MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchpwdom Structured version   Visualization version   GIF version

Theorem gchpwdom 10623
Description: A relationship between dominance over the powerset and strict dominance when the sets involved are infinite GCH-sets. Proposition 3.1 of [KanamoriPincus] p. 421. (Contributed by Mario Carneiro, 31-May-2015.)
Assertion
Ref Expression
gchpwdom ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) → (𝐴𝐵 ↔ 𝒫 𝐴𝐵))

Proof of Theorem gchpwdom
StepHypRef Expression
1 simpl2 1193 . . . . . . 7 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝐴 ∈ GCH)
21pwexd 5334 . . . . . 6 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝒫 𝐴 ∈ V)
3 simpl3 1194 . . . . . 6 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝐵 ∈ GCH)
4 djudoml 10138 . . . . . 6 ((𝒫 𝐴 ∈ V ∧ 𝐵 ∈ GCH) → 𝒫 𝐴 ≼ (𝒫 𝐴𝐵))
52, 3, 4syl2anc 584 . . . . 5 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝒫 𝐴 ≼ (𝒫 𝐴𝐵))
6 domen2 9084 . . . . 5 (𝐵 ≈ (𝒫 𝐴𝐵) → (𝒫 𝐴𝐵 ↔ 𝒫 𝐴 ≼ (𝒫 𝐴𝐵)))
75, 6syl5ibrcom 247 . . . 4 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝐵 ≈ (𝒫 𝐴𝐵) → 𝒫 𝐴𝐵))
8 djucomen 10131 . . . . . . . 8 ((𝐵 ∈ GCH ∧ 𝒫 𝐴 ∈ V) → (𝐵 ⊔ 𝒫 𝐴) ≈ (𝒫 𝐴𝐵))
93, 2, 8syl2anc 584 . . . . . . 7 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝐵 ⊔ 𝒫 𝐴) ≈ (𝒫 𝐴𝐵))
10 entr 8977 . . . . . . . 8 (((𝐵 ⊔ 𝒫 𝐴) ≈ (𝒫 𝐴𝐵) ∧ (𝒫 𝐴𝐵) ≈ 𝒫 𝐵) → (𝐵 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐵)
1110ex 412 . . . . . . 7 ((𝐵 ⊔ 𝒫 𝐴) ≈ (𝒫 𝐴𝐵) → ((𝒫 𝐴𝐵) ≈ 𝒫 𝐵 → (𝐵 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐵))
129, 11syl 17 . . . . . 6 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → ((𝒫 𝐴𝐵) ≈ 𝒫 𝐵 → (𝐵 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐵))
13 ensym 8974 . . . . . . 7 ((𝐵 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐵 → 𝒫 𝐵 ≈ (𝐵 ⊔ 𝒫 𝐴))
14 endom 8950 . . . . . . 7 (𝒫 𝐵 ≈ (𝐵 ⊔ 𝒫 𝐴) → 𝒫 𝐵 ≼ (𝐵 ⊔ 𝒫 𝐴))
1513, 14syl 17 . . . . . 6 ((𝐵 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐵 → 𝒫 𝐵 ≼ (𝐵 ⊔ 𝒫 𝐴))
1612, 15syl6 35 . . . . 5 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → ((𝒫 𝐴𝐵) ≈ 𝒫 𝐵 → 𝒫 𝐵 ≼ (𝐵 ⊔ 𝒫 𝐴)))
17 domsdomtr 9076 . . . . . . . . . . 11 ((ω ≼ 𝐴𝐴𝐵) → ω ≺ 𝐵)
18173ad2antl1 1186 . . . . . . . . . 10 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → ω ≺ 𝐵)
19 sdomnsym 9066 . . . . . . . . . 10 (ω ≺ 𝐵 → ¬ 𝐵 ≺ ω)
2018, 19syl 17 . . . . . . . . 9 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → ¬ 𝐵 ≺ ω)
21 isfinite 9605 . . . . . . . . 9 (𝐵 ∈ Fin ↔ 𝐵 ≺ ω)
2220, 21sylnibr 329 . . . . . . . 8 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → ¬ 𝐵 ∈ Fin)
23 gchdjuidm 10621 . . . . . . . 8 ((𝐵 ∈ GCH ∧ ¬ 𝐵 ∈ Fin) → (𝐵𝐵) ≈ 𝐵)
243, 22, 23syl2anc 584 . . . . . . 7 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝐵𝐵) ≈ 𝐵)
25 pwen 9114 . . . . . . 7 ((𝐵𝐵) ≈ 𝐵 → 𝒫 (𝐵𝐵) ≈ 𝒫 𝐵)
26 domen1 9083 . . . . . . 7 (𝒫 (𝐵𝐵) ≈ 𝒫 𝐵 → (𝒫 (𝐵𝐵) ≼ (𝐵 ⊔ 𝒫 𝐴) ↔ 𝒫 𝐵 ≼ (𝐵 ⊔ 𝒫 𝐴)))
2724, 25, 263syl 18 . . . . . 6 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 (𝐵𝐵) ≼ (𝐵 ⊔ 𝒫 𝐴) ↔ 𝒫 𝐵 ≼ (𝐵 ⊔ 𝒫 𝐴)))
28 pwdjudom 10168 . . . . . . 7 (𝒫 (𝐵𝐵) ≼ (𝐵 ⊔ 𝒫 𝐴) → 𝒫 𝐵 ≼ 𝒫 𝐴)
29 canth2g 9095 . . . . . . . . 9 (𝐵 ∈ GCH → 𝐵 ≺ 𝒫 𝐵)
30 sdomdomtr 9074 . . . . . . . . . 10 ((𝐵 ≺ 𝒫 𝐵 ∧ 𝒫 𝐵 ≼ 𝒫 𝐴) → 𝐵 ≺ 𝒫 𝐴)
3130ex 412 . . . . . . . . 9 (𝐵 ≺ 𝒫 𝐵 → (𝒫 𝐵 ≼ 𝒫 𝐴𝐵 ≺ 𝒫 𝐴))
323, 29, 313syl 18 . . . . . . . 8 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐵 ≼ 𝒫 𝐴𝐵 ≺ 𝒫 𝐴))
33 gchi 10577 . . . . . . . . . 10 ((𝐴 ∈ GCH ∧ 𝐴𝐵𝐵 ≺ 𝒫 𝐴) → 𝐴 ∈ Fin)
34333expia 1121 . . . . . . . . 9 ((𝐴 ∈ GCH ∧ 𝐴𝐵) → (𝐵 ≺ 𝒫 𝐴𝐴 ∈ Fin))
35343ad2antl2 1187 . . . . . . . 8 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝐵 ≺ 𝒫 𝐴𝐴 ∈ Fin))
36 isfinite 9605 . . . . . . . . 9 (𝐴 ∈ Fin ↔ 𝐴 ≺ ω)
37 simpl1 1192 . . . . . . . . . . 11 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → ω ≼ 𝐴)
38 domnsym 9067 . . . . . . . . . . 11 (ω ≼ 𝐴 → ¬ 𝐴 ≺ ω)
3937, 38syl 17 . . . . . . . . . 10 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → ¬ 𝐴 ≺ ω)
4039pm2.21d 121 . . . . . . . . 9 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝐴 ≺ ω → 𝒫 𝐴𝐵))
4136, 40biimtrid 242 . . . . . . . 8 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝐴 ∈ Fin → 𝒫 𝐴𝐵))
4232, 35, 413syld 60 . . . . . . 7 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐵 ≼ 𝒫 𝐴 → 𝒫 𝐴𝐵))
4328, 42syl5 34 . . . . . 6 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 (𝐵𝐵) ≼ (𝐵 ⊔ 𝒫 𝐴) → 𝒫 𝐴𝐵))
4427, 43sylbird 260 . . . . 5 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐵 ≼ (𝐵 ⊔ 𝒫 𝐴) → 𝒫 𝐴𝐵))
4516, 44syld 47 . . . 4 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → ((𝒫 𝐴𝐵) ≈ 𝒫 𝐵 → 𝒫 𝐴𝐵))
46 djudoml 10138 . . . . . . 7 ((𝐵 ∈ GCH ∧ 𝒫 𝐴 ∈ V) → 𝐵 ≼ (𝐵 ⊔ 𝒫 𝐴))
473, 2, 46syl2anc 584 . . . . . 6 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝐵 ≼ (𝐵 ⊔ 𝒫 𝐴))
48 domentr 8984 . . . . . 6 ((𝐵 ≼ (𝐵 ⊔ 𝒫 𝐴) ∧ (𝐵 ⊔ 𝒫 𝐴) ≈ (𝒫 𝐴𝐵)) → 𝐵 ≼ (𝒫 𝐴𝐵))
4947, 9, 48syl2anc 584 . . . . 5 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝐵 ≼ (𝒫 𝐴𝐵))
50 sdomdom 8951 . . . . . . . . . 10 (𝐴𝐵𝐴𝐵)
5150adantl 481 . . . . . . . . 9 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝐴𝐵)
52 pwdom 9093 . . . . . . . . 9 (𝐴𝐵 → 𝒫 𝐴 ≼ 𝒫 𝐵)
5351, 52syl 17 . . . . . . . 8 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝒫 𝐴 ≼ 𝒫 𝐵)
54 djudom1 10136 . . . . . . . 8 ((𝒫 𝐴 ≼ 𝒫 𝐵𝐵 ∈ GCH) → (𝒫 𝐴𝐵) ≼ (𝒫 𝐵𝐵))
5553, 3, 54syl2anc 584 . . . . . . 7 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐴𝐵) ≼ (𝒫 𝐵𝐵))
56 sdomdom 8951 . . . . . . . . 9 (𝐵 ≺ 𝒫 𝐵𝐵 ≼ 𝒫 𝐵)
573, 29, 563syl 18 . . . . . . . 8 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝐵 ≼ 𝒫 𝐵)
583pwexd 5334 . . . . . . . 8 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝒫 𝐵 ∈ V)
59 djudom2 10137 . . . . . . . 8 ((𝐵 ≼ 𝒫 𝐵 ∧ 𝒫 𝐵 ∈ V) → (𝒫 𝐵𝐵) ≼ (𝒫 𝐵 ⊔ 𝒫 𝐵))
6057, 58, 59syl2anc 584 . . . . . . 7 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐵𝐵) ≼ (𝒫 𝐵 ⊔ 𝒫 𝐵))
61 domtr 8978 . . . . . . 7 (((𝒫 𝐴𝐵) ≼ (𝒫 𝐵𝐵) ∧ (𝒫 𝐵𝐵) ≼ (𝒫 𝐵 ⊔ 𝒫 𝐵)) → (𝒫 𝐴𝐵) ≼ (𝒫 𝐵 ⊔ 𝒫 𝐵))
6255, 60, 61syl2anc 584 . . . . . 6 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐴𝐵) ≼ (𝒫 𝐵 ⊔ 𝒫 𝐵))
63 pwdju1 10144 . . . . . . . 8 (𝐵 ∈ GCH → (𝒫 𝐵 ⊔ 𝒫 𝐵) ≈ 𝒫 (𝐵 ⊔ 1o))
643, 63syl 17 . . . . . . 7 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐵 ⊔ 𝒫 𝐵) ≈ 𝒫 (𝐵 ⊔ 1o))
65 gchdju1 10609 . . . . . . . . 9 ((𝐵 ∈ GCH ∧ ¬ 𝐵 ∈ Fin) → (𝐵 ⊔ 1o) ≈ 𝐵)
663, 22, 65syl2anc 584 . . . . . . . 8 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝐵 ⊔ 1o) ≈ 𝐵)
67 pwen 9114 . . . . . . . 8 ((𝐵 ⊔ 1o) ≈ 𝐵 → 𝒫 (𝐵 ⊔ 1o) ≈ 𝒫 𝐵)
6866, 67syl 17 . . . . . . 7 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝒫 (𝐵 ⊔ 1o) ≈ 𝒫 𝐵)
69 entr 8977 . . . . . . 7 (((𝒫 𝐵 ⊔ 𝒫 𝐵) ≈ 𝒫 (𝐵 ⊔ 1o) ∧ 𝒫 (𝐵 ⊔ 1o) ≈ 𝒫 𝐵) → (𝒫 𝐵 ⊔ 𝒫 𝐵) ≈ 𝒫 𝐵)
7064, 68, 69syl2anc 584 . . . . . 6 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐵 ⊔ 𝒫 𝐵) ≈ 𝒫 𝐵)
71 domentr 8984 . . . . . 6 (((𝒫 𝐴𝐵) ≼ (𝒫 𝐵 ⊔ 𝒫 𝐵) ∧ (𝒫 𝐵 ⊔ 𝒫 𝐵) ≈ 𝒫 𝐵) → (𝒫 𝐴𝐵) ≼ 𝒫 𝐵)
7262, 70, 71syl2anc 584 . . . . 5 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐴𝐵) ≼ 𝒫 𝐵)
73 gchor 10580 . . . . 5 (((𝐵 ∈ GCH ∧ ¬ 𝐵 ∈ Fin) ∧ (𝐵 ≼ (𝒫 𝐴𝐵) ∧ (𝒫 𝐴𝐵) ≼ 𝒫 𝐵)) → (𝐵 ≈ (𝒫 𝐴𝐵) ∨ (𝒫 𝐴𝐵) ≈ 𝒫 𝐵))
743, 22, 49, 72, 73syl22anc 838 . . . 4 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝐵 ≈ (𝒫 𝐴𝐵) ∨ (𝒫 𝐴𝐵) ≈ 𝒫 𝐵))
757, 45, 74mpjaod 860 . . 3 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝒫 𝐴𝐵)
7675ex 412 . 2 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) → (𝐴𝐵 → 𝒫 𝐴𝐵))
77 reldom 8924 . . . . 5 Rel ≼
7877brrelex1i 5694 . . . 4 (𝒫 𝐴𝐵 → 𝒫 𝐴 ∈ V)
79 pwexb 7742 . . . . 5 (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V)
80 canth2g 9095 . . . . 5 (𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴)
8179, 80sylbir 235 . . . 4 (𝒫 𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴)
8278, 81syl 17 . . 3 (𝒫 𝐴𝐵𝐴 ≺ 𝒫 𝐴)
83 sdomdomtr 9074 . . 3 ((𝐴 ≺ 𝒫 𝐴 ∧ 𝒫 𝐴𝐵) → 𝐴𝐵)
8482, 83mpancom 688 . 2 (𝒫 𝐴𝐵𝐴𝐵)
8576, 84impbid1 225 1 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) → (𝐴𝐵 ↔ 𝒫 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086  wcel 2109  Vcvv 3447  𝒫 cpw 4563   class class class wbr 5107  ωcom 7842  1oc1o 8427  cen 8915  cdom 8916  csdm 8917  Fincfn 8918  cdju 9851  GCHcgch 10573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-seqom 8416  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-oexp 8440  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-oi 9463  df-har 9510  df-wdom 9518  df-cnf 9615  df-dju 9854  df-card 9892  df-fin4 10240  df-gch 10574
This theorem is referenced by:  gchaleph2  10625  gchina  10652
  Copyright terms: Public domain W3C validator