:(ω × 𝑡)–1-1-onto→(ran (𝑂 ↾ ω) × 𝑡) → 𝐼:(ω × 𝑡)–1-1→(ran (𝑂 ↾ ω) × 𝑡))
116114, 115syl 17 . . . . . 6 ((𝜑𝜓) → 𝐼:(ω × 𝑡)–1-1→(ran (𝑂 ↾ ω) × 𝑡))
117 f1f 6604 . . . . . . 7 ((𝑂 ↾ ω):ω–1-1𝑡 → (𝑂 ↾ ω):ω⟶𝑡)
118 frn 6541 . . . . . . 7 ((𝑂 ↾ ω):ω⟶𝑡 → ran (𝑂 ↾ ω) ⊆ 𝑡)
119 xpss1 5559 . . . . . . 7 (ran (𝑂 ↾ ω) ⊆ 𝑡 → (ran (𝑂 ↾ ω) × 𝑡) ⊆ (𝑡 × 𝑡))
12098, 117, 118, 1194syl 19 . . . . . 6 ((𝜑𝜓) → (ran (𝑂 ↾ ω) × 𝑡) ⊆ (𝑡 × 𝑡))
121 f1ss 6610 . . . . . 6 ((𝐼:(ω × 𝑡)–1-1→(ran (𝑂 ↾ ω) × 𝑡) ∧ (ran (𝑂 ↾ ω) × 𝑡) ⊆ (𝑡 × 𝑡)) → 𝐼:(ω × 𝑡)–1-1→(𝑡 × 𝑡))
122116, 120, 121syl2anc 587 . . . . 5 ((𝜑𝜓) → 𝐼:(ω × 𝑡)–1-1→(𝑡 × 𝑡))
123 f1co 6616 . . . . 5 ((𝑃:(𝑡 × 𝑡)–1-1𝑡𝐼:(ω × 𝑡)–1-1→(𝑡 × 𝑡)) → (𝑃𝐼):(ω × 𝑡)–1-1𝑡)
12494, 122, 123syl2anc 587 . . . 4 ((𝜑𝜓) → (𝑃𝐼):(ω × 𝑡)–1-1𝑡)
1255a1i 11 . . . . 5 ((𝜑𝜓) → 𝑡 ∈ V)
126 peano1 7656 . . . . . . . 8 ∅ ∈ ω
127126a1i 11 . . . . . . 7 ((𝜑𝜓) → ∅ ∈ ω)
12834, 127sseldd 3892 . . . . . 6 ((𝜑𝜓) → ∅ ∈ dom 𝑂)
12973, 128ffvelrnd 6894 . . . . 5 ((𝜑𝜓) → (𝑂‘∅) ∈ 𝑡)
130 pwfseqlem5.s . . . . 5 𝑆 = seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝑡m suc 𝑘) ↦ ((𝑓‘(𝑥𝑘))𝑃(𝑥𝑘)))), {⟨∅, (𝑂‘∅)⟩})
131 pwfseqlem5.q . . . . 5 𝑄 = (𝑦 𝑛 ∈ ω (𝑡m 𝑛) ↦ ⟨dom 𝑦, ((𝑆‘dom 𝑦)‘𝑦)⟩)
132125, 129, 92, 130, 131fseqenlem2 9622 . . . 4 ((𝜑𝜓) → 𝑄: 𝑛 ∈ ω (𝑡m 𝑛)–1-1→(ω × 𝑡))
133 f1co 6616 . . . 4 (((𝑃𝐼):(ω × 𝑡)–1-1𝑡𝑄: 𝑛 ∈ ω (𝑡m 𝑛)–1-1→(ω × 𝑡)) → ((𝑃𝐼) ∘ 𝑄): 𝑛 ∈ ω (𝑡m 𝑛)–1-1𝑡)
134124, 132, 133syl2anc 587 . . 3 ((𝜑𝜓) → ((𝑃𝐼) ∘ 𝑄): 𝑛 ∈ ω (𝑡m 𝑛)–1-1𝑡)
135 pwfseqlem5.k . . . 4 𝐾 = ((𝑃𝐼) ∘ 𝑄)
136 f1eq1 6599 . . . 4 (𝐾 = ((𝑃𝐼) ∘ 𝑄) → (𝐾: 𝑛 ∈ ω (𝑡m 𝑛)–1-1𝑡 ↔ ((𝑃𝐼) ∘ 𝑄): 𝑛 ∈ ω (𝑡m 𝑛)–1-1𝑡))
137135, 136ax-mp 5 . . 3 (𝐾: 𝑛 ∈ ω (𝑡m 𝑛)–1-1𝑡 ↔ ((𝑃𝐼) ∘ 𝑄): 𝑛 ∈ ω (𝑡m 𝑛)–1-1𝑡)
138134, 137sylibr 237 . 2 ((𝜑𝜓) → 𝐾: 𝑛 ∈ ω (𝑡m 𝑛)–1-1𝑡)
139 eqid 2734 . 2 (𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))}) = (𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})
140 eqid 2734 . 2 (𝑡 ∈ V, 𝑟 ∈ V ↦ if(𝑡 ∈ Fin, (𝐻‘(card‘𝑡)), ((𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})‘ {𝑧 ∈ ω ∣ ¬ ((𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})‘𝑧) ∈ 𝑡}))) = (𝑡 ∈ V, 𝑟 ∈ V ↦ if(𝑡 ∈ Fin, (𝐻‘(card‘𝑡)), ((𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})‘ {𝑧 ∈ ω ∣ ¬ ((𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})‘𝑧) ∈ 𝑡})))
141 eqid 2734 . . 3 {⟨𝑐, 𝑑⟩ ∣ ((𝑐𝐴𝑑 ⊆ (𝑐 × 𝑐)) ∧ (𝑑 We 𝑐 ∧ ∀𝑚𝑐 [(𝑑 “ {𝑚}) / 𝑗](𝑗(𝑡 ∈ V, 𝑟 ∈ V ↦ if(𝑡 ∈ Fin, (𝐻‘(card‘𝑡)), ((𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})‘ {𝑧 ∈ ω ∣ ¬ ((𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})‘𝑧) ∈ 𝑡})))(𝑑 ∩ (𝑗 × 𝑗))) = 𝑚))} = {⟨𝑐, 𝑑⟩ ∣ ((𝑐𝐴𝑑 ⊆ (𝑐 × 𝑐)) ∧ (𝑑 We 𝑐 ∧ ∀𝑚𝑐 [(𝑑 “ {𝑚}) / 𝑗](𝑗(𝑡 ∈ V, 𝑟 ∈ V ↦ if(𝑡 ∈ Fin, (𝐻‘(card‘𝑡)), ((𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})‘ {𝑧 ∈ ω ∣ ¬ ((𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})‘𝑧) ∈ 𝑡})))(𝑑 ∩ (𝑗 × 𝑗))) = 𝑚))}
142141fpwwe2cbv 10227 . 2 {⟨𝑐, 𝑑⟩ ∣ ((𝑐𝐴𝑑 ⊆ (𝑐 × 𝑐)) ∧ (𝑑 We 𝑐 ∧ ∀𝑚𝑐 [(𝑑 “ {𝑚}) / 𝑗](𝑗(𝑡 ∈ V, 𝑟 ∈ V ↦ if(𝑡 ∈ Fin, (𝐻‘(card‘𝑡)), ((𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})‘ {𝑧 ∈ ω ∣ ¬ ((𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})‘𝑧) ∈ 𝑡})))(𝑑 ∩ (𝑗 × 𝑗))) = 𝑚))} = {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑏𝑎 [(𝑠 “ {𝑏}) / 𝑤](𝑤(𝑡 ∈ V, 𝑟 ∈ V ↦ if(𝑡 ∈ Fin, (𝐻‘(card‘𝑡)), ((𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})‘ {𝑧 ∈ ω ∣ ¬ ((𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})‘𝑧) ∈ 𝑡})))(𝑠 ∩ (𝑤 × 𝑤))) = 𝑏))}
143 eqid 2734 . 2 dom {⟨𝑐, 𝑑⟩ ∣ ((𝑐𝐴𝑑 ⊆ (𝑐 × 𝑐)) ∧ (𝑑 We 𝑐 ∧ ∀𝑚𝑐 [(𝑑 “ {𝑚}) / 𝑗](𝑗(𝑡 ∈ V, 𝑟 ∈ V ↦ if(𝑡 ∈ Fin, (𝐻‘(card‘𝑡)), ((𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})‘ {𝑧 ∈ ω ∣ ¬ ((𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})‘𝑧) ∈ 𝑡})))(𝑑 ∩ (𝑗 × 𝑗))) = 𝑚))} = dom {⟨𝑐, 𝑑⟩ ∣ ((𝑐𝐴𝑑 ⊆ (𝑐 × 𝑐)) ∧ (𝑑 We 𝑐 ∧ ∀𝑚𝑐 [(𝑑 “ {𝑚}) / 𝑗](𝑗(𝑡 ∈ V, 𝑟 ∈ V ↦ if(𝑡 ∈ Fin, (𝐻‘(card‘𝑡)), ((𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})‘ {𝑧 ∈ ω ∣ ¬ ((𝐺‘{𝑖𝑡 ∣ ((𝐾𝑖) ∈ ran 𝐺 ∧ ¬ 𝑖 ∈ (𝐺‘(𝐾𝑖)))})‘𝑧) ∈ 𝑡})))(𝑑 ∩ (𝑗 × 𝑗))) = 𝑚))}
1441, 2, 3, 4, 138, 139, 140, 142, 143pwfseqlem4 10259 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wral 3054  {crab 3058  Vcvv 3401  [wsbc 3687  cin 3856  wss 3857  c0 4227  ifcif 4429  𝒫 cpw 4503  {csn 4531  cop 4537   cuni 4809   cint 4849   ciun 4894   class class class wbr 5043  {copab 5105  cmpt 5124   I cid 5443   E cep 5448   We wwe 5497   × cxp 5538  ccnv 5539  dom cdm 5540  ran crn 5541  cres 5542  cima 5543  ccom 5544  Oncon0 6202  suc csuc 6204  wf 6365  1-1wf1 6366  1-1-ontowf1o 6368  cfv 6369   Isom wiso 6370  (class class class)co 7202  cmpo 7204  ωcom 7633  seqωcseqom 8172  m cmap 8497  cen 8612  cdom 8613  csdm 8614  Fincfn 8615  OrdIsocoi 9114  harchar 9161  cardccrd 9534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-inf2 9245
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-se 5499  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-isom 6378  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-seqom 8173  df-1o 8191  df-er 8380  df-map 8499  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-oi 9115  df-har 9162  df-card 9538
This theorem is referenced by:  pwfseq  10261
  Copyright terms: Public domain W3C validator