MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin1-2 Structured version   Visualization version   GIF version

Theorem isfin1-2 10345
Description: A set is finite in the usual sense iff the power set of its power set is Dedekind finite. (Contributed by Stefan O'Rear, 3-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
isfin1-2 (𝐴 ∈ Fin ↔ 𝒫 𝒫 𝐴 ∈ FinIV)

Proof of Theorem isfin1-2
StepHypRef Expression
1 elex 3471 . 2 (𝐴 ∈ Fin → 𝐴 ∈ V)
2 elex 3471 . . 3 (𝒫 𝒫 𝐴 ∈ FinIV → 𝒫 𝒫 𝐴 ∈ V)
3 pwexb 7745 . . . 4 (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V)
4 pwexb 7745 . . . 4 (𝒫 𝐴 ∈ V ↔ 𝒫 𝒫 𝐴 ∈ V)
53, 4bitri 275 . . 3 (𝐴 ∈ V ↔ 𝒫 𝒫 𝐴 ∈ V)
62, 5sylibr 234 . 2 (𝒫 𝒫 𝐴 ∈ FinIV𝐴 ∈ V)
7 ominf 9212 . . . . . 6 ¬ ω ∈ Fin
8 pwfi 9275 . . . . . . . 8 (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)
9 pwfi 9275 . . . . . . . 8 (𝒫 𝐴 ∈ Fin ↔ 𝒫 𝒫 𝐴 ∈ Fin)
108, 9bitri 275 . . . . . . 7 (𝐴 ∈ Fin ↔ 𝒫 𝒫 𝐴 ∈ Fin)
11 domfi 9159 . . . . . . . 8 ((𝒫 𝒫 𝐴 ∈ Fin ∧ ω ≼ 𝒫 𝒫 𝐴) → ω ∈ Fin)
1211expcom 413 . . . . . . 7 (ω ≼ 𝒫 𝒫 𝐴 → (𝒫 𝒫 𝐴 ∈ Fin → ω ∈ Fin))
1310, 12biimtrid 242 . . . . . 6 (ω ≼ 𝒫 𝒫 𝐴 → (𝐴 ∈ Fin → ω ∈ Fin))
147, 13mtoi 199 . . . . 5 (ω ≼ 𝒫 𝒫 𝐴 → ¬ 𝐴 ∈ Fin)
15 fineqvlem 9216 . . . . . 6 ((𝐴 ∈ V ∧ ¬ 𝐴 ∈ Fin) → ω ≼ 𝒫 𝒫 𝐴)
1615ex 412 . . . . 5 (𝐴 ∈ V → (¬ 𝐴 ∈ Fin → ω ≼ 𝒫 𝒫 𝐴))
1714, 16impbid2 226 . . . 4 (𝐴 ∈ V → (ω ≼ 𝒫 𝒫 𝐴 ↔ ¬ 𝐴 ∈ Fin))
1817con2bid 354 . . 3 (𝐴 ∈ V → (𝐴 ∈ Fin ↔ ¬ ω ≼ 𝒫 𝒫 𝐴))
19 isfin4-2 10274 . . . 4 (𝒫 𝒫 𝐴 ∈ V → (𝒫 𝒫 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝒫 𝒫 𝐴))
205, 19sylbi 217 . . 3 (𝐴 ∈ V → (𝒫 𝒫 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝒫 𝒫 𝐴))
2118, 20bitr4d 282 . 2 (𝐴 ∈ V → (𝐴 ∈ Fin ↔ 𝒫 𝒫 𝐴 ∈ FinIV))
221, 6, 21pm5.21nii 378 1 (𝐴 ∈ Fin ↔ 𝒫 𝒫 𝐴 ∈ FinIV)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wcel 2109  Vcvv 3450  𝒫 cpw 4566   class class class wbr 5110  ωcom 7845  cdom 8919  Fincfn 8921  FinIVcfin4 10240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fin4 10247
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator