MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchpwdom Structured version   Visualization version   GIF version

Theorem gchpwdom 10426
Description: A relationship between dominance over the powerset and strict dominance when the sets involved are infinite GCH-sets. Proposition 3.1 of [KanamoriPincus] p. 421. (Contributed by Mario Carneiro, 31-May-2015.)
Assertion
Ref Expression
gchpwdom ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) → (𝐴𝐵 ↔ 𝒫 𝐴𝐵))

Proof of Theorem gchpwdom
StepHypRef Expression
1 simpl2 1191 . . . . . . 7 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝐴 ∈ GCH)
21pwexd 5302 . . . . . 6 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝒫 𝐴 ∈ V)
3 simpl3 1192 . . . . . 6 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝐵 ∈ GCH)
4 djudoml 9940 . . . . . 6 ((𝒫 𝐴 ∈ V ∧ 𝐵 ∈ GCH) → 𝒫 𝐴 ≼ (𝒫 𝐴𝐵))
52, 3, 4syl2anc 584 . . . . 5 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝒫 𝐴 ≼ (𝒫 𝐴𝐵))
6 domen2 8907 . . . . 5 (𝐵 ≈ (𝒫 𝐴𝐵) → (𝒫 𝐴𝐵 ↔ 𝒫 𝐴 ≼ (𝒫 𝐴𝐵)))
75, 6syl5ibrcom 246 . . . 4 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝐵 ≈ (𝒫 𝐴𝐵) → 𝒫 𝐴𝐵))
8 djucomen 9933 . . . . . . . 8 ((𝐵 ∈ GCH ∧ 𝒫 𝐴 ∈ V) → (𝐵 ⊔ 𝒫 𝐴) ≈ (𝒫 𝐴𝐵))
93, 2, 8syl2anc 584 . . . . . . 7 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝐵 ⊔ 𝒫 𝐴) ≈ (𝒫 𝐴𝐵))
10 entr 8792 . . . . . . . 8 (((𝐵 ⊔ 𝒫 𝐴) ≈ (𝒫 𝐴𝐵) ∧ (𝒫 𝐴𝐵) ≈ 𝒫 𝐵) → (𝐵 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐵)
1110ex 413 . . . . . . 7 ((𝐵 ⊔ 𝒫 𝐴) ≈ (𝒫 𝐴𝐵) → ((𝒫 𝐴𝐵) ≈ 𝒫 𝐵 → (𝐵 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐵))
129, 11syl 17 . . . . . 6 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → ((𝒫 𝐴𝐵) ≈ 𝒫 𝐵 → (𝐵 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐵))
13 ensym 8789 . . . . . . 7 ((𝐵 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐵 → 𝒫 𝐵 ≈ (𝐵 ⊔ 𝒫 𝐴))
14 endom 8767 . . . . . . 7 (𝒫 𝐵 ≈ (𝐵 ⊔ 𝒫 𝐴) → 𝒫 𝐵 ≼ (𝐵 ⊔ 𝒫 𝐴))
1513, 14syl 17 . . . . . 6 ((𝐵 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐵 → 𝒫 𝐵 ≼ (𝐵 ⊔ 𝒫 𝐴))
1612, 15syl6 35 . . . . 5 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → ((𝒫 𝐴𝐵) ≈ 𝒫 𝐵 → 𝒫 𝐵 ≼ (𝐵 ⊔ 𝒫 𝐴)))
17 domsdomtr 8899 . . . . . . . . . . 11 ((ω ≼ 𝐴𝐴𝐵) → ω ≺ 𝐵)
18173ad2antl1 1184 . . . . . . . . . 10 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → ω ≺ 𝐵)
19 sdomnsym 8885 . . . . . . . . . 10 (ω ≺ 𝐵 → ¬ 𝐵 ≺ ω)
2018, 19syl 17 . . . . . . . . 9 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → ¬ 𝐵 ≺ ω)
21 isfinite 9410 . . . . . . . . 9 (𝐵 ∈ Fin ↔ 𝐵 ≺ ω)
2220, 21sylnibr 329 . . . . . . . 8 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → ¬ 𝐵 ∈ Fin)
23 gchdjuidm 10424 . . . . . . . 8 ((𝐵 ∈ GCH ∧ ¬ 𝐵 ∈ Fin) → (𝐵𝐵) ≈ 𝐵)
243, 22, 23syl2anc 584 . . . . . . 7 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝐵𝐵) ≈ 𝐵)
25 pwen 8937 . . . . . . 7 ((𝐵𝐵) ≈ 𝐵 → 𝒫 (𝐵𝐵) ≈ 𝒫 𝐵)
26 domen1 8906 . . . . . . 7 (𝒫 (𝐵𝐵) ≈ 𝒫 𝐵 → (𝒫 (𝐵𝐵) ≼ (𝐵 ⊔ 𝒫 𝐴) ↔ 𝒫 𝐵 ≼ (𝐵 ⊔ 𝒫 𝐴)))
2724, 25, 263syl 18 . . . . . 6 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 (𝐵𝐵) ≼ (𝐵 ⊔ 𝒫 𝐴) ↔ 𝒫 𝐵 ≼ (𝐵 ⊔ 𝒫 𝐴)))
28 pwdjudom 9972 . . . . . . 7 (𝒫 (𝐵𝐵) ≼ (𝐵 ⊔ 𝒫 𝐴) → 𝒫 𝐵 ≼ 𝒫 𝐴)
29 canth2g 8918 . . . . . . . . 9 (𝐵 ∈ GCH → 𝐵 ≺ 𝒫 𝐵)
30 sdomdomtr 8897 . . . . . . . . . 10 ((𝐵 ≺ 𝒫 𝐵 ∧ 𝒫 𝐵 ≼ 𝒫 𝐴) → 𝐵 ≺ 𝒫 𝐴)
3130ex 413 . . . . . . . . 9 (𝐵 ≺ 𝒫 𝐵 → (𝒫 𝐵 ≼ 𝒫 𝐴𝐵 ≺ 𝒫 𝐴))
323, 29, 313syl 18 . . . . . . . 8 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐵 ≼ 𝒫 𝐴𝐵 ≺ 𝒫 𝐴))
33 gchi 10380 . . . . . . . . . 10 ((𝐴 ∈ GCH ∧ 𝐴𝐵𝐵 ≺ 𝒫 𝐴) → 𝐴 ∈ Fin)
34333expia 1120 . . . . . . . . 9 ((𝐴 ∈ GCH ∧ 𝐴𝐵) → (𝐵 ≺ 𝒫 𝐴𝐴 ∈ Fin))
35343ad2antl2 1185 . . . . . . . 8 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝐵 ≺ 𝒫 𝐴𝐴 ∈ Fin))
36 isfinite 9410 . . . . . . . . 9 (𝐴 ∈ Fin ↔ 𝐴 ≺ ω)
37 simpl1 1190 . . . . . . . . . . 11 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → ω ≼ 𝐴)
38 domnsym 8886 . . . . . . . . . . 11 (ω ≼ 𝐴 → ¬ 𝐴 ≺ ω)
3937, 38syl 17 . . . . . . . . . 10 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → ¬ 𝐴 ≺ ω)
4039pm2.21d 121 . . . . . . . . 9 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝐴 ≺ ω → 𝒫 𝐴𝐵))
4136, 40syl5bi 241 . . . . . . . 8 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝐴 ∈ Fin → 𝒫 𝐴𝐵))
4232, 35, 413syld 60 . . . . . . 7 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐵 ≼ 𝒫 𝐴 → 𝒫 𝐴𝐵))
4328, 42syl5 34 . . . . . 6 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 (𝐵𝐵) ≼ (𝐵 ⊔ 𝒫 𝐴) → 𝒫 𝐴𝐵))
4427, 43sylbird 259 . . . . 5 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐵 ≼ (𝐵 ⊔ 𝒫 𝐴) → 𝒫 𝐴𝐵))
4516, 44syld 47 . . . 4 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → ((𝒫 𝐴𝐵) ≈ 𝒫 𝐵 → 𝒫 𝐴𝐵))
46 djudoml 9940 . . . . . . 7 ((𝐵 ∈ GCH ∧ 𝒫 𝐴 ∈ V) → 𝐵 ≼ (𝐵 ⊔ 𝒫 𝐴))
473, 2, 46syl2anc 584 . . . . . 6 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝐵 ≼ (𝐵 ⊔ 𝒫 𝐴))
48 domentr 8799 . . . . . 6 ((𝐵 ≼ (𝐵 ⊔ 𝒫 𝐴) ∧ (𝐵 ⊔ 𝒫 𝐴) ≈ (𝒫 𝐴𝐵)) → 𝐵 ≼ (𝒫 𝐴𝐵))
4947, 9, 48syl2anc 584 . . . . 5 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝐵 ≼ (𝒫 𝐴𝐵))
50 sdomdom 8768 . . . . . . . . . 10 (𝐴𝐵𝐴𝐵)
5150adantl 482 . . . . . . . . 9 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝐴𝐵)
52 pwdom 8916 . . . . . . . . 9 (𝐴𝐵 → 𝒫 𝐴 ≼ 𝒫 𝐵)
5351, 52syl 17 . . . . . . . 8 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝒫 𝐴 ≼ 𝒫 𝐵)
54 djudom1 9938 . . . . . . . 8 ((𝒫 𝐴 ≼ 𝒫 𝐵𝐵 ∈ GCH) → (𝒫 𝐴𝐵) ≼ (𝒫 𝐵𝐵))
5553, 3, 54syl2anc 584 . . . . . . 7 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐴𝐵) ≼ (𝒫 𝐵𝐵))
56 sdomdom 8768 . . . . . . . . 9 (𝐵 ≺ 𝒫 𝐵𝐵 ≼ 𝒫 𝐵)
573, 29, 563syl 18 . . . . . . . 8 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝐵 ≼ 𝒫 𝐵)
583pwexd 5302 . . . . . . . 8 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝒫 𝐵 ∈ V)
59 djudom2 9939 . . . . . . . 8 ((𝐵 ≼ 𝒫 𝐵 ∧ 𝒫 𝐵 ∈ V) → (𝒫 𝐵𝐵) ≼ (𝒫 𝐵 ⊔ 𝒫 𝐵))
6057, 58, 59syl2anc 584 . . . . . . 7 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐵𝐵) ≼ (𝒫 𝐵 ⊔ 𝒫 𝐵))
61 domtr 8793 . . . . . . 7 (((𝒫 𝐴𝐵) ≼ (𝒫 𝐵𝐵) ∧ (𝒫 𝐵𝐵) ≼ (𝒫 𝐵 ⊔ 𝒫 𝐵)) → (𝒫 𝐴𝐵) ≼ (𝒫 𝐵 ⊔ 𝒫 𝐵))
6255, 60, 61syl2anc 584 . . . . . 6 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐴𝐵) ≼ (𝒫 𝐵 ⊔ 𝒫 𝐵))
63 pwdju1 9946 . . . . . . . 8 (𝐵 ∈ GCH → (𝒫 𝐵 ⊔ 𝒫 𝐵) ≈ 𝒫 (𝐵 ⊔ 1o))
643, 63syl 17 . . . . . . 7 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐵 ⊔ 𝒫 𝐵) ≈ 𝒫 (𝐵 ⊔ 1o))
65 gchdju1 10412 . . . . . . . . 9 ((𝐵 ∈ GCH ∧ ¬ 𝐵 ∈ Fin) → (𝐵 ⊔ 1o) ≈ 𝐵)
663, 22, 65syl2anc 584 . . . . . . . 8 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝐵 ⊔ 1o) ≈ 𝐵)
67 pwen 8937 . . . . . . . 8 ((𝐵 ⊔ 1o) ≈ 𝐵 → 𝒫 (𝐵 ⊔ 1o) ≈ 𝒫 𝐵)
6866, 67syl 17 . . . . . . 7 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝒫 (𝐵 ⊔ 1o) ≈ 𝒫 𝐵)
69 entr 8792 . . . . . . 7 (((𝒫 𝐵 ⊔ 𝒫 𝐵) ≈ 𝒫 (𝐵 ⊔ 1o) ∧ 𝒫 (𝐵 ⊔ 1o) ≈ 𝒫 𝐵) → (𝒫 𝐵 ⊔ 𝒫 𝐵) ≈ 𝒫 𝐵)
7064, 68, 69syl2anc 584 . . . . . 6 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐵 ⊔ 𝒫 𝐵) ≈ 𝒫 𝐵)
71 domentr 8799 . . . . . 6 (((𝒫 𝐴𝐵) ≼ (𝒫 𝐵 ⊔ 𝒫 𝐵) ∧ (𝒫 𝐵 ⊔ 𝒫 𝐵) ≈ 𝒫 𝐵) → (𝒫 𝐴𝐵) ≼ 𝒫 𝐵)
7262, 70, 71syl2anc 584 . . . . 5 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐴𝐵) ≼ 𝒫 𝐵)
73 gchor 10383 . . . . 5 (((𝐵 ∈ GCH ∧ ¬ 𝐵 ∈ Fin) ∧ (𝐵 ≼ (𝒫 𝐴𝐵) ∧ (𝒫 𝐴𝐵) ≼ 𝒫 𝐵)) → (𝐵 ≈ (𝒫 𝐴𝐵) ∨ (𝒫 𝐴𝐵) ≈ 𝒫 𝐵))
743, 22, 49, 72, 73syl22anc 836 . . . 4 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝐵 ≈ (𝒫 𝐴𝐵) ∨ (𝒫 𝐴𝐵) ≈ 𝒫 𝐵))
757, 45, 74mpjaod 857 . . 3 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝒫 𝐴𝐵)
7675ex 413 . 2 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) → (𝐴𝐵 → 𝒫 𝐴𝐵))
77 reldom 8739 . . . . 5 Rel ≼
7877brrelex1i 5643 . . . 4 (𝒫 𝐴𝐵 → 𝒫 𝐴 ∈ V)
79 pwexb 7616 . . . . 5 (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V)
80 canth2g 8918 . . . . 5 (𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴)
8179, 80sylbir 234 . . . 4 (𝒫 𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴)
8278, 81syl 17 . . 3 (𝒫 𝐴𝐵𝐴 ≺ 𝒫 𝐴)
83 sdomdomtr 8897 . . 3 ((𝐴 ≺ 𝒫 𝐴 ∧ 𝒫 𝐴𝐵) → 𝐴𝐵)
8482, 83mpancom 685 . 2 (𝒫 𝐴𝐵𝐴𝐵)
8576, 84impbid1 224 1 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) → (𝐴𝐵 ↔ 𝒫 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086  wcel 2106  Vcvv 3432  𝒫 cpw 4533   class class class wbr 5074  ωcom 7712  1oc1o 8290  cen 8730  cdom 8731  csdm 8732  Fincfn 8733  cdju 9656  GCHcgch 10376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-seqom 8279  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-oexp 8303  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-oi 9269  df-har 9316  df-wdom 9324  df-cnf 9420  df-dju 9659  df-card 9697  df-fin4 10043  df-gch 10377
This theorem is referenced by:  gchaleph2  10428  gchina  10455
  Copyright terms: Public domain W3C validator