MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchpwdom Structured version   Visualization version   GIF version

Theorem gchpwdom 10558
Description: A relationship between dominance over the powerset and strict dominance when the sets involved are infinite GCH-sets. Proposition 3.1 of [KanamoriPincus] p. 421. (Contributed by Mario Carneiro, 31-May-2015.)
Assertion
Ref Expression
gchpwdom ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) → (𝐴𝐵 ↔ 𝒫 𝐴𝐵))

Proof of Theorem gchpwdom
StepHypRef Expression
1 simpl2 1193 . . . . . . 7 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝐴 ∈ GCH)
21pwexd 5317 . . . . . 6 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝒫 𝐴 ∈ V)
3 simpl3 1194 . . . . . 6 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝐵 ∈ GCH)
4 djudoml 10073 . . . . . 6 ((𝒫 𝐴 ∈ V ∧ 𝐵 ∈ GCH) → 𝒫 𝐴 ≼ (𝒫 𝐴𝐵))
52, 3, 4syl2anc 584 . . . . 5 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝒫 𝐴 ≼ (𝒫 𝐴𝐵))
6 domen2 9033 . . . . 5 (𝐵 ≈ (𝒫 𝐴𝐵) → (𝒫 𝐴𝐵 ↔ 𝒫 𝐴 ≼ (𝒫 𝐴𝐵)))
75, 6syl5ibrcom 247 . . . 4 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝐵 ≈ (𝒫 𝐴𝐵) → 𝒫 𝐴𝐵))
8 djucomen 10066 . . . . . . . 8 ((𝐵 ∈ GCH ∧ 𝒫 𝐴 ∈ V) → (𝐵 ⊔ 𝒫 𝐴) ≈ (𝒫 𝐴𝐵))
93, 2, 8syl2anc 584 . . . . . . 7 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝐵 ⊔ 𝒫 𝐴) ≈ (𝒫 𝐴𝐵))
10 entr 8928 . . . . . . . 8 (((𝐵 ⊔ 𝒫 𝐴) ≈ (𝒫 𝐴𝐵) ∧ (𝒫 𝐴𝐵) ≈ 𝒫 𝐵) → (𝐵 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐵)
1110ex 412 . . . . . . 7 ((𝐵 ⊔ 𝒫 𝐴) ≈ (𝒫 𝐴𝐵) → ((𝒫 𝐴𝐵) ≈ 𝒫 𝐵 → (𝐵 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐵))
129, 11syl 17 . . . . . 6 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → ((𝒫 𝐴𝐵) ≈ 𝒫 𝐵 → (𝐵 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐵))
13 ensym 8925 . . . . . . 7 ((𝐵 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐵 → 𝒫 𝐵 ≈ (𝐵 ⊔ 𝒫 𝐴))
14 endom 8901 . . . . . . 7 (𝒫 𝐵 ≈ (𝐵 ⊔ 𝒫 𝐴) → 𝒫 𝐵 ≼ (𝐵 ⊔ 𝒫 𝐴))
1513, 14syl 17 . . . . . 6 ((𝐵 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐵 → 𝒫 𝐵 ≼ (𝐵 ⊔ 𝒫 𝐴))
1612, 15syl6 35 . . . . 5 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → ((𝒫 𝐴𝐵) ≈ 𝒫 𝐵 → 𝒫 𝐵 ≼ (𝐵 ⊔ 𝒫 𝐴)))
17 domsdomtr 9025 . . . . . . . . . . 11 ((ω ≼ 𝐴𝐴𝐵) → ω ≺ 𝐵)
18173ad2antl1 1186 . . . . . . . . . 10 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → ω ≺ 𝐵)
19 sdomnsym 9015 . . . . . . . . . 10 (ω ≺ 𝐵 → ¬ 𝐵 ≺ ω)
2018, 19syl 17 . . . . . . . . 9 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → ¬ 𝐵 ≺ ω)
21 isfinite 9542 . . . . . . . . 9 (𝐵 ∈ Fin ↔ 𝐵 ≺ ω)
2220, 21sylnibr 329 . . . . . . . 8 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → ¬ 𝐵 ∈ Fin)
23 gchdjuidm 10556 . . . . . . . 8 ((𝐵 ∈ GCH ∧ ¬ 𝐵 ∈ Fin) → (𝐵𝐵) ≈ 𝐵)
243, 22, 23syl2anc 584 . . . . . . 7 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝐵𝐵) ≈ 𝐵)
25 pwen 9063 . . . . . . 7 ((𝐵𝐵) ≈ 𝐵 → 𝒫 (𝐵𝐵) ≈ 𝒫 𝐵)
26 domen1 9032 . . . . . . 7 (𝒫 (𝐵𝐵) ≈ 𝒫 𝐵 → (𝒫 (𝐵𝐵) ≼ (𝐵 ⊔ 𝒫 𝐴) ↔ 𝒫 𝐵 ≼ (𝐵 ⊔ 𝒫 𝐴)))
2724, 25, 263syl 18 . . . . . 6 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 (𝐵𝐵) ≼ (𝐵 ⊔ 𝒫 𝐴) ↔ 𝒫 𝐵 ≼ (𝐵 ⊔ 𝒫 𝐴)))
28 pwdjudom 10103 . . . . . . 7 (𝒫 (𝐵𝐵) ≼ (𝐵 ⊔ 𝒫 𝐴) → 𝒫 𝐵 ≼ 𝒫 𝐴)
29 canth2g 9044 . . . . . . . . 9 (𝐵 ∈ GCH → 𝐵 ≺ 𝒫 𝐵)
30 sdomdomtr 9023 . . . . . . . . . 10 ((𝐵 ≺ 𝒫 𝐵 ∧ 𝒫 𝐵 ≼ 𝒫 𝐴) → 𝐵 ≺ 𝒫 𝐴)
3130ex 412 . . . . . . . . 9 (𝐵 ≺ 𝒫 𝐵 → (𝒫 𝐵 ≼ 𝒫 𝐴𝐵 ≺ 𝒫 𝐴))
323, 29, 313syl 18 . . . . . . . 8 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐵 ≼ 𝒫 𝐴𝐵 ≺ 𝒫 𝐴))
33 gchi 10512 . . . . . . . . . 10 ((𝐴 ∈ GCH ∧ 𝐴𝐵𝐵 ≺ 𝒫 𝐴) → 𝐴 ∈ Fin)
34333expia 1121 . . . . . . . . 9 ((𝐴 ∈ GCH ∧ 𝐴𝐵) → (𝐵 ≺ 𝒫 𝐴𝐴 ∈ Fin))
35343ad2antl2 1187 . . . . . . . 8 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝐵 ≺ 𝒫 𝐴𝐴 ∈ Fin))
36 isfinite 9542 . . . . . . . . 9 (𝐴 ∈ Fin ↔ 𝐴 ≺ ω)
37 simpl1 1192 . . . . . . . . . . 11 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → ω ≼ 𝐴)
38 domnsym 9016 . . . . . . . . . . 11 (ω ≼ 𝐴 → ¬ 𝐴 ≺ ω)
3937, 38syl 17 . . . . . . . . . 10 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → ¬ 𝐴 ≺ ω)
4039pm2.21d 121 . . . . . . . . 9 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝐴 ≺ ω → 𝒫 𝐴𝐵))
4136, 40biimtrid 242 . . . . . . . 8 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝐴 ∈ Fin → 𝒫 𝐴𝐵))
4232, 35, 413syld 60 . . . . . . 7 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐵 ≼ 𝒫 𝐴 → 𝒫 𝐴𝐵))
4328, 42syl5 34 . . . . . 6 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 (𝐵𝐵) ≼ (𝐵 ⊔ 𝒫 𝐴) → 𝒫 𝐴𝐵))
4427, 43sylbird 260 . . . . 5 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐵 ≼ (𝐵 ⊔ 𝒫 𝐴) → 𝒫 𝐴𝐵))
4516, 44syld 47 . . . 4 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → ((𝒫 𝐴𝐵) ≈ 𝒫 𝐵 → 𝒫 𝐴𝐵))
46 djudoml 10073 . . . . . . 7 ((𝐵 ∈ GCH ∧ 𝒫 𝐴 ∈ V) → 𝐵 ≼ (𝐵 ⊔ 𝒫 𝐴))
473, 2, 46syl2anc 584 . . . . . 6 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝐵 ≼ (𝐵 ⊔ 𝒫 𝐴))
48 domentr 8935 . . . . . 6 ((𝐵 ≼ (𝐵 ⊔ 𝒫 𝐴) ∧ (𝐵 ⊔ 𝒫 𝐴) ≈ (𝒫 𝐴𝐵)) → 𝐵 ≼ (𝒫 𝐴𝐵))
4947, 9, 48syl2anc 584 . . . . 5 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝐵 ≼ (𝒫 𝐴𝐵))
50 sdomdom 8902 . . . . . . . . . 10 (𝐴𝐵𝐴𝐵)
5150adantl 481 . . . . . . . . 9 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝐴𝐵)
52 pwdom 9042 . . . . . . . . 9 (𝐴𝐵 → 𝒫 𝐴 ≼ 𝒫 𝐵)
5351, 52syl 17 . . . . . . . 8 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝒫 𝐴 ≼ 𝒫 𝐵)
54 djudom1 10071 . . . . . . . 8 ((𝒫 𝐴 ≼ 𝒫 𝐵𝐵 ∈ GCH) → (𝒫 𝐴𝐵) ≼ (𝒫 𝐵𝐵))
5553, 3, 54syl2anc 584 . . . . . . 7 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐴𝐵) ≼ (𝒫 𝐵𝐵))
56 sdomdom 8902 . . . . . . . . 9 (𝐵 ≺ 𝒫 𝐵𝐵 ≼ 𝒫 𝐵)
573, 29, 563syl 18 . . . . . . . 8 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝐵 ≼ 𝒫 𝐵)
583pwexd 5317 . . . . . . . 8 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝒫 𝐵 ∈ V)
59 djudom2 10072 . . . . . . . 8 ((𝐵 ≼ 𝒫 𝐵 ∧ 𝒫 𝐵 ∈ V) → (𝒫 𝐵𝐵) ≼ (𝒫 𝐵 ⊔ 𝒫 𝐵))
6057, 58, 59syl2anc 584 . . . . . . 7 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐵𝐵) ≼ (𝒫 𝐵 ⊔ 𝒫 𝐵))
61 domtr 8929 . . . . . . 7 (((𝒫 𝐴𝐵) ≼ (𝒫 𝐵𝐵) ∧ (𝒫 𝐵𝐵) ≼ (𝒫 𝐵 ⊔ 𝒫 𝐵)) → (𝒫 𝐴𝐵) ≼ (𝒫 𝐵 ⊔ 𝒫 𝐵))
6255, 60, 61syl2anc 584 . . . . . 6 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐴𝐵) ≼ (𝒫 𝐵 ⊔ 𝒫 𝐵))
63 pwdju1 10079 . . . . . . . 8 (𝐵 ∈ GCH → (𝒫 𝐵 ⊔ 𝒫 𝐵) ≈ 𝒫 (𝐵 ⊔ 1o))
643, 63syl 17 . . . . . . 7 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐵 ⊔ 𝒫 𝐵) ≈ 𝒫 (𝐵 ⊔ 1o))
65 gchdju1 10544 . . . . . . . . 9 ((𝐵 ∈ GCH ∧ ¬ 𝐵 ∈ Fin) → (𝐵 ⊔ 1o) ≈ 𝐵)
663, 22, 65syl2anc 584 . . . . . . . 8 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝐵 ⊔ 1o) ≈ 𝐵)
67 pwen 9063 . . . . . . . 8 ((𝐵 ⊔ 1o) ≈ 𝐵 → 𝒫 (𝐵 ⊔ 1o) ≈ 𝒫 𝐵)
6866, 67syl 17 . . . . . . 7 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝒫 (𝐵 ⊔ 1o) ≈ 𝒫 𝐵)
69 entr 8928 . . . . . . 7 (((𝒫 𝐵 ⊔ 𝒫 𝐵) ≈ 𝒫 (𝐵 ⊔ 1o) ∧ 𝒫 (𝐵 ⊔ 1o) ≈ 𝒫 𝐵) → (𝒫 𝐵 ⊔ 𝒫 𝐵) ≈ 𝒫 𝐵)
7064, 68, 69syl2anc 584 . . . . . 6 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐵 ⊔ 𝒫 𝐵) ≈ 𝒫 𝐵)
71 domentr 8935 . . . . . 6 (((𝒫 𝐴𝐵) ≼ (𝒫 𝐵 ⊔ 𝒫 𝐵) ∧ (𝒫 𝐵 ⊔ 𝒫 𝐵) ≈ 𝒫 𝐵) → (𝒫 𝐴𝐵) ≼ 𝒫 𝐵)
7262, 70, 71syl2anc 584 . . . . 5 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐴𝐵) ≼ 𝒫 𝐵)
73 gchor 10515 . . . . 5 (((𝐵 ∈ GCH ∧ ¬ 𝐵 ∈ Fin) ∧ (𝐵 ≼ (𝒫 𝐴𝐵) ∧ (𝒫 𝐴𝐵) ≼ 𝒫 𝐵)) → (𝐵 ≈ (𝒫 𝐴𝐵) ∨ (𝒫 𝐴𝐵) ≈ 𝒫 𝐵))
743, 22, 49, 72, 73syl22anc 838 . . . 4 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝐵 ≈ (𝒫 𝐴𝐵) ∨ (𝒫 𝐴𝐵) ≈ 𝒫 𝐵))
757, 45, 74mpjaod 860 . . 3 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝒫 𝐴𝐵)
7675ex 412 . 2 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) → (𝐴𝐵 → 𝒫 𝐴𝐵))
77 reldom 8875 . . . . 5 Rel ≼
7877brrelex1i 5672 . . . 4 (𝒫 𝐴𝐵 → 𝒫 𝐴 ∈ V)
79 pwexb 7699 . . . . 5 (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V)
80 canth2g 9044 . . . . 5 (𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴)
8179, 80sylbir 235 . . . 4 (𝒫 𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴)
8278, 81syl 17 . . 3 (𝒫 𝐴𝐵𝐴 ≺ 𝒫 𝐴)
83 sdomdomtr 9023 . . 3 ((𝐴 ≺ 𝒫 𝐴 ∧ 𝒫 𝐴𝐵) → 𝐴𝐵)
8482, 83mpancom 688 . 2 (𝒫 𝐴𝐵𝐴𝐵)
8576, 84impbid1 225 1 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) → (𝐴𝐵 ↔ 𝒫 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086  wcel 2111  Vcvv 3436  𝒫 cpw 4550   class class class wbr 5091  ωcom 7796  1oc1o 8378  cen 8866  cdom 8867  csdm 8868  Fincfn 8869  cdju 9788  GCHcgch 10508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-seqom 8367  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390  df-oexp 8391  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-oi 9396  df-har 9443  df-wdom 9451  df-cnf 9552  df-dju 9791  df-card 9829  df-fin4 10175  df-gch 10509
This theorem is referenced by:  gchaleph2  10560  gchina  10587
  Copyright terms: Public domain W3C validator