MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf34lem6 Structured version   Visualization version   GIF version

Theorem isf34lem6 9892
Description: Lemma for isfin3-4 9894. (Contributed by Stefan O'Rear, 7-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Hypothesis
Ref Expression
compss.a 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
Assertion
Ref Expression
isf34lem6 (𝐴𝑉 → (𝐴 ∈ FinIII ↔ ∀𝑓 ∈ (𝒫 𝐴m ω)(∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓)))
Distinct variable groups:   𝑥,𝑓,𝑦,𝐴   𝑓,𝐹,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   𝐹(𝑥)   𝑉(𝑓)

Proof of Theorem isf34lem6
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 elmapi 8471 . . . 4 (𝑓 ∈ (𝒫 𝐴m ω) → 𝑓:ω⟶𝒫 𝐴)
2 compss.a . . . . . 6 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
32isf34lem7 9891 . . . . 5 ((𝐴 ∈ FinIII𝑓:ω⟶𝒫 𝐴 ∧ ∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦)) → ran 𝑓 ∈ ran 𝑓)
433expia 1122 . . . 4 ((𝐴 ∈ FinIII𝑓:ω⟶𝒫 𝐴) → (∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓))
51, 4sylan2 596 . . 3 ((𝐴 ∈ FinIII𝑓 ∈ (𝒫 𝐴m ω)) → (∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓))
65ralrimiva 3097 . 2 (𝐴 ∈ FinIII → ∀𝑓 ∈ (𝒫 𝐴m ω)(∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓))
7 elmapex 8470 . . . . . . . . . . 11 (𝑔 ∈ (𝒫 𝐴m ω) → (𝒫 𝐴 ∈ V ∧ ω ∈ V))
87simpld 498 . . . . . . . . . 10 (𝑔 ∈ (𝒫 𝐴m ω) → 𝒫 𝐴 ∈ V)
9 pwexb 7519 . . . . . . . . . 10 (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V)
108, 9sylibr 237 . . . . . . . . 9 (𝑔 ∈ (𝒫 𝐴m ω) → 𝐴 ∈ V)
112isf34lem2 9885 . . . . . . . . 9 (𝐴 ∈ V → 𝐹:𝒫 𝐴⟶𝒫 𝐴)
1210, 11syl 17 . . . . . . . 8 (𝑔 ∈ (𝒫 𝐴m ω) → 𝐹:𝒫 𝐴⟶𝒫 𝐴)
13 elmapi 8471 . . . . . . . 8 (𝑔 ∈ (𝒫 𝐴m ω) → 𝑔:ω⟶𝒫 𝐴)
14 fco 6538 . . . . . . . 8 ((𝐹:𝒫 𝐴⟶𝒫 𝐴𝑔:ω⟶𝒫 𝐴) → (𝐹𝑔):ω⟶𝒫 𝐴)
1512, 13, 14syl2anc 587 . . . . . . 7 (𝑔 ∈ (𝒫 𝐴m ω) → (𝐹𝑔):ω⟶𝒫 𝐴)
16 elmapg 8462 . . . . . . . 8 ((𝒫 𝐴 ∈ V ∧ ω ∈ V) → ((𝐹𝑔) ∈ (𝒫 𝐴m ω) ↔ (𝐹𝑔):ω⟶𝒫 𝐴))
177, 16syl 17 . . . . . . 7 (𝑔 ∈ (𝒫 𝐴m ω) → ((𝐹𝑔) ∈ (𝒫 𝐴m ω) ↔ (𝐹𝑔):ω⟶𝒫 𝐴))
1815, 17mpbird 260 . . . . . 6 (𝑔 ∈ (𝒫 𝐴m ω) → (𝐹𝑔) ∈ (𝒫 𝐴m ω))
19 fveq1 6685 . . . . . . . . . 10 (𝑓 = (𝐹𝑔) → (𝑓𝑦) = ((𝐹𝑔)‘𝑦))
20 fveq1 6685 . . . . . . . . . 10 (𝑓 = (𝐹𝑔) → (𝑓‘suc 𝑦) = ((𝐹𝑔)‘suc 𝑦))
2119, 20sseq12d 3920 . . . . . . . . 9 (𝑓 = (𝐹𝑔) → ((𝑓𝑦) ⊆ (𝑓‘suc 𝑦) ↔ ((𝐹𝑔)‘𝑦) ⊆ ((𝐹𝑔)‘suc 𝑦)))
2221ralbidv 3110 . . . . . . . 8 (𝑓 = (𝐹𝑔) → (∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) ↔ ∀𝑦 ∈ ω ((𝐹𝑔)‘𝑦) ⊆ ((𝐹𝑔)‘suc 𝑦)))
23 rneq 5789 . . . . . . . . . . 11 (𝑓 = (𝐹𝑔) → ran 𝑓 = ran (𝐹𝑔))
24 rnco2 6096 . . . . . . . . . . 11 ran (𝐹𝑔) = (𝐹 “ ran 𝑔)
2523, 24eqtrdi 2790 . . . . . . . . . 10 (𝑓 = (𝐹𝑔) → ran 𝑓 = (𝐹 “ ran 𝑔))
2625unieqd 4820 . . . . . . . . 9 (𝑓 = (𝐹𝑔) → ran 𝑓 = (𝐹 “ ran 𝑔))
2726, 25eleq12d 2828 . . . . . . . 8 (𝑓 = (𝐹𝑔) → ( ran 𝑓 ∈ ran 𝑓 (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔)))
2822, 27imbi12d 348 . . . . . . 7 (𝑓 = (𝐹𝑔) → ((∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓) ↔ (∀𝑦 ∈ ω ((𝐹𝑔)‘𝑦) ⊆ ((𝐹𝑔)‘suc 𝑦) → (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔))))
2928rspccv 3526 . . . . . 6 (∀𝑓 ∈ (𝒫 𝐴m ω)(∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓) → ((𝐹𝑔) ∈ (𝒫 𝐴m ω) → (∀𝑦 ∈ ω ((𝐹𝑔)‘𝑦) ⊆ ((𝐹𝑔)‘suc 𝑦) → (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔))))
3018, 29syl5 34 . . . . 5 (∀𝑓 ∈ (𝒫 𝐴m ω)(∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓) → (𝑔 ∈ (𝒫 𝐴m ω) → (∀𝑦 ∈ ω ((𝐹𝑔)‘𝑦) ⊆ ((𝐹𝑔)‘suc 𝑦) → (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔))))
31 sscon 4039 . . . . . . . . 9 ((𝑔‘suc 𝑦) ⊆ (𝑔𝑦) → (𝐴 ∖ (𝑔𝑦)) ⊆ (𝐴 ∖ (𝑔‘suc 𝑦)))
3213ffvelrnda 6873 . . . . . . . . . . . 12 ((𝑔 ∈ (𝒫 𝐴m ω) ∧ 𝑦 ∈ ω) → (𝑔𝑦) ∈ 𝒫 𝐴)
3332elpwid 4509 . . . . . . . . . . 11 ((𝑔 ∈ (𝒫 𝐴m ω) ∧ 𝑦 ∈ ω) → (𝑔𝑦) ⊆ 𝐴)
342isf34lem1 9884 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ (𝑔𝑦) ⊆ 𝐴) → (𝐹‘(𝑔𝑦)) = (𝐴 ∖ (𝑔𝑦)))
3510, 33, 34syl2an2r 685 . . . . . . . . . 10 ((𝑔 ∈ (𝒫 𝐴m ω) ∧ 𝑦 ∈ ω) → (𝐹‘(𝑔𝑦)) = (𝐴 ∖ (𝑔𝑦)))
36 peano2 7633 . . . . . . . . . . . . 13 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
37 ffvelrn 6871 . . . . . . . . . . . . 13 ((𝑔:ω⟶𝒫 𝐴 ∧ suc 𝑦 ∈ ω) → (𝑔‘suc 𝑦) ∈ 𝒫 𝐴)
3813, 36, 37syl2an 599 . . . . . . . . . . . 12 ((𝑔 ∈ (𝒫 𝐴m ω) ∧ 𝑦 ∈ ω) → (𝑔‘suc 𝑦) ∈ 𝒫 𝐴)
3938elpwid 4509 . . . . . . . . . . 11 ((𝑔 ∈ (𝒫 𝐴m ω) ∧ 𝑦 ∈ ω) → (𝑔‘suc 𝑦) ⊆ 𝐴)
402isf34lem1 9884 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ (𝑔‘suc 𝑦) ⊆ 𝐴) → (𝐹‘(𝑔‘suc 𝑦)) = (𝐴 ∖ (𝑔‘suc 𝑦)))
4110, 39, 40syl2an2r 685 . . . . . . . . . 10 ((𝑔 ∈ (𝒫 𝐴m ω) ∧ 𝑦 ∈ ω) → (𝐹‘(𝑔‘suc 𝑦)) = (𝐴 ∖ (𝑔‘suc 𝑦)))
4235, 41sseq12d 3920 . . . . . . . . 9 ((𝑔 ∈ (𝒫 𝐴m ω) ∧ 𝑦 ∈ ω) → ((𝐹‘(𝑔𝑦)) ⊆ (𝐹‘(𝑔‘suc 𝑦)) ↔ (𝐴 ∖ (𝑔𝑦)) ⊆ (𝐴 ∖ (𝑔‘suc 𝑦))))
4331, 42syl5ibr 249 . . . . . . . 8 ((𝑔 ∈ (𝒫 𝐴m ω) ∧ 𝑦 ∈ ω) → ((𝑔‘suc 𝑦) ⊆ (𝑔𝑦) → (𝐹‘(𝑔𝑦)) ⊆ (𝐹‘(𝑔‘suc 𝑦))))
44 fvco3 6779 . . . . . . . . . 10 ((𝑔:ω⟶𝒫 𝐴𝑦 ∈ ω) → ((𝐹𝑔)‘𝑦) = (𝐹‘(𝑔𝑦)))
4513, 44sylan 583 . . . . . . . . 9 ((𝑔 ∈ (𝒫 𝐴m ω) ∧ 𝑦 ∈ ω) → ((𝐹𝑔)‘𝑦) = (𝐹‘(𝑔𝑦)))
46 fvco3 6779 . . . . . . . . . 10 ((𝑔:ω⟶𝒫 𝐴 ∧ suc 𝑦 ∈ ω) → ((𝐹𝑔)‘suc 𝑦) = (𝐹‘(𝑔‘suc 𝑦)))
4713, 36, 46syl2an 599 . . . . . . . . 9 ((𝑔 ∈ (𝒫 𝐴m ω) ∧ 𝑦 ∈ ω) → ((𝐹𝑔)‘suc 𝑦) = (𝐹‘(𝑔‘suc 𝑦)))
4845, 47sseq12d 3920 . . . . . . . 8 ((𝑔 ∈ (𝒫 𝐴m ω) ∧ 𝑦 ∈ ω) → (((𝐹𝑔)‘𝑦) ⊆ ((𝐹𝑔)‘suc 𝑦) ↔ (𝐹‘(𝑔𝑦)) ⊆ (𝐹‘(𝑔‘suc 𝑦))))
4943, 48sylibrd 262 . . . . . . 7 ((𝑔 ∈ (𝒫 𝐴m ω) ∧ 𝑦 ∈ ω) → ((𝑔‘suc 𝑦) ⊆ (𝑔𝑦) → ((𝐹𝑔)‘𝑦) ⊆ ((𝐹𝑔)‘suc 𝑦)))
5049ralimdva 3092 . . . . . 6 (𝑔 ∈ (𝒫 𝐴m ω) → (∀𝑦 ∈ ω (𝑔‘suc 𝑦) ⊆ (𝑔𝑦) → ∀𝑦 ∈ ω ((𝐹𝑔)‘𝑦) ⊆ ((𝐹𝑔)‘suc 𝑦)))
5112ffnd 6515 . . . . . . . 8 (𝑔 ∈ (𝒫 𝐴m ω) → 𝐹 Fn 𝒫 𝐴)
52 imassrn 5924 . . . . . . . . 9 (𝐹 “ ran 𝑔) ⊆ ran 𝐹
5312frnd 6522 . . . . . . . . 9 (𝑔 ∈ (𝒫 𝐴m ω) → ran 𝐹 ⊆ 𝒫 𝐴)
5452, 53sstrid 3898 . . . . . . . 8 (𝑔 ∈ (𝒫 𝐴m ω) → (𝐹 “ ran 𝑔) ⊆ 𝒫 𝐴)
55 fnfvima 7018 . . . . . . . . 9 ((𝐹 Fn 𝒫 𝐴 ∧ (𝐹 “ ran 𝑔) ⊆ 𝒫 𝐴 (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔)) → (𝐹 (𝐹 “ ran 𝑔)) ∈ (𝐹 “ (𝐹 “ ran 𝑔)))
56553expia 1122 . . . . . . . 8 ((𝐹 Fn 𝒫 𝐴 ∧ (𝐹 “ ran 𝑔) ⊆ 𝒫 𝐴) → ( (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔) → (𝐹 (𝐹 “ ran 𝑔)) ∈ (𝐹 “ (𝐹 “ ran 𝑔))))
5751, 54, 56syl2anc 587 . . . . . . 7 (𝑔 ∈ (𝒫 𝐴m ω) → ( (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔) → (𝐹 (𝐹 “ ran 𝑔)) ∈ (𝐹 “ (𝐹 “ ran 𝑔))))
58 incom 4101 . . . . . . . . . . . . 13 (dom 𝐹 ∩ ran 𝑔) = (ran 𝑔 ∩ dom 𝐹)
5913frnd 6522 . . . . . . . . . . . . . . 15 (𝑔 ∈ (𝒫 𝐴m ω) → ran 𝑔 ⊆ 𝒫 𝐴)
6012fdmd 6525 . . . . . . . . . . . . . . 15 (𝑔 ∈ (𝒫 𝐴m ω) → dom 𝐹 = 𝒫 𝐴)
6159, 60sseqtrrd 3928 . . . . . . . . . . . . . 14 (𝑔 ∈ (𝒫 𝐴m ω) → ran 𝑔 ⊆ dom 𝐹)
62 df-ss 3870 . . . . . . . . . . . . . 14 (ran 𝑔 ⊆ dom 𝐹 ↔ (ran 𝑔 ∩ dom 𝐹) = ran 𝑔)
6361, 62sylib 221 . . . . . . . . . . . . 13 (𝑔 ∈ (𝒫 𝐴m ω) → (ran 𝑔 ∩ dom 𝐹) = ran 𝑔)
6458, 63syl5eq 2786 . . . . . . . . . . . 12 (𝑔 ∈ (𝒫 𝐴m ω) → (dom 𝐹 ∩ ran 𝑔) = ran 𝑔)
6513fdmd 6525 . . . . . . . . . . . . . 14 (𝑔 ∈ (𝒫 𝐴m ω) → dom 𝑔 = ω)
66 peano1 7632 . . . . . . . . . . . . . . 15 ∅ ∈ ω
67 ne0i 4233 . . . . . . . . . . . . . . 15 (∅ ∈ ω → ω ≠ ∅)
6866, 67mp1i 13 . . . . . . . . . . . . . 14 (𝑔 ∈ (𝒫 𝐴m ω) → ω ≠ ∅)
6965, 68eqnetrd 3002 . . . . . . . . . . . . 13 (𝑔 ∈ (𝒫 𝐴m ω) → dom 𝑔 ≠ ∅)
70 dm0rn0 5778 . . . . . . . . . . . . . 14 (dom 𝑔 = ∅ ↔ ran 𝑔 = ∅)
7170necon3bii 2987 . . . . . . . . . . . . 13 (dom 𝑔 ≠ ∅ ↔ ran 𝑔 ≠ ∅)
7269, 71sylib 221 . . . . . . . . . . . 12 (𝑔 ∈ (𝒫 𝐴m ω) → ran 𝑔 ≠ ∅)
7364, 72eqnetrd 3002 . . . . . . . . . . 11 (𝑔 ∈ (𝒫 𝐴m ω) → (dom 𝐹 ∩ ran 𝑔) ≠ ∅)
74 imadisj 5932 . . . . . . . . . . . 12 ((𝐹 “ ran 𝑔) = ∅ ↔ (dom 𝐹 ∩ ran 𝑔) = ∅)
7574necon3bii 2987 . . . . . . . . . . 11 ((𝐹 “ ran 𝑔) ≠ ∅ ↔ (dom 𝐹 ∩ ran 𝑔) ≠ ∅)
7673, 75sylibr 237 . . . . . . . . . 10 (𝑔 ∈ (𝒫 𝐴m ω) → (𝐹 “ ran 𝑔) ≠ ∅)
772isf34lem4 9889 . . . . . . . . . 10 ((𝐴 ∈ V ∧ ((𝐹 “ ran 𝑔) ⊆ 𝒫 𝐴 ∧ (𝐹 “ ran 𝑔) ≠ ∅)) → (𝐹 (𝐹 “ ran 𝑔)) = (𝐹 “ (𝐹 “ ran 𝑔)))
7810, 54, 76, 77syl12anc 836 . . . . . . . . 9 (𝑔 ∈ (𝒫 𝐴m ω) → (𝐹 (𝐹 “ ran 𝑔)) = (𝐹 “ (𝐹 “ ran 𝑔)))
792isf34lem3 9887 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ ran 𝑔 ⊆ 𝒫 𝐴) → (𝐹 “ (𝐹 “ ran 𝑔)) = ran 𝑔)
8010, 59, 79syl2anc 587 . . . . . . . . . 10 (𝑔 ∈ (𝒫 𝐴m ω) → (𝐹 “ (𝐹 “ ran 𝑔)) = ran 𝑔)
8180inteqd 4851 . . . . . . . . 9 (𝑔 ∈ (𝒫 𝐴m ω) → (𝐹 “ (𝐹 “ ran 𝑔)) = ran 𝑔)
8278, 81eqtrd 2774 . . . . . . . 8 (𝑔 ∈ (𝒫 𝐴m ω) → (𝐹 (𝐹 “ ran 𝑔)) = ran 𝑔)
8382, 80eleq12d 2828 . . . . . . 7 (𝑔 ∈ (𝒫 𝐴m ω) → ((𝐹 (𝐹 “ ran 𝑔)) ∈ (𝐹 “ (𝐹 “ ran 𝑔)) ↔ ran 𝑔 ∈ ran 𝑔))
8457, 83sylibd 242 . . . . . 6 (𝑔 ∈ (𝒫 𝐴m ω) → ( (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔) → ran 𝑔 ∈ ran 𝑔))
8550, 84imim12d 81 . . . . 5 (𝑔 ∈ (𝒫 𝐴m ω) → ((∀𝑦 ∈ ω ((𝐹𝑔)‘𝑦) ⊆ ((𝐹𝑔)‘suc 𝑦) → (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔)) → (∀𝑦 ∈ ω (𝑔‘suc 𝑦) ⊆ (𝑔𝑦) → ran 𝑔 ∈ ran 𝑔)))
8630, 85sylcom 30 . . . 4 (∀𝑓 ∈ (𝒫 𝐴m ω)(∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓) → (𝑔 ∈ (𝒫 𝐴m ω) → (∀𝑦 ∈ ω (𝑔‘suc 𝑦) ⊆ (𝑔𝑦) → ran 𝑔 ∈ ran 𝑔)))
8786ralrimiv 3096 . . 3 (∀𝑓 ∈ (𝒫 𝐴m ω)(∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓) → ∀𝑔 ∈ (𝒫 𝐴m ω)(∀𝑦 ∈ ω (𝑔‘suc 𝑦) ⊆ (𝑔𝑦) → ran 𝑔 ∈ ran 𝑔))
88 isfin3-3 9880 . . 3 (𝐴𝑉 → (𝐴 ∈ FinIII ↔ ∀𝑔 ∈ (𝒫 𝐴m ω)(∀𝑦 ∈ ω (𝑔‘suc 𝑦) ⊆ (𝑔𝑦) → ran 𝑔 ∈ ran 𝑔)))
8987, 88syl5ibr 249 . 2 (𝐴𝑉 → (∀𝑓 ∈ (𝒫 𝐴m ω)(∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓) → 𝐴 ∈ FinIII))
906, 89impbid2 229 1 (𝐴𝑉 → (𝐴 ∈ FinIII ↔ ∀𝑓 ∈ (𝒫 𝐴m ω)(∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114  wne 2935  wral 3054  Vcvv 3400  cdif 3850  cin 3852  wss 3853  c0 4221  𝒫 cpw 4498   cuni 4806   cint 4846  cmpt 5120  dom cdm 5535  ran crn 5536  cima 5538  ccom 5539  suc csuc 6184   Fn wfn 6344  wf 6345  cfv 6349  (class class class)co 7182  ωcom 7611  m cmap 8449  FinIIIcfin3 9793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7491
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4807  df-int 4847  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-se 5494  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-pred 6139  df-ord 6185  df-on 6186  df-lim 6187  df-suc 6188  df-iota 6307  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7139  df-ov 7185  df-oprab 7186  df-mpo 7187  df-rpss 7479  df-om 7612  df-1st 7726  df-2nd 7727  df-wrecs 7988  df-recs 8049  df-rdg 8087  df-seqom 8125  df-1o 8143  df-er 8332  df-map 8451  df-en 8568  df-dom 8569  df-sdom 8570  df-fin 8571  df-wdom 9114  df-card 9453  df-fin4 9799  df-fin3 9800
This theorem is referenced by:  isfin3-4  9894
  Copyright terms: Public domain W3C validator