MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf34lem6 Structured version   Visualization version   GIF version

Theorem isf34lem6 10370
Description: Lemma for isfin3-4 10372. (Contributed by Stefan O'Rear, 7-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Hypothesis
Ref Expression
compss.a 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
Assertion
Ref Expression
isf34lem6 (𝐴𝑉 → (𝐴 ∈ FinIII ↔ ∀𝑓 ∈ (𝒫 𝐴m ω)(∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓)))
Distinct variable groups:   𝑥,𝑓,𝑦,𝐴   𝑓,𝐹,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   𝐹(𝑥)   𝑉(𝑓)

Proof of Theorem isf34lem6
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 elmapi 8838 . . . 4 (𝑓 ∈ (𝒫 𝐴m ω) → 𝑓:ω⟶𝒫 𝐴)
2 compss.a . . . . . 6 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
32isf34lem7 10369 . . . . 5 ((𝐴 ∈ FinIII𝑓:ω⟶𝒫 𝐴 ∧ ∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦)) → ran 𝑓 ∈ ran 𝑓)
433expia 1118 . . . 4 ((𝐴 ∈ FinIII𝑓:ω⟶𝒫 𝐴) → (∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓))
51, 4sylan2 592 . . 3 ((𝐴 ∈ FinIII𝑓 ∈ (𝒫 𝐴m ω)) → (∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓))
65ralrimiva 3138 . 2 (𝐴 ∈ FinIII → ∀𝑓 ∈ (𝒫 𝐴m ω)(∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓))
7 elmapex 8837 . . . . . . . . . . 11 (𝑔 ∈ (𝒫 𝐴m ω) → (𝒫 𝐴 ∈ V ∧ ω ∈ V))
87simpld 494 . . . . . . . . . 10 (𝑔 ∈ (𝒫 𝐴m ω) → 𝒫 𝐴 ∈ V)
9 pwexb 7746 . . . . . . . . . 10 (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V)
108, 9sylibr 233 . . . . . . . . 9 (𝑔 ∈ (𝒫 𝐴m ω) → 𝐴 ∈ V)
112isf34lem2 10363 . . . . . . . . 9 (𝐴 ∈ V → 𝐹:𝒫 𝐴⟶𝒫 𝐴)
1210, 11syl 17 . . . . . . . 8 (𝑔 ∈ (𝒫 𝐴m ω) → 𝐹:𝒫 𝐴⟶𝒫 𝐴)
13 elmapi 8838 . . . . . . . 8 (𝑔 ∈ (𝒫 𝐴m ω) → 𝑔:ω⟶𝒫 𝐴)
14 fco 6731 . . . . . . . 8 ((𝐹:𝒫 𝐴⟶𝒫 𝐴𝑔:ω⟶𝒫 𝐴) → (𝐹𝑔):ω⟶𝒫 𝐴)
1512, 13, 14syl2anc 583 . . . . . . 7 (𝑔 ∈ (𝒫 𝐴m ω) → (𝐹𝑔):ω⟶𝒫 𝐴)
16 elmapg 8828 . . . . . . . 8 ((𝒫 𝐴 ∈ V ∧ ω ∈ V) → ((𝐹𝑔) ∈ (𝒫 𝐴m ω) ↔ (𝐹𝑔):ω⟶𝒫 𝐴))
177, 16syl 17 . . . . . . 7 (𝑔 ∈ (𝒫 𝐴m ω) → ((𝐹𝑔) ∈ (𝒫 𝐴m ω) ↔ (𝐹𝑔):ω⟶𝒫 𝐴))
1815, 17mpbird 257 . . . . . 6 (𝑔 ∈ (𝒫 𝐴m ω) → (𝐹𝑔) ∈ (𝒫 𝐴m ω))
19 fveq1 6880 . . . . . . . . . 10 (𝑓 = (𝐹𝑔) → (𝑓𝑦) = ((𝐹𝑔)‘𝑦))
20 fveq1 6880 . . . . . . . . . 10 (𝑓 = (𝐹𝑔) → (𝑓‘suc 𝑦) = ((𝐹𝑔)‘suc 𝑦))
2119, 20sseq12d 4007 . . . . . . . . 9 (𝑓 = (𝐹𝑔) → ((𝑓𝑦) ⊆ (𝑓‘suc 𝑦) ↔ ((𝐹𝑔)‘𝑦) ⊆ ((𝐹𝑔)‘suc 𝑦)))
2221ralbidv 3169 . . . . . . . 8 (𝑓 = (𝐹𝑔) → (∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) ↔ ∀𝑦 ∈ ω ((𝐹𝑔)‘𝑦) ⊆ ((𝐹𝑔)‘suc 𝑦)))
23 rneq 5925 . . . . . . . . . . 11 (𝑓 = (𝐹𝑔) → ran 𝑓 = ran (𝐹𝑔))
24 rnco2 6242 . . . . . . . . . . 11 ran (𝐹𝑔) = (𝐹 “ ran 𝑔)
2523, 24eqtrdi 2780 . . . . . . . . . 10 (𝑓 = (𝐹𝑔) → ran 𝑓 = (𝐹 “ ran 𝑔))
2625unieqd 4912 . . . . . . . . 9 (𝑓 = (𝐹𝑔) → ran 𝑓 = (𝐹 “ ran 𝑔))
2726, 25eleq12d 2819 . . . . . . . 8 (𝑓 = (𝐹𝑔) → ( ran 𝑓 ∈ ran 𝑓 (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔)))
2822, 27imbi12d 344 . . . . . . 7 (𝑓 = (𝐹𝑔) → ((∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓) ↔ (∀𝑦 ∈ ω ((𝐹𝑔)‘𝑦) ⊆ ((𝐹𝑔)‘suc 𝑦) → (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔))))
2928rspccv 3601 . . . . . 6 (∀𝑓 ∈ (𝒫 𝐴m ω)(∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓) → ((𝐹𝑔) ∈ (𝒫 𝐴m ω) → (∀𝑦 ∈ ω ((𝐹𝑔)‘𝑦) ⊆ ((𝐹𝑔)‘suc 𝑦) → (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔))))
3018, 29syl5 34 . . . . 5 (∀𝑓 ∈ (𝒫 𝐴m ω)(∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓) → (𝑔 ∈ (𝒫 𝐴m ω) → (∀𝑦 ∈ ω ((𝐹𝑔)‘𝑦) ⊆ ((𝐹𝑔)‘suc 𝑦) → (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔))))
31 sscon 4130 . . . . . . . . 9 ((𝑔‘suc 𝑦) ⊆ (𝑔𝑦) → (𝐴 ∖ (𝑔𝑦)) ⊆ (𝐴 ∖ (𝑔‘suc 𝑦)))
3213ffvelcdmda 7076 . . . . . . . . . . . 12 ((𝑔 ∈ (𝒫 𝐴m ω) ∧ 𝑦 ∈ ω) → (𝑔𝑦) ∈ 𝒫 𝐴)
3332elpwid 4603 . . . . . . . . . . 11 ((𝑔 ∈ (𝒫 𝐴m ω) ∧ 𝑦 ∈ ω) → (𝑔𝑦) ⊆ 𝐴)
342isf34lem1 10362 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ (𝑔𝑦) ⊆ 𝐴) → (𝐹‘(𝑔𝑦)) = (𝐴 ∖ (𝑔𝑦)))
3510, 33, 34syl2an2r 682 . . . . . . . . . 10 ((𝑔 ∈ (𝒫 𝐴m ω) ∧ 𝑦 ∈ ω) → (𝐹‘(𝑔𝑦)) = (𝐴 ∖ (𝑔𝑦)))
36 peano2 7874 . . . . . . . . . . . . 13 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
37 ffvelcdm 7073 . . . . . . . . . . . . 13 ((𝑔:ω⟶𝒫 𝐴 ∧ suc 𝑦 ∈ ω) → (𝑔‘suc 𝑦) ∈ 𝒫 𝐴)
3813, 36, 37syl2an 595 . . . . . . . . . . . 12 ((𝑔 ∈ (𝒫 𝐴m ω) ∧ 𝑦 ∈ ω) → (𝑔‘suc 𝑦) ∈ 𝒫 𝐴)
3938elpwid 4603 . . . . . . . . . . 11 ((𝑔 ∈ (𝒫 𝐴m ω) ∧ 𝑦 ∈ ω) → (𝑔‘suc 𝑦) ⊆ 𝐴)
402isf34lem1 10362 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ (𝑔‘suc 𝑦) ⊆ 𝐴) → (𝐹‘(𝑔‘suc 𝑦)) = (𝐴 ∖ (𝑔‘suc 𝑦)))
4110, 39, 40syl2an2r 682 . . . . . . . . . 10 ((𝑔 ∈ (𝒫 𝐴m ω) ∧ 𝑦 ∈ ω) → (𝐹‘(𝑔‘suc 𝑦)) = (𝐴 ∖ (𝑔‘suc 𝑦)))
4235, 41sseq12d 4007 . . . . . . . . 9 ((𝑔 ∈ (𝒫 𝐴m ω) ∧ 𝑦 ∈ ω) → ((𝐹‘(𝑔𝑦)) ⊆ (𝐹‘(𝑔‘suc 𝑦)) ↔ (𝐴 ∖ (𝑔𝑦)) ⊆ (𝐴 ∖ (𝑔‘suc 𝑦))))
4331, 42imbitrrid 245 . . . . . . . 8 ((𝑔 ∈ (𝒫 𝐴m ω) ∧ 𝑦 ∈ ω) → ((𝑔‘suc 𝑦) ⊆ (𝑔𝑦) → (𝐹‘(𝑔𝑦)) ⊆ (𝐹‘(𝑔‘suc 𝑦))))
44 fvco3 6980 . . . . . . . . . 10 ((𝑔:ω⟶𝒫 𝐴𝑦 ∈ ω) → ((𝐹𝑔)‘𝑦) = (𝐹‘(𝑔𝑦)))
4513, 44sylan 579 . . . . . . . . 9 ((𝑔 ∈ (𝒫 𝐴m ω) ∧ 𝑦 ∈ ω) → ((𝐹𝑔)‘𝑦) = (𝐹‘(𝑔𝑦)))
46 fvco3 6980 . . . . . . . . . 10 ((𝑔:ω⟶𝒫 𝐴 ∧ suc 𝑦 ∈ ω) → ((𝐹𝑔)‘suc 𝑦) = (𝐹‘(𝑔‘suc 𝑦)))
4713, 36, 46syl2an 595 . . . . . . . . 9 ((𝑔 ∈ (𝒫 𝐴m ω) ∧ 𝑦 ∈ ω) → ((𝐹𝑔)‘suc 𝑦) = (𝐹‘(𝑔‘suc 𝑦)))
4845, 47sseq12d 4007 . . . . . . . 8 ((𝑔 ∈ (𝒫 𝐴m ω) ∧ 𝑦 ∈ ω) → (((𝐹𝑔)‘𝑦) ⊆ ((𝐹𝑔)‘suc 𝑦) ↔ (𝐹‘(𝑔𝑦)) ⊆ (𝐹‘(𝑔‘suc 𝑦))))
4943, 48sylibrd 259 . . . . . . 7 ((𝑔 ∈ (𝒫 𝐴m ω) ∧ 𝑦 ∈ ω) → ((𝑔‘suc 𝑦) ⊆ (𝑔𝑦) → ((𝐹𝑔)‘𝑦) ⊆ ((𝐹𝑔)‘suc 𝑦)))
5049ralimdva 3159 . . . . . 6 (𝑔 ∈ (𝒫 𝐴m ω) → (∀𝑦 ∈ ω (𝑔‘suc 𝑦) ⊆ (𝑔𝑦) → ∀𝑦 ∈ ω ((𝐹𝑔)‘𝑦) ⊆ ((𝐹𝑔)‘suc 𝑦)))
5112ffnd 6708 . . . . . . . 8 (𝑔 ∈ (𝒫 𝐴m ω) → 𝐹 Fn 𝒫 𝐴)
52 imassrn 6060 . . . . . . . . 9 (𝐹 “ ran 𝑔) ⊆ ran 𝐹
5312frnd 6715 . . . . . . . . 9 (𝑔 ∈ (𝒫 𝐴m ω) → ran 𝐹 ⊆ 𝒫 𝐴)
5452, 53sstrid 3985 . . . . . . . 8 (𝑔 ∈ (𝒫 𝐴m ω) → (𝐹 “ ran 𝑔) ⊆ 𝒫 𝐴)
55 fnfvima 7226 . . . . . . . . 9 ((𝐹 Fn 𝒫 𝐴 ∧ (𝐹 “ ran 𝑔) ⊆ 𝒫 𝐴 (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔)) → (𝐹 (𝐹 “ ran 𝑔)) ∈ (𝐹 “ (𝐹 “ ran 𝑔)))
56553expia 1118 . . . . . . . 8 ((𝐹 Fn 𝒫 𝐴 ∧ (𝐹 “ ran 𝑔) ⊆ 𝒫 𝐴) → ( (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔) → (𝐹 (𝐹 “ ran 𝑔)) ∈ (𝐹 “ (𝐹 “ ran 𝑔))))
5751, 54, 56syl2anc 583 . . . . . . 7 (𝑔 ∈ (𝒫 𝐴m ω) → ( (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔) → (𝐹 (𝐹 “ ran 𝑔)) ∈ (𝐹 “ (𝐹 “ ran 𝑔))))
58 incom 4193 . . . . . . . . . . . . 13 (dom 𝐹 ∩ ran 𝑔) = (ran 𝑔 ∩ dom 𝐹)
5913frnd 6715 . . . . . . . . . . . . . . 15 (𝑔 ∈ (𝒫 𝐴m ω) → ran 𝑔 ⊆ 𝒫 𝐴)
6012fdmd 6718 . . . . . . . . . . . . . . 15 (𝑔 ∈ (𝒫 𝐴m ω) → dom 𝐹 = 𝒫 𝐴)
6159, 60sseqtrrd 4015 . . . . . . . . . . . . . 14 (𝑔 ∈ (𝒫 𝐴m ω) → ran 𝑔 ⊆ dom 𝐹)
62 df-ss 3957 . . . . . . . . . . . . . 14 (ran 𝑔 ⊆ dom 𝐹 ↔ (ran 𝑔 ∩ dom 𝐹) = ran 𝑔)
6361, 62sylib 217 . . . . . . . . . . . . 13 (𝑔 ∈ (𝒫 𝐴m ω) → (ran 𝑔 ∩ dom 𝐹) = ran 𝑔)
6458, 63eqtrid 2776 . . . . . . . . . . . 12 (𝑔 ∈ (𝒫 𝐴m ω) → (dom 𝐹 ∩ ran 𝑔) = ran 𝑔)
6513fdmd 6718 . . . . . . . . . . . . . 14 (𝑔 ∈ (𝒫 𝐴m ω) → dom 𝑔 = ω)
66 peano1 7872 . . . . . . . . . . . . . . 15 ∅ ∈ ω
67 ne0i 4326 . . . . . . . . . . . . . . 15 (∅ ∈ ω → ω ≠ ∅)
6866, 67mp1i 13 . . . . . . . . . . . . . 14 (𝑔 ∈ (𝒫 𝐴m ω) → ω ≠ ∅)
6965, 68eqnetrd 3000 . . . . . . . . . . . . 13 (𝑔 ∈ (𝒫 𝐴m ω) → dom 𝑔 ≠ ∅)
70 dm0rn0 5914 . . . . . . . . . . . . . 14 (dom 𝑔 = ∅ ↔ ran 𝑔 = ∅)
7170necon3bii 2985 . . . . . . . . . . . . 13 (dom 𝑔 ≠ ∅ ↔ ran 𝑔 ≠ ∅)
7269, 71sylib 217 . . . . . . . . . . . 12 (𝑔 ∈ (𝒫 𝐴m ω) → ran 𝑔 ≠ ∅)
7364, 72eqnetrd 3000 . . . . . . . . . . 11 (𝑔 ∈ (𝒫 𝐴m ω) → (dom 𝐹 ∩ ran 𝑔) ≠ ∅)
74 imadisj 6069 . . . . . . . . . . . 12 ((𝐹 “ ran 𝑔) = ∅ ↔ (dom 𝐹 ∩ ran 𝑔) = ∅)
7574necon3bii 2985 . . . . . . . . . . 11 ((𝐹 “ ran 𝑔) ≠ ∅ ↔ (dom 𝐹 ∩ ran 𝑔) ≠ ∅)
7673, 75sylibr 233 . . . . . . . . . 10 (𝑔 ∈ (𝒫 𝐴m ω) → (𝐹 “ ran 𝑔) ≠ ∅)
772isf34lem4 10367 . . . . . . . . . 10 ((𝐴 ∈ V ∧ ((𝐹 “ ran 𝑔) ⊆ 𝒫 𝐴 ∧ (𝐹 “ ran 𝑔) ≠ ∅)) → (𝐹 (𝐹 “ ran 𝑔)) = (𝐹 “ (𝐹 “ ran 𝑔)))
7810, 54, 76, 77syl12anc 834 . . . . . . . . 9 (𝑔 ∈ (𝒫 𝐴m ω) → (𝐹 (𝐹 “ ran 𝑔)) = (𝐹 “ (𝐹 “ ran 𝑔)))
792isf34lem3 10365 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ ran 𝑔 ⊆ 𝒫 𝐴) → (𝐹 “ (𝐹 “ ran 𝑔)) = ran 𝑔)
8010, 59, 79syl2anc 583 . . . . . . . . . 10 (𝑔 ∈ (𝒫 𝐴m ω) → (𝐹 “ (𝐹 “ ran 𝑔)) = ran 𝑔)
8180inteqd 4945 . . . . . . . . 9 (𝑔 ∈ (𝒫 𝐴m ω) → (𝐹 “ (𝐹 “ ran 𝑔)) = ran 𝑔)
8278, 81eqtrd 2764 . . . . . . . 8 (𝑔 ∈ (𝒫 𝐴m ω) → (𝐹 (𝐹 “ ran 𝑔)) = ran 𝑔)
8382, 80eleq12d 2819 . . . . . . 7 (𝑔 ∈ (𝒫 𝐴m ω) → ((𝐹 (𝐹 “ ran 𝑔)) ∈ (𝐹 “ (𝐹 “ ran 𝑔)) ↔ ran 𝑔 ∈ ran 𝑔))
8457, 83sylibd 238 . . . . . 6 (𝑔 ∈ (𝒫 𝐴m ω) → ( (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔) → ran 𝑔 ∈ ran 𝑔))
8550, 84imim12d 81 . . . . 5 (𝑔 ∈ (𝒫 𝐴m ω) → ((∀𝑦 ∈ ω ((𝐹𝑔)‘𝑦) ⊆ ((𝐹𝑔)‘suc 𝑦) → (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔)) → (∀𝑦 ∈ ω (𝑔‘suc 𝑦) ⊆ (𝑔𝑦) → ran 𝑔 ∈ ran 𝑔)))
8630, 85sylcom 30 . . . 4 (∀𝑓 ∈ (𝒫 𝐴m ω)(∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓) → (𝑔 ∈ (𝒫 𝐴m ω) → (∀𝑦 ∈ ω (𝑔‘suc 𝑦) ⊆ (𝑔𝑦) → ran 𝑔 ∈ ran 𝑔)))
8786ralrimiv 3137 . . 3 (∀𝑓 ∈ (𝒫 𝐴m ω)(∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓) → ∀𝑔 ∈ (𝒫 𝐴m ω)(∀𝑦 ∈ ω (𝑔‘suc 𝑦) ⊆ (𝑔𝑦) → ran 𝑔 ∈ ran 𝑔))
88 isfin3-3 10358 . . 3 (𝐴𝑉 → (𝐴 ∈ FinIII ↔ ∀𝑔 ∈ (𝒫 𝐴m ω)(∀𝑦 ∈ ω (𝑔‘suc 𝑦) ⊆ (𝑔𝑦) → ran 𝑔 ∈ ran 𝑔)))
8987, 88imbitrrid 245 . 2 (𝐴𝑉 → (∀𝑓 ∈ (𝒫 𝐴m ω)(∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓) → 𝐴 ∈ FinIII))
906, 89impbid2 225 1 (𝐴𝑉 → (𝐴 ∈ FinIII ↔ ∀𝑓 ∈ (𝒫 𝐴m ω)(∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  wne 2932  wral 3053  Vcvv 3466  cdif 3937  cin 3939  wss 3940  c0 4314  𝒫 cpw 4594   cuni 4899   cint 4940  cmpt 5221  dom cdm 5666  ran crn 5667  cima 5669  ccom 5670  suc csuc 6356   Fn wfn 6528  wf 6529  cfv 6533  (class class class)co 7401  ωcom 7848  m cmap 8815  FinIIIcfin3 10271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-rpss 7706  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-seqom 8443  df-1o 8461  df-er 8698  df-map 8817  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-wdom 9555  df-card 9929  df-fin4 10277  df-fin3 10278
This theorem is referenced by:  isfin3-4  10372
  Copyright terms: Public domain W3C validator