MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin1-2 Structured version   Visualization version   GIF version

Theorem isfin1-2 9413
Description: A set is finite in the usual sense iff the power set of its power set is Dedekind finite. (Contributed by Stefan O'Rear, 3-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
isfin1-2 (𝐴 ∈ Fin ↔ 𝒫 𝒫 𝐴 ∈ FinIV)

Proof of Theorem isfin1-2
StepHypRef Expression
1 elex 3364 . 2 (𝐴 ∈ Fin → 𝐴 ∈ V)
2 elex 3364 . . 3 (𝒫 𝒫 𝐴 ∈ FinIV → 𝒫 𝒫 𝐴 ∈ V)
3 pwexb 7126 . . . 4 (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V)
4 pwexb 7126 . . . 4 (𝒫 𝐴 ∈ V ↔ 𝒫 𝒫 𝐴 ∈ V)
53, 4bitri 264 . . 3 (𝐴 ∈ V ↔ 𝒫 𝒫 𝐴 ∈ V)
62, 5sylibr 224 . 2 (𝒫 𝒫 𝐴 ∈ FinIV𝐴 ∈ V)
7 ominf 8332 . . . . . 6 ¬ ω ∈ Fin
8 pwfi 8421 . . . . . . . 8 (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)
9 pwfi 8421 . . . . . . . 8 (𝒫 𝐴 ∈ Fin ↔ 𝒫 𝒫 𝐴 ∈ Fin)
108, 9bitri 264 . . . . . . 7 (𝐴 ∈ Fin ↔ 𝒫 𝒫 𝐴 ∈ Fin)
11 domfi 8341 . . . . . . . 8 ((𝒫 𝒫 𝐴 ∈ Fin ∧ ω ≼ 𝒫 𝒫 𝐴) → ω ∈ Fin)
1211expcom 398 . . . . . . 7 (ω ≼ 𝒫 𝒫 𝐴 → (𝒫 𝒫 𝐴 ∈ Fin → ω ∈ Fin))
1310, 12syl5bi 232 . . . . . 6 (ω ≼ 𝒫 𝒫 𝐴 → (𝐴 ∈ Fin → ω ∈ Fin))
147, 13mtoi 190 . . . . 5 (ω ≼ 𝒫 𝒫 𝐴 → ¬ 𝐴 ∈ Fin)
15 fineqvlem 8334 . . . . . 6 ((𝐴 ∈ V ∧ ¬ 𝐴 ∈ Fin) → ω ≼ 𝒫 𝒫 𝐴)
1615ex 397 . . . . 5 (𝐴 ∈ V → (¬ 𝐴 ∈ Fin → ω ≼ 𝒫 𝒫 𝐴))
1714, 16impbid2 216 . . . 4 (𝐴 ∈ V → (ω ≼ 𝒫 𝒫 𝐴 ↔ ¬ 𝐴 ∈ Fin))
1817con2bid 343 . . 3 (𝐴 ∈ V → (𝐴 ∈ Fin ↔ ¬ ω ≼ 𝒫 𝒫 𝐴))
19 isfin4-2 9342 . . . 4 (𝒫 𝒫 𝐴 ∈ V → (𝒫 𝒫 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝒫 𝒫 𝐴))
205, 19sylbi 207 . . 3 (𝐴 ∈ V → (𝒫 𝒫 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝒫 𝒫 𝐴))
2118, 20bitr4d 271 . 2 (𝐴 ∈ V → (𝐴 ∈ Fin ↔ 𝒫 𝒫 𝐴 ∈ FinIV))
221, 6, 21pm5.21nii 367 1 (𝐴 ∈ Fin ↔ 𝒫 𝒫 𝐴 ∈ FinIV)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wcel 2145  Vcvv 3351  𝒫 cpw 4298   class class class wbr 4787  ωcom 7216  cdom 8111  Fincfn 8113  FinIVcfin4 9308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-2o 7718  df-oadd 7721  df-er 7900  df-map 8015  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fin4 9315
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator