| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isfin1-2 | Structured version Visualization version GIF version | ||
| Description: A set is finite in the usual sense iff the power set of its power set is Dedekind finite. (Contributed by Stefan O'Rear, 3-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
| Ref | Expression |
|---|---|
| isfin1-2 | ⊢ (𝐴 ∈ Fin ↔ 𝒫 𝒫 𝐴 ∈ FinIV) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3468 | . 2 ⊢ (𝐴 ∈ Fin → 𝐴 ∈ V) | |
| 2 | elex 3468 | . . 3 ⊢ (𝒫 𝒫 𝐴 ∈ FinIV → 𝒫 𝒫 𝐴 ∈ V) | |
| 3 | pwexb 7742 | . . . 4 ⊢ (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V) | |
| 4 | pwexb 7742 | . . . 4 ⊢ (𝒫 𝐴 ∈ V ↔ 𝒫 𝒫 𝐴 ∈ V) | |
| 5 | 3, 4 | bitri 275 | . . 3 ⊢ (𝐴 ∈ V ↔ 𝒫 𝒫 𝐴 ∈ V) |
| 6 | 2, 5 | sylibr 234 | . 2 ⊢ (𝒫 𝒫 𝐴 ∈ FinIV → 𝐴 ∈ V) |
| 7 | ominf 9205 | . . . . . 6 ⊢ ¬ ω ∈ Fin | |
| 8 | pwfi 9268 | . . . . . . . 8 ⊢ (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin) | |
| 9 | pwfi 9268 | . . . . . . . 8 ⊢ (𝒫 𝐴 ∈ Fin ↔ 𝒫 𝒫 𝐴 ∈ Fin) | |
| 10 | 8, 9 | bitri 275 | . . . . . . 7 ⊢ (𝐴 ∈ Fin ↔ 𝒫 𝒫 𝐴 ∈ Fin) |
| 11 | domfi 9153 | . . . . . . . 8 ⊢ ((𝒫 𝒫 𝐴 ∈ Fin ∧ ω ≼ 𝒫 𝒫 𝐴) → ω ∈ Fin) | |
| 12 | 11 | expcom 413 | . . . . . . 7 ⊢ (ω ≼ 𝒫 𝒫 𝐴 → (𝒫 𝒫 𝐴 ∈ Fin → ω ∈ Fin)) |
| 13 | 10, 12 | biimtrid 242 | . . . . . 6 ⊢ (ω ≼ 𝒫 𝒫 𝐴 → (𝐴 ∈ Fin → ω ∈ Fin)) |
| 14 | 7, 13 | mtoi 199 | . . . . 5 ⊢ (ω ≼ 𝒫 𝒫 𝐴 → ¬ 𝐴 ∈ Fin) |
| 15 | fineqvlem 9209 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ ¬ 𝐴 ∈ Fin) → ω ≼ 𝒫 𝒫 𝐴) | |
| 16 | 15 | ex 412 | . . . . 5 ⊢ (𝐴 ∈ V → (¬ 𝐴 ∈ Fin → ω ≼ 𝒫 𝒫 𝐴)) |
| 17 | 14, 16 | impbid2 226 | . . . 4 ⊢ (𝐴 ∈ V → (ω ≼ 𝒫 𝒫 𝐴 ↔ ¬ 𝐴 ∈ Fin)) |
| 18 | 17 | con2bid 354 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∈ Fin ↔ ¬ ω ≼ 𝒫 𝒫 𝐴)) |
| 19 | isfin4-2 10267 | . . . 4 ⊢ (𝒫 𝒫 𝐴 ∈ V → (𝒫 𝒫 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝒫 𝒫 𝐴)) | |
| 20 | 5, 19 | sylbi 217 | . . 3 ⊢ (𝐴 ∈ V → (𝒫 𝒫 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝒫 𝒫 𝐴)) |
| 21 | 18, 20 | bitr4d 282 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ Fin ↔ 𝒫 𝒫 𝐴 ∈ FinIV)) |
| 22 | 1, 6, 21 | pm5.21nii 378 | 1 ⊢ (𝐴 ∈ Fin ↔ 𝒫 𝒫 𝐴 ∈ FinIV) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∈ wcel 2109 Vcvv 3447 𝒫 cpw 4563 class class class wbr 5107 ωcom 7842 ≼ cdom 8916 Fincfn 8918 FinIVcfin4 10233 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fin4 10240 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |