MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchpwdom Structured version   Visualization version   GIF version

Theorem gchpwdom 10739
Description: A relationship between dominance over the powerset and strict dominance when the sets involved are infinite GCH-sets. Proposition 3.1 of [KanamoriPincus] p. 421. (Contributed by Mario Carneiro, 31-May-2015.)
Assertion
Ref Expression
gchpwdom ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) → (𝐴𝐵 ↔ 𝒫 𝐴𝐵))

Proof of Theorem gchpwdom
StepHypRef Expression
1 simpl2 1192 . . . . . . 7 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝐴 ∈ GCH)
21pwexd 5397 . . . . . 6 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝒫 𝐴 ∈ V)
3 simpl3 1193 . . . . . 6 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝐵 ∈ GCH)
4 djudoml 10254 . . . . . 6 ((𝒫 𝐴 ∈ V ∧ 𝐵 ∈ GCH) → 𝒫 𝐴 ≼ (𝒫 𝐴𝐵))
52, 3, 4syl2anc 583 . . . . 5 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝒫 𝐴 ≼ (𝒫 𝐴𝐵))
6 domen2 9186 . . . . 5 (𝐵 ≈ (𝒫 𝐴𝐵) → (𝒫 𝐴𝐵 ↔ 𝒫 𝐴 ≼ (𝒫 𝐴𝐵)))
75, 6syl5ibrcom 247 . . . 4 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝐵 ≈ (𝒫 𝐴𝐵) → 𝒫 𝐴𝐵))
8 djucomen 10247 . . . . . . . 8 ((𝐵 ∈ GCH ∧ 𝒫 𝐴 ∈ V) → (𝐵 ⊔ 𝒫 𝐴) ≈ (𝒫 𝐴𝐵))
93, 2, 8syl2anc 583 . . . . . . 7 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝐵 ⊔ 𝒫 𝐴) ≈ (𝒫 𝐴𝐵))
10 entr 9066 . . . . . . . 8 (((𝐵 ⊔ 𝒫 𝐴) ≈ (𝒫 𝐴𝐵) ∧ (𝒫 𝐴𝐵) ≈ 𝒫 𝐵) → (𝐵 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐵)
1110ex 412 . . . . . . 7 ((𝐵 ⊔ 𝒫 𝐴) ≈ (𝒫 𝐴𝐵) → ((𝒫 𝐴𝐵) ≈ 𝒫 𝐵 → (𝐵 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐵))
129, 11syl 17 . . . . . 6 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → ((𝒫 𝐴𝐵) ≈ 𝒫 𝐵 → (𝐵 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐵))
13 ensym 9063 . . . . . . 7 ((𝐵 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐵 → 𝒫 𝐵 ≈ (𝐵 ⊔ 𝒫 𝐴))
14 endom 9039 . . . . . . 7 (𝒫 𝐵 ≈ (𝐵 ⊔ 𝒫 𝐴) → 𝒫 𝐵 ≼ (𝐵 ⊔ 𝒫 𝐴))
1513, 14syl 17 . . . . . 6 ((𝐵 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐵 → 𝒫 𝐵 ≼ (𝐵 ⊔ 𝒫 𝐴))
1612, 15syl6 35 . . . . 5 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → ((𝒫 𝐴𝐵) ≈ 𝒫 𝐵 → 𝒫 𝐵 ≼ (𝐵 ⊔ 𝒫 𝐴)))
17 domsdomtr 9178 . . . . . . . . . . 11 ((ω ≼ 𝐴𝐴𝐵) → ω ≺ 𝐵)
18173ad2antl1 1185 . . . . . . . . . 10 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → ω ≺ 𝐵)
19 sdomnsym 9164 . . . . . . . . . 10 (ω ≺ 𝐵 → ¬ 𝐵 ≺ ω)
2018, 19syl 17 . . . . . . . . 9 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → ¬ 𝐵 ≺ ω)
21 isfinite 9721 . . . . . . . . 9 (𝐵 ∈ Fin ↔ 𝐵 ≺ ω)
2220, 21sylnibr 329 . . . . . . . 8 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → ¬ 𝐵 ∈ Fin)
23 gchdjuidm 10737 . . . . . . . 8 ((𝐵 ∈ GCH ∧ ¬ 𝐵 ∈ Fin) → (𝐵𝐵) ≈ 𝐵)
243, 22, 23syl2anc 583 . . . . . . 7 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝐵𝐵) ≈ 𝐵)
25 pwen 9216 . . . . . . 7 ((𝐵𝐵) ≈ 𝐵 → 𝒫 (𝐵𝐵) ≈ 𝒫 𝐵)
26 domen1 9185 . . . . . . 7 (𝒫 (𝐵𝐵) ≈ 𝒫 𝐵 → (𝒫 (𝐵𝐵) ≼ (𝐵 ⊔ 𝒫 𝐴) ↔ 𝒫 𝐵 ≼ (𝐵 ⊔ 𝒫 𝐴)))
2724, 25, 263syl 18 . . . . . 6 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 (𝐵𝐵) ≼ (𝐵 ⊔ 𝒫 𝐴) ↔ 𝒫 𝐵 ≼ (𝐵 ⊔ 𝒫 𝐴)))
28 pwdjudom 10284 . . . . . . 7 (𝒫 (𝐵𝐵) ≼ (𝐵 ⊔ 𝒫 𝐴) → 𝒫 𝐵 ≼ 𝒫 𝐴)
29 canth2g 9197 . . . . . . . . 9 (𝐵 ∈ GCH → 𝐵 ≺ 𝒫 𝐵)
30 sdomdomtr 9176 . . . . . . . . . 10 ((𝐵 ≺ 𝒫 𝐵 ∧ 𝒫 𝐵 ≼ 𝒫 𝐴) → 𝐵 ≺ 𝒫 𝐴)
3130ex 412 . . . . . . . . 9 (𝐵 ≺ 𝒫 𝐵 → (𝒫 𝐵 ≼ 𝒫 𝐴𝐵 ≺ 𝒫 𝐴))
323, 29, 313syl 18 . . . . . . . 8 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐵 ≼ 𝒫 𝐴𝐵 ≺ 𝒫 𝐴))
33 gchi 10693 . . . . . . . . . 10 ((𝐴 ∈ GCH ∧ 𝐴𝐵𝐵 ≺ 𝒫 𝐴) → 𝐴 ∈ Fin)
34333expia 1121 . . . . . . . . 9 ((𝐴 ∈ GCH ∧ 𝐴𝐵) → (𝐵 ≺ 𝒫 𝐴𝐴 ∈ Fin))
35343ad2antl2 1186 . . . . . . . 8 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝐵 ≺ 𝒫 𝐴𝐴 ∈ Fin))
36 isfinite 9721 . . . . . . . . 9 (𝐴 ∈ Fin ↔ 𝐴 ≺ ω)
37 simpl1 1191 . . . . . . . . . . 11 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → ω ≼ 𝐴)
38 domnsym 9165 . . . . . . . . . . 11 (ω ≼ 𝐴 → ¬ 𝐴 ≺ ω)
3937, 38syl 17 . . . . . . . . . 10 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → ¬ 𝐴 ≺ ω)
4039pm2.21d 121 . . . . . . . . 9 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝐴 ≺ ω → 𝒫 𝐴𝐵))
4136, 40biimtrid 242 . . . . . . . 8 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝐴 ∈ Fin → 𝒫 𝐴𝐵))
4232, 35, 413syld 60 . . . . . . 7 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐵 ≼ 𝒫 𝐴 → 𝒫 𝐴𝐵))
4328, 42syl5 34 . . . . . 6 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 (𝐵𝐵) ≼ (𝐵 ⊔ 𝒫 𝐴) → 𝒫 𝐴𝐵))
4427, 43sylbird 260 . . . . 5 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐵 ≼ (𝐵 ⊔ 𝒫 𝐴) → 𝒫 𝐴𝐵))
4516, 44syld 47 . . . 4 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → ((𝒫 𝐴𝐵) ≈ 𝒫 𝐵 → 𝒫 𝐴𝐵))
46 djudoml 10254 . . . . . . 7 ((𝐵 ∈ GCH ∧ 𝒫 𝐴 ∈ V) → 𝐵 ≼ (𝐵 ⊔ 𝒫 𝐴))
473, 2, 46syl2anc 583 . . . . . 6 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝐵 ≼ (𝐵 ⊔ 𝒫 𝐴))
48 domentr 9073 . . . . . 6 ((𝐵 ≼ (𝐵 ⊔ 𝒫 𝐴) ∧ (𝐵 ⊔ 𝒫 𝐴) ≈ (𝒫 𝐴𝐵)) → 𝐵 ≼ (𝒫 𝐴𝐵))
4947, 9, 48syl2anc 583 . . . . 5 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝐵 ≼ (𝒫 𝐴𝐵))
50 sdomdom 9040 . . . . . . . . . 10 (𝐴𝐵𝐴𝐵)
5150adantl 481 . . . . . . . . 9 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝐴𝐵)
52 pwdom 9195 . . . . . . . . 9 (𝐴𝐵 → 𝒫 𝐴 ≼ 𝒫 𝐵)
5351, 52syl 17 . . . . . . . 8 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝒫 𝐴 ≼ 𝒫 𝐵)
54 djudom1 10252 . . . . . . . 8 ((𝒫 𝐴 ≼ 𝒫 𝐵𝐵 ∈ GCH) → (𝒫 𝐴𝐵) ≼ (𝒫 𝐵𝐵))
5553, 3, 54syl2anc 583 . . . . . . 7 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐴𝐵) ≼ (𝒫 𝐵𝐵))
56 sdomdom 9040 . . . . . . . . 9 (𝐵 ≺ 𝒫 𝐵𝐵 ≼ 𝒫 𝐵)
573, 29, 563syl 18 . . . . . . . 8 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝐵 ≼ 𝒫 𝐵)
583pwexd 5397 . . . . . . . 8 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝒫 𝐵 ∈ V)
59 djudom2 10253 . . . . . . . 8 ((𝐵 ≼ 𝒫 𝐵 ∧ 𝒫 𝐵 ∈ V) → (𝒫 𝐵𝐵) ≼ (𝒫 𝐵 ⊔ 𝒫 𝐵))
6057, 58, 59syl2anc 583 . . . . . . 7 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐵𝐵) ≼ (𝒫 𝐵 ⊔ 𝒫 𝐵))
61 domtr 9067 . . . . . . 7 (((𝒫 𝐴𝐵) ≼ (𝒫 𝐵𝐵) ∧ (𝒫 𝐵𝐵) ≼ (𝒫 𝐵 ⊔ 𝒫 𝐵)) → (𝒫 𝐴𝐵) ≼ (𝒫 𝐵 ⊔ 𝒫 𝐵))
6255, 60, 61syl2anc 583 . . . . . 6 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐴𝐵) ≼ (𝒫 𝐵 ⊔ 𝒫 𝐵))
63 pwdju1 10260 . . . . . . . 8 (𝐵 ∈ GCH → (𝒫 𝐵 ⊔ 𝒫 𝐵) ≈ 𝒫 (𝐵 ⊔ 1o))
643, 63syl 17 . . . . . . 7 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐵 ⊔ 𝒫 𝐵) ≈ 𝒫 (𝐵 ⊔ 1o))
65 gchdju1 10725 . . . . . . . . 9 ((𝐵 ∈ GCH ∧ ¬ 𝐵 ∈ Fin) → (𝐵 ⊔ 1o) ≈ 𝐵)
663, 22, 65syl2anc 583 . . . . . . . 8 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝐵 ⊔ 1o) ≈ 𝐵)
67 pwen 9216 . . . . . . . 8 ((𝐵 ⊔ 1o) ≈ 𝐵 → 𝒫 (𝐵 ⊔ 1o) ≈ 𝒫 𝐵)
6866, 67syl 17 . . . . . . 7 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝒫 (𝐵 ⊔ 1o) ≈ 𝒫 𝐵)
69 entr 9066 . . . . . . 7 (((𝒫 𝐵 ⊔ 𝒫 𝐵) ≈ 𝒫 (𝐵 ⊔ 1o) ∧ 𝒫 (𝐵 ⊔ 1o) ≈ 𝒫 𝐵) → (𝒫 𝐵 ⊔ 𝒫 𝐵) ≈ 𝒫 𝐵)
7064, 68, 69syl2anc 583 . . . . . 6 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐵 ⊔ 𝒫 𝐵) ≈ 𝒫 𝐵)
71 domentr 9073 . . . . . 6 (((𝒫 𝐴𝐵) ≼ (𝒫 𝐵 ⊔ 𝒫 𝐵) ∧ (𝒫 𝐵 ⊔ 𝒫 𝐵) ≈ 𝒫 𝐵) → (𝒫 𝐴𝐵) ≼ 𝒫 𝐵)
7262, 70, 71syl2anc 583 . . . . 5 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐴𝐵) ≼ 𝒫 𝐵)
73 gchor 10696 . . . . 5 (((𝐵 ∈ GCH ∧ ¬ 𝐵 ∈ Fin) ∧ (𝐵 ≼ (𝒫 𝐴𝐵) ∧ (𝒫 𝐴𝐵) ≼ 𝒫 𝐵)) → (𝐵 ≈ (𝒫 𝐴𝐵) ∨ (𝒫 𝐴𝐵) ≈ 𝒫 𝐵))
743, 22, 49, 72, 73syl22anc 838 . . . 4 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝐵 ≈ (𝒫 𝐴𝐵) ∨ (𝒫 𝐴𝐵) ≈ 𝒫 𝐵))
757, 45, 74mpjaod 859 . . 3 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝒫 𝐴𝐵)
7675ex 412 . 2 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) → (𝐴𝐵 → 𝒫 𝐴𝐵))
77 reldom 9009 . . . . 5 Rel ≼
7877brrelex1i 5756 . . . 4 (𝒫 𝐴𝐵 → 𝒫 𝐴 ∈ V)
79 pwexb 7801 . . . . 5 (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V)
80 canth2g 9197 . . . . 5 (𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴)
8179, 80sylbir 235 . . . 4 (𝒫 𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴)
8278, 81syl 17 . . 3 (𝒫 𝐴𝐵𝐴 ≺ 𝒫 𝐴)
83 sdomdomtr 9176 . . 3 ((𝐴 ≺ 𝒫 𝐴 ∧ 𝒫 𝐴𝐵) → 𝐴𝐵)
8482, 83mpancom 687 . 2 (𝒫 𝐴𝐵𝐴𝐵)
8576, 84impbid1 225 1 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) → (𝐴𝐵 ↔ 𝒫 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087  wcel 2108  Vcvv 3488  𝒫 cpw 4622   class class class wbr 5166  ωcom 7903  1oc1o 8515  cen 9000  cdom 9001  csdm 9002  Fincfn 9003  cdju 9967  GCHcgch 10689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-seqom 8504  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-oexp 8528  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-oi 9579  df-har 9626  df-wdom 9634  df-cnf 9731  df-dju 9970  df-card 10008  df-fin4 10356  df-gch 10690
This theorem is referenced by:  gchaleph2  10741  gchina  10768
  Copyright terms: Public domain W3C validator