MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchpwdom Structured version   Visualization version   GIF version

Theorem gchpwdom 10685
Description: A relationship between dominance over the powerset and strict dominance when the sets involved are infinite GCH-sets. Proposition 3.1 of [KanamoriPincus] p. 421. (Contributed by Mario Carneiro, 31-May-2015.)
Assertion
Ref Expression
gchpwdom ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) → (𝐴𝐵 ↔ 𝒫 𝐴𝐵))

Proof of Theorem gchpwdom
StepHypRef Expression
1 simpl2 1190 . . . . . . 7 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝐴 ∈ GCH)
21pwexd 5373 . . . . . 6 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝒫 𝐴 ∈ V)
3 simpl3 1191 . . . . . 6 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝐵 ∈ GCH)
4 djudoml 10199 . . . . . 6 ((𝒫 𝐴 ∈ V ∧ 𝐵 ∈ GCH) → 𝒫 𝐴 ≼ (𝒫 𝐴𝐵))
52, 3, 4syl2anc 583 . . . . 5 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝒫 𝐴 ≼ (𝒫 𝐴𝐵))
6 domen2 9136 . . . . 5 (𝐵 ≈ (𝒫 𝐴𝐵) → (𝒫 𝐴𝐵 ↔ 𝒫 𝐴 ≼ (𝒫 𝐴𝐵)))
75, 6syl5ibrcom 246 . . . 4 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝐵 ≈ (𝒫 𝐴𝐵) → 𝒫 𝐴𝐵))
8 djucomen 10192 . . . . . . . 8 ((𝐵 ∈ GCH ∧ 𝒫 𝐴 ∈ V) → (𝐵 ⊔ 𝒫 𝐴) ≈ (𝒫 𝐴𝐵))
93, 2, 8syl2anc 583 . . . . . . 7 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝐵 ⊔ 𝒫 𝐴) ≈ (𝒫 𝐴𝐵))
10 entr 9018 . . . . . . . 8 (((𝐵 ⊔ 𝒫 𝐴) ≈ (𝒫 𝐴𝐵) ∧ (𝒫 𝐴𝐵) ≈ 𝒫 𝐵) → (𝐵 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐵)
1110ex 412 . . . . . . 7 ((𝐵 ⊔ 𝒫 𝐴) ≈ (𝒫 𝐴𝐵) → ((𝒫 𝐴𝐵) ≈ 𝒫 𝐵 → (𝐵 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐵))
129, 11syl 17 . . . . . 6 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → ((𝒫 𝐴𝐵) ≈ 𝒫 𝐵 → (𝐵 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐵))
13 ensym 9015 . . . . . . 7 ((𝐵 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐵 → 𝒫 𝐵 ≈ (𝐵 ⊔ 𝒫 𝐴))
14 endom 8991 . . . . . . 7 (𝒫 𝐵 ≈ (𝐵 ⊔ 𝒫 𝐴) → 𝒫 𝐵 ≼ (𝐵 ⊔ 𝒫 𝐴))
1513, 14syl 17 . . . . . 6 ((𝐵 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐵 → 𝒫 𝐵 ≼ (𝐵 ⊔ 𝒫 𝐴))
1612, 15syl6 35 . . . . 5 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → ((𝒫 𝐴𝐵) ≈ 𝒫 𝐵 → 𝒫 𝐵 ≼ (𝐵 ⊔ 𝒫 𝐴)))
17 domsdomtr 9128 . . . . . . . . . . 11 ((ω ≼ 𝐴𝐴𝐵) → ω ≺ 𝐵)
18173ad2antl1 1183 . . . . . . . . . 10 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → ω ≺ 𝐵)
19 sdomnsym 9114 . . . . . . . . . 10 (ω ≺ 𝐵 → ¬ 𝐵 ≺ ω)
2018, 19syl 17 . . . . . . . . 9 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → ¬ 𝐵 ≺ ω)
21 isfinite 9667 . . . . . . . . 9 (𝐵 ∈ Fin ↔ 𝐵 ≺ ω)
2220, 21sylnibr 329 . . . . . . . 8 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → ¬ 𝐵 ∈ Fin)
23 gchdjuidm 10683 . . . . . . . 8 ((𝐵 ∈ GCH ∧ ¬ 𝐵 ∈ Fin) → (𝐵𝐵) ≈ 𝐵)
243, 22, 23syl2anc 583 . . . . . . 7 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝐵𝐵) ≈ 𝐵)
25 pwen 9166 . . . . . . 7 ((𝐵𝐵) ≈ 𝐵 → 𝒫 (𝐵𝐵) ≈ 𝒫 𝐵)
26 domen1 9135 . . . . . . 7 (𝒫 (𝐵𝐵) ≈ 𝒫 𝐵 → (𝒫 (𝐵𝐵) ≼ (𝐵 ⊔ 𝒫 𝐴) ↔ 𝒫 𝐵 ≼ (𝐵 ⊔ 𝒫 𝐴)))
2724, 25, 263syl 18 . . . . . 6 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 (𝐵𝐵) ≼ (𝐵 ⊔ 𝒫 𝐴) ↔ 𝒫 𝐵 ≼ (𝐵 ⊔ 𝒫 𝐴)))
28 pwdjudom 10231 . . . . . . 7 (𝒫 (𝐵𝐵) ≼ (𝐵 ⊔ 𝒫 𝐴) → 𝒫 𝐵 ≼ 𝒫 𝐴)
29 canth2g 9147 . . . . . . . . 9 (𝐵 ∈ GCH → 𝐵 ≺ 𝒫 𝐵)
30 sdomdomtr 9126 . . . . . . . . . 10 ((𝐵 ≺ 𝒫 𝐵 ∧ 𝒫 𝐵 ≼ 𝒫 𝐴) → 𝐵 ≺ 𝒫 𝐴)
3130ex 412 . . . . . . . . 9 (𝐵 ≺ 𝒫 𝐵 → (𝒫 𝐵 ≼ 𝒫 𝐴𝐵 ≺ 𝒫 𝐴))
323, 29, 313syl 18 . . . . . . . 8 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐵 ≼ 𝒫 𝐴𝐵 ≺ 𝒫 𝐴))
33 gchi 10639 . . . . . . . . . 10 ((𝐴 ∈ GCH ∧ 𝐴𝐵𝐵 ≺ 𝒫 𝐴) → 𝐴 ∈ Fin)
34333expia 1119 . . . . . . . . 9 ((𝐴 ∈ GCH ∧ 𝐴𝐵) → (𝐵 ≺ 𝒫 𝐴𝐴 ∈ Fin))
35343ad2antl2 1184 . . . . . . . 8 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝐵 ≺ 𝒫 𝐴𝐴 ∈ Fin))
36 isfinite 9667 . . . . . . . . 9 (𝐴 ∈ Fin ↔ 𝐴 ≺ ω)
37 simpl1 1189 . . . . . . . . . . 11 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → ω ≼ 𝐴)
38 domnsym 9115 . . . . . . . . . . 11 (ω ≼ 𝐴 → ¬ 𝐴 ≺ ω)
3937, 38syl 17 . . . . . . . . . 10 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → ¬ 𝐴 ≺ ω)
4039pm2.21d 121 . . . . . . . . 9 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝐴 ≺ ω → 𝒫 𝐴𝐵))
4136, 40biimtrid 241 . . . . . . . 8 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝐴 ∈ Fin → 𝒫 𝐴𝐵))
4232, 35, 413syld 60 . . . . . . 7 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐵 ≼ 𝒫 𝐴 → 𝒫 𝐴𝐵))
4328, 42syl5 34 . . . . . 6 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 (𝐵𝐵) ≼ (𝐵 ⊔ 𝒫 𝐴) → 𝒫 𝐴𝐵))
4427, 43sylbird 260 . . . . 5 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐵 ≼ (𝐵 ⊔ 𝒫 𝐴) → 𝒫 𝐴𝐵))
4516, 44syld 47 . . . 4 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → ((𝒫 𝐴𝐵) ≈ 𝒫 𝐵 → 𝒫 𝐴𝐵))
46 djudoml 10199 . . . . . . 7 ((𝐵 ∈ GCH ∧ 𝒫 𝐴 ∈ V) → 𝐵 ≼ (𝐵 ⊔ 𝒫 𝐴))
473, 2, 46syl2anc 583 . . . . . 6 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝐵 ≼ (𝐵 ⊔ 𝒫 𝐴))
48 domentr 9025 . . . . . 6 ((𝐵 ≼ (𝐵 ⊔ 𝒫 𝐴) ∧ (𝐵 ⊔ 𝒫 𝐴) ≈ (𝒫 𝐴𝐵)) → 𝐵 ≼ (𝒫 𝐴𝐵))
4947, 9, 48syl2anc 583 . . . . 5 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝐵 ≼ (𝒫 𝐴𝐵))
50 sdomdom 8992 . . . . . . . . . 10 (𝐴𝐵𝐴𝐵)
5150adantl 481 . . . . . . . . 9 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝐴𝐵)
52 pwdom 9145 . . . . . . . . 9 (𝐴𝐵 → 𝒫 𝐴 ≼ 𝒫 𝐵)
5351, 52syl 17 . . . . . . . 8 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝒫 𝐴 ≼ 𝒫 𝐵)
54 djudom1 10197 . . . . . . . 8 ((𝒫 𝐴 ≼ 𝒫 𝐵𝐵 ∈ GCH) → (𝒫 𝐴𝐵) ≼ (𝒫 𝐵𝐵))
5553, 3, 54syl2anc 583 . . . . . . 7 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐴𝐵) ≼ (𝒫 𝐵𝐵))
56 sdomdom 8992 . . . . . . . . 9 (𝐵 ≺ 𝒫 𝐵𝐵 ≼ 𝒫 𝐵)
573, 29, 563syl 18 . . . . . . . 8 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝐵 ≼ 𝒫 𝐵)
583pwexd 5373 . . . . . . . 8 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝒫 𝐵 ∈ V)
59 djudom2 10198 . . . . . . . 8 ((𝐵 ≼ 𝒫 𝐵 ∧ 𝒫 𝐵 ∈ V) → (𝒫 𝐵𝐵) ≼ (𝒫 𝐵 ⊔ 𝒫 𝐵))
6057, 58, 59syl2anc 583 . . . . . . 7 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐵𝐵) ≼ (𝒫 𝐵 ⊔ 𝒫 𝐵))
61 domtr 9019 . . . . . . 7 (((𝒫 𝐴𝐵) ≼ (𝒫 𝐵𝐵) ∧ (𝒫 𝐵𝐵) ≼ (𝒫 𝐵 ⊔ 𝒫 𝐵)) → (𝒫 𝐴𝐵) ≼ (𝒫 𝐵 ⊔ 𝒫 𝐵))
6255, 60, 61syl2anc 583 . . . . . 6 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐴𝐵) ≼ (𝒫 𝐵 ⊔ 𝒫 𝐵))
63 pwdju1 10205 . . . . . . . 8 (𝐵 ∈ GCH → (𝒫 𝐵 ⊔ 𝒫 𝐵) ≈ 𝒫 (𝐵 ⊔ 1o))
643, 63syl 17 . . . . . . 7 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐵 ⊔ 𝒫 𝐵) ≈ 𝒫 (𝐵 ⊔ 1o))
65 gchdju1 10671 . . . . . . . . 9 ((𝐵 ∈ GCH ∧ ¬ 𝐵 ∈ Fin) → (𝐵 ⊔ 1o) ≈ 𝐵)
663, 22, 65syl2anc 583 . . . . . . . 8 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝐵 ⊔ 1o) ≈ 𝐵)
67 pwen 9166 . . . . . . . 8 ((𝐵 ⊔ 1o) ≈ 𝐵 → 𝒫 (𝐵 ⊔ 1o) ≈ 𝒫 𝐵)
6866, 67syl 17 . . . . . . 7 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝒫 (𝐵 ⊔ 1o) ≈ 𝒫 𝐵)
69 entr 9018 . . . . . . 7 (((𝒫 𝐵 ⊔ 𝒫 𝐵) ≈ 𝒫 (𝐵 ⊔ 1o) ∧ 𝒫 (𝐵 ⊔ 1o) ≈ 𝒫 𝐵) → (𝒫 𝐵 ⊔ 𝒫 𝐵) ≈ 𝒫 𝐵)
7064, 68, 69syl2anc 583 . . . . . 6 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐵 ⊔ 𝒫 𝐵) ≈ 𝒫 𝐵)
71 domentr 9025 . . . . . 6 (((𝒫 𝐴𝐵) ≼ (𝒫 𝐵 ⊔ 𝒫 𝐵) ∧ (𝒫 𝐵 ⊔ 𝒫 𝐵) ≈ 𝒫 𝐵) → (𝒫 𝐴𝐵) ≼ 𝒫 𝐵)
7262, 70, 71syl2anc 583 . . . . 5 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝒫 𝐴𝐵) ≼ 𝒫 𝐵)
73 gchor 10642 . . . . 5 (((𝐵 ∈ GCH ∧ ¬ 𝐵 ∈ Fin) ∧ (𝐵 ≼ (𝒫 𝐴𝐵) ∧ (𝒫 𝐴𝐵) ≼ 𝒫 𝐵)) → (𝐵 ≈ (𝒫 𝐴𝐵) ∨ (𝒫 𝐴𝐵) ≈ 𝒫 𝐵))
743, 22, 49, 72, 73syl22anc 838 . . . 4 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → (𝐵 ≈ (𝒫 𝐴𝐵) ∨ (𝒫 𝐴𝐵) ≈ 𝒫 𝐵))
757, 45, 74mpjaod 859 . . 3 (((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) ∧ 𝐴𝐵) → 𝒫 𝐴𝐵)
7675ex 412 . 2 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) → (𝐴𝐵 → 𝒫 𝐴𝐵))
77 reldom 8961 . . . . 5 Rel ≼
7877brrelex1i 5728 . . . 4 (𝒫 𝐴𝐵 → 𝒫 𝐴 ∈ V)
79 pwexb 7762 . . . . 5 (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V)
80 canth2g 9147 . . . . 5 (𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴)
8179, 80sylbir 234 . . . 4 (𝒫 𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴)
8278, 81syl 17 . . 3 (𝒫 𝐴𝐵𝐴 ≺ 𝒫 𝐴)
83 sdomdomtr 9126 . . 3 ((𝐴 ≺ 𝒫 𝐴 ∧ 𝒫 𝐴𝐵) → 𝐴𝐵)
8482, 83mpancom 687 . 2 (𝒫 𝐴𝐵𝐴𝐵)
8576, 84impbid1 224 1 ((ω ≼ 𝐴𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) → (𝐴𝐵 ↔ 𝒫 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 846  w3a 1085  wcel 2099  Vcvv 3469  𝒫 cpw 4598   class class class wbr 5142  ωcom 7864  1oc1o 8473  cen 8952  cdom 8953  csdm 8954  Fincfn 8955  cdju 9913  GCHcgch 10635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9656
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-seqom 8462  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-oexp 8486  df-er 8718  df-map 8838  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-fsupp 9378  df-oi 9525  df-har 9572  df-wdom 9580  df-cnf 9677  df-dju 9916  df-card 9954  df-fin4 10302  df-gch 10636
This theorem is referenced by:  gchaleph2  10687  gchina  10714
  Copyright terms: Public domain W3C validator