MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf34lem6 Structured version   Visualization version   GIF version

Theorem isf34lem6 10316
Description: Lemma for isfin3-4 10318. (Contributed by Stefan O'Rear, 7-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Hypothesis
Ref Expression
compss.a 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
Assertion
Ref Expression
isf34lem6 (𝐴𝑉 → (𝐴 ∈ FinIII ↔ ∀𝑓 ∈ (𝒫 𝐴m ω)(∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓)))
Distinct variable groups:   𝑥,𝑓,𝑦,𝐴   𝑓,𝐹,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   𝐹(𝑥)   𝑉(𝑓)

Proof of Theorem isf34lem6
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 elmapi 8787 . . . 4 (𝑓 ∈ (𝒫 𝐴m ω) → 𝑓:ω⟶𝒫 𝐴)
2 compss.a . . . . . 6 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
32isf34lem7 10315 . . . . 5 ((𝐴 ∈ FinIII𝑓:ω⟶𝒫 𝐴 ∧ ∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦)) → ran 𝑓 ∈ ran 𝑓)
433expia 1121 . . . 4 ((𝐴 ∈ FinIII𝑓:ω⟶𝒫 𝐴) → (∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓))
51, 4sylan2 593 . . 3 ((𝐴 ∈ FinIII𝑓 ∈ (𝒫 𝐴m ω)) → (∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓))
65ralrimiva 3143 . 2 (𝐴 ∈ FinIII → ∀𝑓 ∈ (𝒫 𝐴m ω)(∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓))
7 elmapex 8786 . . . . . . . . . . 11 (𝑔 ∈ (𝒫 𝐴m ω) → (𝒫 𝐴 ∈ V ∧ ω ∈ V))
87simpld 495 . . . . . . . . . 10 (𝑔 ∈ (𝒫 𝐴m ω) → 𝒫 𝐴 ∈ V)
9 pwexb 7700 . . . . . . . . . 10 (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V)
108, 9sylibr 233 . . . . . . . . 9 (𝑔 ∈ (𝒫 𝐴m ω) → 𝐴 ∈ V)
112isf34lem2 10309 . . . . . . . . 9 (𝐴 ∈ V → 𝐹:𝒫 𝐴⟶𝒫 𝐴)
1210, 11syl 17 . . . . . . . 8 (𝑔 ∈ (𝒫 𝐴m ω) → 𝐹:𝒫 𝐴⟶𝒫 𝐴)
13 elmapi 8787 . . . . . . . 8 (𝑔 ∈ (𝒫 𝐴m ω) → 𝑔:ω⟶𝒫 𝐴)
14 fco 6692 . . . . . . . 8 ((𝐹:𝒫 𝐴⟶𝒫 𝐴𝑔:ω⟶𝒫 𝐴) → (𝐹𝑔):ω⟶𝒫 𝐴)
1512, 13, 14syl2anc 584 . . . . . . 7 (𝑔 ∈ (𝒫 𝐴m ω) → (𝐹𝑔):ω⟶𝒫 𝐴)
16 elmapg 8778 . . . . . . . 8 ((𝒫 𝐴 ∈ V ∧ ω ∈ V) → ((𝐹𝑔) ∈ (𝒫 𝐴m ω) ↔ (𝐹𝑔):ω⟶𝒫 𝐴))
177, 16syl 17 . . . . . . 7 (𝑔 ∈ (𝒫 𝐴m ω) → ((𝐹𝑔) ∈ (𝒫 𝐴m ω) ↔ (𝐹𝑔):ω⟶𝒫 𝐴))
1815, 17mpbird 256 . . . . . 6 (𝑔 ∈ (𝒫 𝐴m ω) → (𝐹𝑔) ∈ (𝒫 𝐴m ω))
19 fveq1 6841 . . . . . . . . . 10 (𝑓 = (𝐹𝑔) → (𝑓𝑦) = ((𝐹𝑔)‘𝑦))
20 fveq1 6841 . . . . . . . . . 10 (𝑓 = (𝐹𝑔) → (𝑓‘suc 𝑦) = ((𝐹𝑔)‘suc 𝑦))
2119, 20sseq12d 3977 . . . . . . . . 9 (𝑓 = (𝐹𝑔) → ((𝑓𝑦) ⊆ (𝑓‘suc 𝑦) ↔ ((𝐹𝑔)‘𝑦) ⊆ ((𝐹𝑔)‘suc 𝑦)))
2221ralbidv 3174 . . . . . . . 8 (𝑓 = (𝐹𝑔) → (∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) ↔ ∀𝑦 ∈ ω ((𝐹𝑔)‘𝑦) ⊆ ((𝐹𝑔)‘suc 𝑦)))
23 rneq 5891 . . . . . . . . . . 11 (𝑓 = (𝐹𝑔) → ran 𝑓 = ran (𝐹𝑔))
24 rnco2 6205 . . . . . . . . . . 11 ran (𝐹𝑔) = (𝐹 “ ran 𝑔)
2523, 24eqtrdi 2792 . . . . . . . . . 10 (𝑓 = (𝐹𝑔) → ran 𝑓 = (𝐹 “ ran 𝑔))
2625unieqd 4879 . . . . . . . . 9 (𝑓 = (𝐹𝑔) → ran 𝑓 = (𝐹 “ ran 𝑔))
2726, 25eleq12d 2832 . . . . . . . 8 (𝑓 = (𝐹𝑔) → ( ran 𝑓 ∈ ran 𝑓 (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔)))
2822, 27imbi12d 344 . . . . . . 7 (𝑓 = (𝐹𝑔) → ((∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓) ↔ (∀𝑦 ∈ ω ((𝐹𝑔)‘𝑦) ⊆ ((𝐹𝑔)‘suc 𝑦) → (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔))))
2928rspccv 3578 . . . . . 6 (∀𝑓 ∈ (𝒫 𝐴m ω)(∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓) → ((𝐹𝑔) ∈ (𝒫 𝐴m ω) → (∀𝑦 ∈ ω ((𝐹𝑔)‘𝑦) ⊆ ((𝐹𝑔)‘suc 𝑦) → (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔))))
3018, 29syl5 34 . . . . 5 (∀𝑓 ∈ (𝒫 𝐴m ω)(∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓) → (𝑔 ∈ (𝒫 𝐴m ω) → (∀𝑦 ∈ ω ((𝐹𝑔)‘𝑦) ⊆ ((𝐹𝑔)‘suc 𝑦) → (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔))))
31 sscon 4098 . . . . . . . . 9 ((𝑔‘suc 𝑦) ⊆ (𝑔𝑦) → (𝐴 ∖ (𝑔𝑦)) ⊆ (𝐴 ∖ (𝑔‘suc 𝑦)))
3213ffvelcdmda 7035 . . . . . . . . . . . 12 ((𝑔 ∈ (𝒫 𝐴m ω) ∧ 𝑦 ∈ ω) → (𝑔𝑦) ∈ 𝒫 𝐴)
3332elpwid 4569 . . . . . . . . . . 11 ((𝑔 ∈ (𝒫 𝐴m ω) ∧ 𝑦 ∈ ω) → (𝑔𝑦) ⊆ 𝐴)
342isf34lem1 10308 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ (𝑔𝑦) ⊆ 𝐴) → (𝐹‘(𝑔𝑦)) = (𝐴 ∖ (𝑔𝑦)))
3510, 33, 34syl2an2r 683 . . . . . . . . . 10 ((𝑔 ∈ (𝒫 𝐴m ω) ∧ 𝑦 ∈ ω) → (𝐹‘(𝑔𝑦)) = (𝐴 ∖ (𝑔𝑦)))
36 peano2 7827 . . . . . . . . . . . . 13 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
37 ffvelcdm 7032 . . . . . . . . . . . . 13 ((𝑔:ω⟶𝒫 𝐴 ∧ suc 𝑦 ∈ ω) → (𝑔‘suc 𝑦) ∈ 𝒫 𝐴)
3813, 36, 37syl2an 596 . . . . . . . . . . . 12 ((𝑔 ∈ (𝒫 𝐴m ω) ∧ 𝑦 ∈ ω) → (𝑔‘suc 𝑦) ∈ 𝒫 𝐴)
3938elpwid 4569 . . . . . . . . . . 11 ((𝑔 ∈ (𝒫 𝐴m ω) ∧ 𝑦 ∈ ω) → (𝑔‘suc 𝑦) ⊆ 𝐴)
402isf34lem1 10308 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ (𝑔‘suc 𝑦) ⊆ 𝐴) → (𝐹‘(𝑔‘suc 𝑦)) = (𝐴 ∖ (𝑔‘suc 𝑦)))
4110, 39, 40syl2an2r 683 . . . . . . . . . 10 ((𝑔 ∈ (𝒫 𝐴m ω) ∧ 𝑦 ∈ ω) → (𝐹‘(𝑔‘suc 𝑦)) = (𝐴 ∖ (𝑔‘suc 𝑦)))
4235, 41sseq12d 3977 . . . . . . . . 9 ((𝑔 ∈ (𝒫 𝐴m ω) ∧ 𝑦 ∈ ω) → ((𝐹‘(𝑔𝑦)) ⊆ (𝐹‘(𝑔‘suc 𝑦)) ↔ (𝐴 ∖ (𝑔𝑦)) ⊆ (𝐴 ∖ (𝑔‘suc 𝑦))))
4331, 42syl5ibr 245 . . . . . . . 8 ((𝑔 ∈ (𝒫 𝐴m ω) ∧ 𝑦 ∈ ω) → ((𝑔‘suc 𝑦) ⊆ (𝑔𝑦) → (𝐹‘(𝑔𝑦)) ⊆ (𝐹‘(𝑔‘suc 𝑦))))
44 fvco3 6940 . . . . . . . . . 10 ((𝑔:ω⟶𝒫 𝐴𝑦 ∈ ω) → ((𝐹𝑔)‘𝑦) = (𝐹‘(𝑔𝑦)))
4513, 44sylan 580 . . . . . . . . 9 ((𝑔 ∈ (𝒫 𝐴m ω) ∧ 𝑦 ∈ ω) → ((𝐹𝑔)‘𝑦) = (𝐹‘(𝑔𝑦)))
46 fvco3 6940 . . . . . . . . . 10 ((𝑔:ω⟶𝒫 𝐴 ∧ suc 𝑦 ∈ ω) → ((𝐹𝑔)‘suc 𝑦) = (𝐹‘(𝑔‘suc 𝑦)))
4713, 36, 46syl2an 596 . . . . . . . . 9 ((𝑔 ∈ (𝒫 𝐴m ω) ∧ 𝑦 ∈ ω) → ((𝐹𝑔)‘suc 𝑦) = (𝐹‘(𝑔‘suc 𝑦)))
4845, 47sseq12d 3977 . . . . . . . 8 ((𝑔 ∈ (𝒫 𝐴m ω) ∧ 𝑦 ∈ ω) → (((𝐹𝑔)‘𝑦) ⊆ ((𝐹𝑔)‘suc 𝑦) ↔ (𝐹‘(𝑔𝑦)) ⊆ (𝐹‘(𝑔‘suc 𝑦))))
4943, 48sylibrd 258 . . . . . . 7 ((𝑔 ∈ (𝒫 𝐴m ω) ∧ 𝑦 ∈ ω) → ((𝑔‘suc 𝑦) ⊆ (𝑔𝑦) → ((𝐹𝑔)‘𝑦) ⊆ ((𝐹𝑔)‘suc 𝑦)))
5049ralimdva 3164 . . . . . 6 (𝑔 ∈ (𝒫 𝐴m ω) → (∀𝑦 ∈ ω (𝑔‘suc 𝑦) ⊆ (𝑔𝑦) → ∀𝑦 ∈ ω ((𝐹𝑔)‘𝑦) ⊆ ((𝐹𝑔)‘suc 𝑦)))
5112ffnd 6669 . . . . . . . 8 (𝑔 ∈ (𝒫 𝐴m ω) → 𝐹 Fn 𝒫 𝐴)
52 imassrn 6024 . . . . . . . . 9 (𝐹 “ ran 𝑔) ⊆ ran 𝐹
5312frnd 6676 . . . . . . . . 9 (𝑔 ∈ (𝒫 𝐴m ω) → ran 𝐹 ⊆ 𝒫 𝐴)
5452, 53sstrid 3955 . . . . . . . 8 (𝑔 ∈ (𝒫 𝐴m ω) → (𝐹 “ ran 𝑔) ⊆ 𝒫 𝐴)
55 fnfvima 7183 . . . . . . . . 9 ((𝐹 Fn 𝒫 𝐴 ∧ (𝐹 “ ran 𝑔) ⊆ 𝒫 𝐴 (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔)) → (𝐹 (𝐹 “ ran 𝑔)) ∈ (𝐹 “ (𝐹 “ ran 𝑔)))
56553expia 1121 . . . . . . . 8 ((𝐹 Fn 𝒫 𝐴 ∧ (𝐹 “ ran 𝑔) ⊆ 𝒫 𝐴) → ( (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔) → (𝐹 (𝐹 “ ran 𝑔)) ∈ (𝐹 “ (𝐹 “ ran 𝑔))))
5751, 54, 56syl2anc 584 . . . . . . 7 (𝑔 ∈ (𝒫 𝐴m ω) → ( (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔) → (𝐹 (𝐹 “ ran 𝑔)) ∈ (𝐹 “ (𝐹 “ ran 𝑔))))
58 incom 4161 . . . . . . . . . . . . 13 (dom 𝐹 ∩ ran 𝑔) = (ran 𝑔 ∩ dom 𝐹)
5913frnd 6676 . . . . . . . . . . . . . . 15 (𝑔 ∈ (𝒫 𝐴m ω) → ran 𝑔 ⊆ 𝒫 𝐴)
6012fdmd 6679 . . . . . . . . . . . . . . 15 (𝑔 ∈ (𝒫 𝐴m ω) → dom 𝐹 = 𝒫 𝐴)
6159, 60sseqtrrd 3985 . . . . . . . . . . . . . 14 (𝑔 ∈ (𝒫 𝐴m ω) → ran 𝑔 ⊆ dom 𝐹)
62 df-ss 3927 . . . . . . . . . . . . . 14 (ran 𝑔 ⊆ dom 𝐹 ↔ (ran 𝑔 ∩ dom 𝐹) = ran 𝑔)
6361, 62sylib 217 . . . . . . . . . . . . 13 (𝑔 ∈ (𝒫 𝐴m ω) → (ran 𝑔 ∩ dom 𝐹) = ran 𝑔)
6458, 63eqtrid 2788 . . . . . . . . . . . 12 (𝑔 ∈ (𝒫 𝐴m ω) → (dom 𝐹 ∩ ran 𝑔) = ran 𝑔)
6513fdmd 6679 . . . . . . . . . . . . . 14 (𝑔 ∈ (𝒫 𝐴m ω) → dom 𝑔 = ω)
66 peano1 7825 . . . . . . . . . . . . . . 15 ∅ ∈ ω
67 ne0i 4294 . . . . . . . . . . . . . . 15 (∅ ∈ ω → ω ≠ ∅)
6866, 67mp1i 13 . . . . . . . . . . . . . 14 (𝑔 ∈ (𝒫 𝐴m ω) → ω ≠ ∅)
6965, 68eqnetrd 3011 . . . . . . . . . . . . 13 (𝑔 ∈ (𝒫 𝐴m ω) → dom 𝑔 ≠ ∅)
70 dm0rn0 5880 . . . . . . . . . . . . . 14 (dom 𝑔 = ∅ ↔ ran 𝑔 = ∅)
7170necon3bii 2996 . . . . . . . . . . . . 13 (dom 𝑔 ≠ ∅ ↔ ran 𝑔 ≠ ∅)
7269, 71sylib 217 . . . . . . . . . . . 12 (𝑔 ∈ (𝒫 𝐴m ω) → ran 𝑔 ≠ ∅)
7364, 72eqnetrd 3011 . . . . . . . . . . 11 (𝑔 ∈ (𝒫 𝐴m ω) → (dom 𝐹 ∩ ran 𝑔) ≠ ∅)
74 imadisj 6032 . . . . . . . . . . . 12 ((𝐹 “ ran 𝑔) = ∅ ↔ (dom 𝐹 ∩ ran 𝑔) = ∅)
7574necon3bii 2996 . . . . . . . . . . 11 ((𝐹 “ ran 𝑔) ≠ ∅ ↔ (dom 𝐹 ∩ ran 𝑔) ≠ ∅)
7673, 75sylibr 233 . . . . . . . . . 10 (𝑔 ∈ (𝒫 𝐴m ω) → (𝐹 “ ran 𝑔) ≠ ∅)
772isf34lem4 10313 . . . . . . . . . 10 ((𝐴 ∈ V ∧ ((𝐹 “ ran 𝑔) ⊆ 𝒫 𝐴 ∧ (𝐹 “ ran 𝑔) ≠ ∅)) → (𝐹 (𝐹 “ ran 𝑔)) = (𝐹 “ (𝐹 “ ran 𝑔)))
7810, 54, 76, 77syl12anc 835 . . . . . . . . 9 (𝑔 ∈ (𝒫 𝐴m ω) → (𝐹 (𝐹 “ ran 𝑔)) = (𝐹 “ (𝐹 “ ran 𝑔)))
792isf34lem3 10311 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ ran 𝑔 ⊆ 𝒫 𝐴) → (𝐹 “ (𝐹 “ ran 𝑔)) = ran 𝑔)
8010, 59, 79syl2anc 584 . . . . . . . . . 10 (𝑔 ∈ (𝒫 𝐴m ω) → (𝐹 “ (𝐹 “ ran 𝑔)) = ran 𝑔)
8180inteqd 4912 . . . . . . . . 9 (𝑔 ∈ (𝒫 𝐴m ω) → (𝐹 “ (𝐹 “ ran 𝑔)) = ran 𝑔)
8278, 81eqtrd 2776 . . . . . . . 8 (𝑔 ∈ (𝒫 𝐴m ω) → (𝐹 (𝐹 “ ran 𝑔)) = ran 𝑔)
8382, 80eleq12d 2832 . . . . . . 7 (𝑔 ∈ (𝒫 𝐴m ω) → ((𝐹 (𝐹 “ ran 𝑔)) ∈ (𝐹 “ (𝐹 “ ran 𝑔)) ↔ ran 𝑔 ∈ ran 𝑔))
8457, 83sylibd 238 . . . . . 6 (𝑔 ∈ (𝒫 𝐴m ω) → ( (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔) → ran 𝑔 ∈ ran 𝑔))
8550, 84imim12d 81 . . . . 5 (𝑔 ∈ (𝒫 𝐴m ω) → ((∀𝑦 ∈ ω ((𝐹𝑔)‘𝑦) ⊆ ((𝐹𝑔)‘suc 𝑦) → (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔)) → (∀𝑦 ∈ ω (𝑔‘suc 𝑦) ⊆ (𝑔𝑦) → ran 𝑔 ∈ ran 𝑔)))
8630, 85sylcom 30 . . . 4 (∀𝑓 ∈ (𝒫 𝐴m ω)(∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓) → (𝑔 ∈ (𝒫 𝐴m ω) → (∀𝑦 ∈ ω (𝑔‘suc 𝑦) ⊆ (𝑔𝑦) → ran 𝑔 ∈ ran 𝑔)))
8786ralrimiv 3142 . . 3 (∀𝑓 ∈ (𝒫 𝐴m ω)(∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓) → ∀𝑔 ∈ (𝒫 𝐴m ω)(∀𝑦 ∈ ω (𝑔‘suc 𝑦) ⊆ (𝑔𝑦) → ran 𝑔 ∈ ran 𝑔))
88 isfin3-3 10304 . . 3 (𝐴𝑉 → (𝐴 ∈ FinIII ↔ ∀𝑔 ∈ (𝒫 𝐴m ω)(∀𝑦 ∈ ω (𝑔‘suc 𝑦) ⊆ (𝑔𝑦) → ran 𝑔 ∈ ran 𝑔)))
8987, 88syl5ibr 245 . 2 (𝐴𝑉 → (∀𝑓 ∈ (𝒫 𝐴m ω)(∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓) → 𝐴 ∈ FinIII))
906, 89impbid2 225 1 (𝐴𝑉 → (𝐴 ∈ FinIII ↔ ∀𝑓 ∈ (𝒫 𝐴m ω)(∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  wral 3064  Vcvv 3445  cdif 3907  cin 3909  wss 3910  c0 4282  𝒫 cpw 4560   cuni 4865   cint 4907  cmpt 5188  dom cdm 5633  ran crn 5634  cima 5636  ccom 5637  suc csuc 6319   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  ωcom 7802  m cmap 8765  FinIIIcfin3 10217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-rpss 7660  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-seqom 8394  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-wdom 9501  df-card 9875  df-fin4 10223  df-fin3 10224
This theorem is referenced by:  isfin3-4  10318
  Copyright terms: Public domain W3C validator