| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isfin1-2 | Structured version Visualization version GIF version | ||
| Description: A set is finite in the usual sense iff the power set of its power set is Dedekind finite. (Contributed by Stefan O'Rear, 3-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
| Ref | Expression |
|---|---|
| isfin1-2 | ⊢ (𝐴 ∈ Fin ↔ 𝒫 𝒫 𝐴 ∈ FinIV) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3457 | . 2 ⊢ (𝐴 ∈ Fin → 𝐴 ∈ V) | |
| 2 | elex 3457 | . . 3 ⊢ (𝒫 𝒫 𝐴 ∈ FinIV → 𝒫 𝒫 𝐴 ∈ V) | |
| 3 | pwexb 7699 | . . . 4 ⊢ (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V) | |
| 4 | pwexb 7699 | . . . 4 ⊢ (𝒫 𝐴 ∈ V ↔ 𝒫 𝒫 𝐴 ∈ V) | |
| 5 | 3, 4 | bitri 275 | . . 3 ⊢ (𝐴 ∈ V ↔ 𝒫 𝒫 𝐴 ∈ V) |
| 6 | 2, 5 | sylibr 234 | . 2 ⊢ (𝒫 𝒫 𝐴 ∈ FinIV → 𝐴 ∈ V) |
| 7 | ominf 9148 | . . . . . 6 ⊢ ¬ ω ∈ Fin | |
| 8 | pwfi 9203 | . . . . . . . 8 ⊢ (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin) | |
| 9 | pwfi 9203 | . . . . . . . 8 ⊢ (𝒫 𝐴 ∈ Fin ↔ 𝒫 𝒫 𝐴 ∈ Fin) | |
| 10 | 8, 9 | bitri 275 | . . . . . . 7 ⊢ (𝐴 ∈ Fin ↔ 𝒫 𝒫 𝐴 ∈ Fin) |
| 11 | domfi 9098 | . . . . . . . 8 ⊢ ((𝒫 𝒫 𝐴 ∈ Fin ∧ ω ≼ 𝒫 𝒫 𝐴) → ω ∈ Fin) | |
| 12 | 11 | expcom 413 | . . . . . . 7 ⊢ (ω ≼ 𝒫 𝒫 𝐴 → (𝒫 𝒫 𝐴 ∈ Fin → ω ∈ Fin)) |
| 13 | 10, 12 | biimtrid 242 | . . . . . 6 ⊢ (ω ≼ 𝒫 𝒫 𝐴 → (𝐴 ∈ Fin → ω ∈ Fin)) |
| 14 | 7, 13 | mtoi 199 | . . . . 5 ⊢ (ω ≼ 𝒫 𝒫 𝐴 → ¬ 𝐴 ∈ Fin) |
| 15 | fineqvlem 9150 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ ¬ 𝐴 ∈ Fin) → ω ≼ 𝒫 𝒫 𝐴) | |
| 16 | 15 | ex 412 | . . . . 5 ⊢ (𝐴 ∈ V → (¬ 𝐴 ∈ Fin → ω ≼ 𝒫 𝒫 𝐴)) |
| 17 | 14, 16 | impbid2 226 | . . . 4 ⊢ (𝐴 ∈ V → (ω ≼ 𝒫 𝒫 𝐴 ↔ ¬ 𝐴 ∈ Fin)) |
| 18 | 17 | con2bid 354 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∈ Fin ↔ ¬ ω ≼ 𝒫 𝒫 𝐴)) |
| 19 | isfin4-2 10205 | . . . 4 ⊢ (𝒫 𝒫 𝐴 ∈ V → (𝒫 𝒫 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝒫 𝒫 𝐴)) | |
| 20 | 5, 19 | sylbi 217 | . . 3 ⊢ (𝐴 ∈ V → (𝒫 𝒫 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝒫 𝒫 𝐴)) |
| 21 | 18, 20 | bitr4d 282 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ Fin ↔ 𝒫 𝒫 𝐴 ∈ FinIV)) |
| 22 | 1, 6, 21 | pm5.21nii 378 | 1 ⊢ (𝐴 ∈ Fin ↔ 𝒫 𝒫 𝐴 ∈ FinIV) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∈ wcel 2111 Vcvv 3436 𝒫 cpw 4547 class class class wbr 5089 ωcom 7796 ≼ cdom 8867 Fincfn 8869 FinIVcfin4 10171 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fin4 10178 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |