Step | Hyp | Ref
| Expression |
1 | | prmuz2 16329 |
. . . . . . . 8
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
(ℤ≥‘2)) |
2 | | uz2m1nn 12592 |
. . . . . . . 8
⊢ (𝑃 ∈
(ℤ≥‘2) → (𝑃 − 1) ∈ ℕ) |
3 | 1, 2 | syl 17 |
. . . . . . 7
⊢ (𝑃 ∈ ℙ → (𝑃 − 1) ∈
ℕ) |
4 | | nnuz 12550 |
. . . . . . 7
⊢ ℕ =
(ℤ≥‘1) |
5 | 3, 4 | eleqtrdi 2849 |
. . . . . 6
⊢ (𝑃 ∈ ℙ → (𝑃 − 1) ∈
(ℤ≥‘1)) |
6 | | eluzfz2 13193 |
. . . . . 6
⊢ ((𝑃 − 1) ∈
(ℤ≥‘1) → (𝑃 − 1) ∈ (1...(𝑃 − 1))) |
7 | 5, 6 | syl 17 |
. . . . 5
⊢ (𝑃 ∈ ℙ → (𝑃 − 1) ∈ (1...(𝑃 − 1))) |
8 | | simpl 482 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 𝑦 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ ℙ) |
9 | | elfzelz 13185 |
. . . . . . . . 9
⊢ (𝑦 ∈ (1...(𝑃 − 1)) → 𝑦 ∈ ℤ) |
10 | 9 | adantl 481 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 𝑦 ∈ (1...(𝑃 − 1))) → 𝑦 ∈ ℤ) |
11 | | prmnn 16307 |
. . . . . . . . 9
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
12 | | fzm1ndvds 15959 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℕ ∧ 𝑦 ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ 𝑦) |
13 | 11, 12 | sylan 579 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 𝑦 ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ 𝑦) |
14 | | eqid 2738 |
. . . . . . . . 9
⊢ ((𝑦↑(𝑃 − 2)) mod 𝑃) = ((𝑦↑(𝑃 − 2)) mod 𝑃) |
15 | 14 | prmdiv 16414 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 𝑦 ∈ ℤ ∧ ¬
𝑃 ∥ 𝑦) → (((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝑦 · ((𝑦↑(𝑃 − 2)) mod 𝑃)) − 1))) |
16 | 8, 10, 13, 15 | syl3anc 1369 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝑦 ∈ (1...(𝑃 − 1))) → (((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝑦 · ((𝑦↑(𝑃 − 2)) mod 𝑃)) − 1))) |
17 | 16 | simpld 494 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝑦 ∈ (1...(𝑃 − 1))) → ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1))) |
18 | 17 | ralrimiva 3107 |
. . . . 5
⊢ (𝑃 ∈ ℙ →
∀𝑦 ∈
(1...(𝑃 − 1))((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1))) |
19 | | ovex 7288 |
. . . . . . 7
⊢
(1...(𝑃 − 1))
∈ V |
20 | 19 | pwid 4554 |
. . . . . 6
⊢
(1...(𝑃 − 1))
∈ 𝒫 (1...(𝑃
− 1)) |
21 | | eleq2 2827 |
. . . . . . . 8
⊢ (𝑥 = (1...(𝑃 − 1)) → ((𝑃 − 1) ∈ 𝑥 ↔ (𝑃 − 1) ∈ (1...(𝑃 − 1)))) |
22 | | eleq2 2827 |
. . . . . . . . 9
⊢ (𝑥 = (1...(𝑃 − 1)) → (((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥 ↔ ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)))) |
23 | 22 | raleqbi1dv 3331 |
. . . . . . . 8
⊢ (𝑥 = (1...(𝑃 − 1)) → (∀𝑦 ∈ 𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥 ↔ ∀𝑦 ∈ (1...(𝑃 − 1))((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)))) |
24 | 21, 23 | anbi12d 630 |
. . . . . . 7
⊢ (𝑥 = (1...(𝑃 − 1)) → (((𝑃 − 1) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥) ↔ ((𝑃 − 1) ∈ (1...(𝑃 − 1)) ∧ ∀𝑦 ∈ (1...(𝑃 − 1))((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1))))) |
25 | | wilthlem.a |
. . . . . . 7
⊢ 𝐴 = {𝑥 ∈ 𝒫 (1...(𝑃 − 1)) ∣ ((𝑃 − 1) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥)} |
26 | 24, 25 | elrab2 3620 |
. . . . . 6
⊢
((1...(𝑃 − 1))
∈ 𝐴 ↔
((1...(𝑃 − 1)) ∈
𝒫 (1...(𝑃 −
1)) ∧ ((𝑃 − 1)
∈ (1...(𝑃 − 1))
∧ ∀𝑦 ∈
(1...(𝑃 − 1))((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1))))) |
27 | 20, 26 | mpbiran 705 |
. . . . 5
⊢
((1...(𝑃 − 1))
∈ 𝐴 ↔ ((𝑃 − 1) ∈ (1...(𝑃 − 1)) ∧ ∀𝑦 ∈ (1...(𝑃 − 1))((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)))) |
28 | 7, 18, 27 | sylanbrc 582 |
. . . 4
⊢ (𝑃 ∈ ℙ →
(1...(𝑃 − 1)) ∈
𝐴) |
29 | | fzfi 13620 |
. . . . 5
⊢
(1...(𝑃 − 1))
∈ Fin |
30 | | eleq1 2826 |
. . . . . . . 8
⊢ (𝑠 = 𝑡 → (𝑠 ∈ 𝐴 ↔ 𝑡 ∈ 𝐴)) |
31 | | reseq2 5875 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑡 → ( I ↾ 𝑠) = ( I ↾ 𝑡)) |
32 | 31 | oveq2d 7271 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑡 → (𝑇 Σg ( I ↾
𝑠)) = (𝑇 Σg ( I ↾
𝑡))) |
33 | 32 | oveq1d 7270 |
. . . . . . . . 9
⊢ (𝑠 = 𝑡 → ((𝑇 Σg ( I ↾
𝑠)) mod 𝑃) = ((𝑇 Σg ( I ↾
𝑡)) mod 𝑃)) |
34 | 33 | eqeq1d 2740 |
. . . . . . . 8
⊢ (𝑠 = 𝑡 → (((𝑇 Σg ( I ↾
𝑠)) mod 𝑃) = (-1 mod 𝑃) ↔ ((𝑇 Σg ( I ↾
𝑡)) mod 𝑃) = (-1 mod 𝑃))) |
35 | 30, 34 | imbi12d 344 |
. . . . . . 7
⊢ (𝑠 = 𝑡 → ((𝑠 ∈ 𝐴 → ((𝑇 Σg ( I ↾
𝑠)) mod 𝑃) = (-1 mod 𝑃)) ↔ (𝑡 ∈ 𝐴 → ((𝑇 Σg ( I ↾
𝑡)) mod 𝑃) = (-1 mod 𝑃)))) |
36 | 35 | imbi2d 340 |
. . . . . 6
⊢ (𝑠 = 𝑡 → ((𝑃 ∈ ℙ → (𝑠 ∈ 𝐴 → ((𝑇 Σg ( I ↾
𝑠)) mod 𝑃) = (-1 mod 𝑃))) ↔ (𝑃 ∈ ℙ → (𝑡 ∈ 𝐴 → ((𝑇 Σg ( I ↾
𝑡)) mod 𝑃) = (-1 mod 𝑃))))) |
37 | | eleq1 2826 |
. . . . . . . 8
⊢ (𝑠 = (1...(𝑃 − 1)) → (𝑠 ∈ 𝐴 ↔ (1...(𝑃 − 1)) ∈ 𝐴)) |
38 | | reseq2 5875 |
. . . . . . . . . . 11
⊢ (𝑠 = (1...(𝑃 − 1)) → ( I ↾ 𝑠) = ( I ↾ (1...(𝑃 − 1)))) |
39 | 38 | oveq2d 7271 |
. . . . . . . . . 10
⊢ (𝑠 = (1...(𝑃 − 1)) → (𝑇 Σg ( I ↾
𝑠)) = (𝑇 Σg ( I ↾
(1...(𝑃 −
1))))) |
40 | 39 | oveq1d 7270 |
. . . . . . . . 9
⊢ (𝑠 = (1...(𝑃 − 1)) → ((𝑇 Σg ( I ↾
𝑠)) mod 𝑃) = ((𝑇 Σg ( I ↾
(1...(𝑃 − 1)))) mod
𝑃)) |
41 | 40 | eqeq1d 2740 |
. . . . . . . 8
⊢ (𝑠 = (1...(𝑃 − 1)) → (((𝑇 Σg ( I ↾
𝑠)) mod 𝑃) = (-1 mod 𝑃) ↔ ((𝑇 Σg ( I ↾
(1...(𝑃 − 1)))) mod
𝑃) = (-1 mod 𝑃))) |
42 | 37, 41 | imbi12d 344 |
. . . . . . 7
⊢ (𝑠 = (1...(𝑃 − 1)) → ((𝑠 ∈ 𝐴 → ((𝑇 Σg ( I ↾
𝑠)) mod 𝑃) = (-1 mod 𝑃)) ↔ ((1...(𝑃 − 1)) ∈ 𝐴 → ((𝑇 Σg ( I ↾
(1...(𝑃 − 1)))) mod
𝑃) = (-1 mod 𝑃)))) |
43 | 42 | imbi2d 340 |
. . . . . 6
⊢ (𝑠 = (1...(𝑃 − 1)) → ((𝑃 ∈ ℙ → (𝑠 ∈ 𝐴 → ((𝑇 Σg ( I ↾
𝑠)) mod 𝑃) = (-1 mod 𝑃))) ↔ (𝑃 ∈ ℙ → ((1...(𝑃 − 1)) ∈ 𝐴 → ((𝑇 Σg ( I ↾
(1...(𝑃 − 1)))) mod
𝑃) = (-1 mod 𝑃))))) |
44 | | bi2.04 388 |
. . . . . . . . . . 11
⊢ ((𝑠 ⊊ 𝑡 → (𝑃 ∈ ℙ → (𝑠 ∈ 𝐴 → ((𝑇 Σg ( I ↾
𝑠)) mod 𝑃) = (-1 mod 𝑃)))) ↔ (𝑃 ∈ ℙ → (𝑠 ⊊ 𝑡 → (𝑠 ∈ 𝐴 → ((𝑇 Σg ( I ↾
𝑠)) mod 𝑃) = (-1 mod 𝑃))))) |
45 | | pm2.27 42 |
. . . . . . . . . . . 12
⊢ (𝑃 ∈ ℙ → ((𝑃 ∈ ℙ → (𝑠 ⊊ 𝑡 → (𝑠 ∈ 𝐴 → ((𝑇 Σg ( I ↾
𝑠)) mod 𝑃) = (-1 mod 𝑃)))) → (𝑠 ⊊ 𝑡 → (𝑠 ∈ 𝐴 → ((𝑇 Σg ( I ↾
𝑠)) mod 𝑃) = (-1 mod 𝑃))))) |
46 | 45 | com34 91 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ ℙ → ((𝑃 ∈ ℙ → (𝑠 ⊊ 𝑡 → (𝑠 ∈ 𝐴 → ((𝑇 Σg ( I ↾
𝑠)) mod 𝑃) = (-1 mod 𝑃)))) → (𝑠 ∈ 𝐴 → (𝑠 ⊊ 𝑡 → ((𝑇 Σg ( I ↾
𝑠)) mod 𝑃) = (-1 mod 𝑃))))) |
47 | 44, 46 | syl5bi 241 |
. . . . . . . . . 10
⊢ (𝑃 ∈ ℙ → ((𝑠 ⊊ 𝑡 → (𝑃 ∈ ℙ → (𝑠 ∈ 𝐴 → ((𝑇 Σg ( I ↾
𝑠)) mod 𝑃) = (-1 mod 𝑃)))) → (𝑠 ∈ 𝐴 → (𝑠 ⊊ 𝑡 → ((𝑇 Σg ( I ↾
𝑠)) mod 𝑃) = (-1 mod 𝑃))))) |
48 | 47 | alimdv 1920 |
. . . . . . . . 9
⊢ (𝑃 ∈ ℙ →
(∀𝑠(𝑠 ⊊ 𝑡 → (𝑃 ∈ ℙ → (𝑠 ∈ 𝐴 → ((𝑇 Σg ( I ↾
𝑠)) mod 𝑃) = (-1 mod 𝑃)))) → ∀𝑠(𝑠 ∈ 𝐴 → (𝑠 ⊊ 𝑡 → ((𝑇 Σg ( I ↾
𝑠)) mod 𝑃) = (-1 mod 𝑃))))) |
49 | | df-ral 3068 |
. . . . . . . . 9
⊢
(∀𝑠 ∈
𝐴 (𝑠 ⊊ 𝑡 → ((𝑇 Σg ( I ↾
𝑠)) mod 𝑃) = (-1 mod 𝑃)) ↔ ∀𝑠(𝑠 ∈ 𝐴 → (𝑠 ⊊ 𝑡 → ((𝑇 Σg ( I ↾
𝑠)) mod 𝑃) = (-1 mod 𝑃)))) |
50 | 48, 49 | syl6ibr 251 |
. . . . . . . 8
⊢ (𝑃 ∈ ℙ →
(∀𝑠(𝑠 ⊊ 𝑡 → (𝑃 ∈ ℙ → (𝑠 ∈ 𝐴 → ((𝑇 Σg ( I ↾
𝑠)) mod 𝑃) = (-1 mod 𝑃)))) → ∀𝑠 ∈ 𝐴 (𝑠 ⊊ 𝑡 → ((𝑇 Σg ( I ↾
𝑠)) mod 𝑃) = (-1 mod 𝑃)))) |
51 | | wilthlem.t |
. . . . . . . . . 10
⊢ 𝑇 =
(mulGrp‘ℂfld) |
52 | | simp1 1134 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧
∀𝑠 ∈ 𝐴 (𝑠 ⊊ 𝑡 → ((𝑇 Σg ( I ↾
𝑠)) mod 𝑃) = (-1 mod 𝑃)) ∧ 𝑡 ∈ 𝐴) → 𝑃 ∈ ℙ) |
53 | | simp3 1136 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧
∀𝑠 ∈ 𝐴 (𝑠 ⊊ 𝑡 → ((𝑇 Σg ( I ↾
𝑠)) mod 𝑃) = (-1 mod 𝑃)) ∧ 𝑡 ∈ 𝐴) → 𝑡 ∈ 𝐴) |
54 | | simp2 1135 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧
∀𝑠 ∈ 𝐴 (𝑠 ⊊ 𝑡 → ((𝑇 Σg ( I ↾
𝑠)) mod 𝑃) = (-1 mod 𝑃)) ∧ 𝑡 ∈ 𝐴) → ∀𝑠 ∈ 𝐴 (𝑠 ⊊ 𝑡 → ((𝑇 Σg ( I ↾
𝑠)) mod 𝑃) = (-1 mod 𝑃))) |
55 | 51, 25, 52, 53, 54 | wilthlem2 26123 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧
∀𝑠 ∈ 𝐴 (𝑠 ⊊ 𝑡 → ((𝑇 Σg ( I ↾
𝑠)) mod 𝑃) = (-1 mod 𝑃)) ∧ 𝑡 ∈ 𝐴) → ((𝑇 Σg ( I ↾
𝑡)) mod 𝑃) = (-1 mod 𝑃)) |
56 | 55 | 3exp 1117 |
. . . . . . . 8
⊢ (𝑃 ∈ ℙ →
(∀𝑠 ∈ 𝐴 (𝑠 ⊊ 𝑡 → ((𝑇 Σg ( I ↾
𝑠)) mod 𝑃) = (-1 mod 𝑃)) → (𝑡 ∈ 𝐴 → ((𝑇 Σg ( I ↾
𝑡)) mod 𝑃) = (-1 mod 𝑃)))) |
57 | 50, 56 | syldc 48 |
. . . . . . 7
⊢
(∀𝑠(𝑠 ⊊ 𝑡 → (𝑃 ∈ ℙ → (𝑠 ∈ 𝐴 → ((𝑇 Σg ( I ↾
𝑠)) mod 𝑃) = (-1 mod 𝑃)))) → (𝑃 ∈ ℙ → (𝑡 ∈ 𝐴 → ((𝑇 Σg ( I ↾
𝑡)) mod 𝑃) = (-1 mod 𝑃)))) |
58 | 57 | a1i 11 |
. . . . . 6
⊢ (𝑡 ∈ Fin →
(∀𝑠(𝑠 ⊊ 𝑡 → (𝑃 ∈ ℙ → (𝑠 ∈ 𝐴 → ((𝑇 Σg ( I ↾
𝑠)) mod 𝑃) = (-1 mod 𝑃)))) → (𝑃 ∈ ℙ → (𝑡 ∈ 𝐴 → ((𝑇 Σg ( I ↾
𝑡)) mod 𝑃) = (-1 mod 𝑃))))) |
59 | 36, 43, 58 | findcard3 8987 |
. . . . 5
⊢
((1...(𝑃 − 1))
∈ Fin → (𝑃 ∈
ℙ → ((1...(𝑃
− 1)) ∈ 𝐴 →
((𝑇
Σg ( I ↾ (1...(𝑃 − 1)))) mod 𝑃) = (-1 mod 𝑃)))) |
60 | 29, 59 | ax-mp 5 |
. . . 4
⊢ (𝑃 ∈ ℙ →
((1...(𝑃 − 1)) ∈
𝐴 → ((𝑇 Σg ( I
↾ (1...(𝑃 −
1)))) mod 𝑃) = (-1 mod
𝑃))) |
61 | 28, 60 | mpd 15 |
. . 3
⊢ (𝑃 ∈ ℙ → ((𝑇 Σg ( I
↾ (1...(𝑃 −
1)))) mod 𝑃) = (-1 mod
𝑃)) |
62 | | cnfld1 20535 |
. . . . . 6
⊢ 1 =
(1r‘ℂfld) |
63 | 51, 62 | ringidval 19654 |
. . . . 5
⊢ 1 =
(0g‘𝑇) |
64 | | cncrng 20531 |
. . . . . 6
⊢
ℂfld ∈ CRing |
65 | 51 | crngmgp 19706 |
. . . . . 6
⊢
(ℂfld ∈ CRing → 𝑇 ∈ CMnd) |
66 | 64, 65 | mp1i 13 |
. . . . 5
⊢ (𝑃 ∈ ℙ → 𝑇 ∈ CMnd) |
67 | 29 | a1i 11 |
. . . . 5
⊢ (𝑃 ∈ ℙ →
(1...(𝑃 − 1)) ∈
Fin) |
68 | | zsubrg 20563 |
. . . . . 6
⊢ ℤ
∈ (SubRing‘ℂfld) |
69 | 51 | subrgsubm 19952 |
. . . . . 6
⊢ (ℤ
∈ (SubRing‘ℂfld) → ℤ ∈
(SubMnd‘𝑇)) |
70 | 68, 69 | mp1i 13 |
. . . . 5
⊢ (𝑃 ∈ ℙ → ℤ
∈ (SubMnd‘𝑇)) |
71 | | f1oi 6737 |
. . . . . . . 8
⊢ ( I
↾ (1...(𝑃 −
1))):(1...(𝑃 −
1))–1-1-onto→(1...(𝑃 − 1)) |
72 | | f1of 6700 |
. . . . . . . 8
⊢ (( I
↾ (1...(𝑃 −
1))):(1...(𝑃 −
1))–1-1-onto→(1...(𝑃 − 1)) → ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶(1...(𝑃 − 1))) |
73 | 71, 72 | ax-mp 5 |
. . . . . . 7
⊢ ( I
↾ (1...(𝑃 −
1))):(1...(𝑃 −
1))⟶(1...(𝑃 −
1)) |
74 | | fzssz 13187 |
. . . . . . 7
⊢
(1...(𝑃 − 1))
⊆ ℤ |
75 | | fss 6601 |
. . . . . . 7
⊢ ((( I
↾ (1...(𝑃 −
1))):(1...(𝑃 −
1))⟶(1...(𝑃 −
1)) ∧ (1...(𝑃 −
1)) ⊆ ℤ) → ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 −
1))⟶ℤ) |
76 | 73, 74, 75 | mp2an 688 |
. . . . . 6
⊢ ( I
↾ (1...(𝑃 −
1))):(1...(𝑃 −
1))⟶ℤ |
77 | 76 | a1i 11 |
. . . . 5
⊢ (𝑃 ∈ ℙ → ( I
↾ (1...(𝑃 −
1))):(1...(𝑃 −
1))⟶ℤ) |
78 | | 1ex 10902 |
. . . . . . 7
⊢ 1 ∈
V |
79 | 78 | a1i 11 |
. . . . . 6
⊢ (𝑃 ∈ ℙ → 1 ∈
V) |
80 | 77, 67, 79 | fdmfifsupp 9068 |
. . . . 5
⊢ (𝑃 ∈ ℙ → ( I
↾ (1...(𝑃 −
1))) finSupp 1) |
81 | 63, 66, 67, 70, 77, 80 | gsumsubmcl 19435 |
. . . 4
⊢ (𝑃 ∈ ℙ → (𝑇 Σg ( I
↾ (1...(𝑃 −
1)))) ∈ ℤ) |
82 | | 1z 12280 |
. . . . 5
⊢ 1 ∈
ℤ |
83 | | znegcl 12285 |
. . . . 5
⊢ (1 ∈
ℤ → -1 ∈ ℤ) |
84 | 82, 83 | mp1i 13 |
. . . 4
⊢ (𝑃 ∈ ℙ → -1 ∈
ℤ) |
85 | | moddvds 15902 |
. . . 4
⊢ ((𝑃 ∈ ℕ ∧ (𝑇 Σg ( I
↾ (1...(𝑃 −
1)))) ∈ ℤ ∧ -1 ∈ ℤ) → (((𝑇 Σg ( I ↾
(1...(𝑃 − 1)))) mod
𝑃) = (-1 mod 𝑃) ↔ 𝑃 ∥ ((𝑇 Σg ( I ↾
(1...(𝑃 − 1))))
− -1))) |
86 | 11, 81, 84, 85 | syl3anc 1369 |
. . 3
⊢ (𝑃 ∈ ℙ → (((𝑇 Σg ( I
↾ (1...(𝑃 −
1)))) mod 𝑃) = (-1 mod
𝑃) ↔ 𝑃 ∥ ((𝑇 Σg ( I ↾
(1...(𝑃 − 1))))
− -1))) |
87 | 61, 86 | mpbid 231 |
. 2
⊢ (𝑃 ∈ ℙ → 𝑃 ∥ ((𝑇 Σg ( I ↾
(1...(𝑃 − 1))))
− -1)) |
88 | | fcoi1 6632 |
. . . . . . . . . 10
⊢ (( I
↾ (1...(𝑃 −
1))):(1...(𝑃 −
1))⟶(1...(𝑃 −
1)) → (( I ↾ (1...(𝑃 − 1))) ∘ ( I ↾
(1...(𝑃 − 1)))) = ( I
↾ (1...(𝑃 −
1)))) |
89 | 73, 88 | ax-mp 5 |
. . . . . . . . 9
⊢ (( I
↾ (1...(𝑃 −
1))) ∘ ( I ↾ (1...(𝑃 − 1)))) = ( I ↾ (1...(𝑃 − 1))) |
90 | 89 | fveq1i 6757 |
. . . . . . . 8
⊢ ((( I
↾ (1...(𝑃 −
1))) ∘ ( I ↾ (1...(𝑃 − 1))))‘𝑘) = (( I ↾ (1...(𝑃 − 1)))‘𝑘) |
91 | | fvres 6775 |
. . . . . . . 8
⊢ (𝑘 ∈ (1...(𝑃 − 1)) → (( I ↾ (1...(𝑃 − 1)))‘𝑘) = ( I ‘𝑘)) |
92 | 90, 91 | syl5eq 2791 |
. . . . . . 7
⊢ (𝑘 ∈ (1...(𝑃 − 1)) → ((( I ↾
(1...(𝑃 − 1)))
∘ ( I ↾ (1...(𝑃
− 1))))‘𝑘) = (
I ‘𝑘)) |
93 | 92 | adantl 481 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ (1...(𝑃 − 1))) → ((( I ↾
(1...(𝑃 − 1)))
∘ ( I ↾ (1...(𝑃
− 1))))‘𝑘) = (
I ‘𝑘)) |
94 | 5, 93 | seqfveq 13675 |
. . . . 5
⊢ (𝑃 ∈ ℙ → (seq1(
· , (( I ↾ (1...(𝑃 − 1))) ∘ ( I ↾
(1...(𝑃 −
1)))))‘(𝑃 − 1))
= (seq1( · , I )‘(𝑃 − 1))) |
95 | | cnfldbas 20514 |
. . . . . . 7
⊢ ℂ =
(Base‘ℂfld) |
96 | 51, 95 | mgpbas 19641 |
. . . . . 6
⊢ ℂ =
(Base‘𝑇) |
97 | | cnfldmul 20516 |
. . . . . . 7
⊢ ·
= (.r‘ℂfld) |
98 | 51, 97 | mgpplusg 19639 |
. . . . . 6
⊢ ·
= (+g‘𝑇) |
99 | | eqid 2738 |
. . . . . 6
⊢
(Cntz‘𝑇) =
(Cntz‘𝑇) |
100 | | cnring 20532 |
. . . . . . 7
⊢
ℂfld ∈ Ring |
101 | 51 | ringmgp 19704 |
. . . . . . 7
⊢
(ℂfld ∈ Ring → 𝑇 ∈ Mnd) |
102 | 100, 101 | mp1i 13 |
. . . . . 6
⊢ (𝑃 ∈ ℙ → 𝑇 ∈ Mnd) |
103 | | zsscn 12257 |
. . . . . . . 8
⊢ ℤ
⊆ ℂ |
104 | | fss 6601 |
. . . . . . . 8
⊢ ((( I
↾ (1...(𝑃 −
1))):(1...(𝑃 −
1))⟶ℤ ∧ ℤ ⊆ ℂ) → ( I ↾
(1...(𝑃 −
1))):(1...(𝑃 −
1))⟶ℂ) |
105 | 76, 103, 104 | mp2an 688 |
. . . . . . 7
⊢ ( I
↾ (1...(𝑃 −
1))):(1...(𝑃 −
1))⟶ℂ |
106 | 105 | a1i 11 |
. . . . . 6
⊢ (𝑃 ∈ ℙ → ( I
↾ (1...(𝑃 −
1))):(1...(𝑃 −
1))⟶ℂ) |
107 | 96, 99, 66, 106 | cntzcmnf 19361 |
. . . . . 6
⊢ (𝑃 ∈ ℙ → ran ( I
↾ (1...(𝑃 −
1))) ⊆ ((Cntz‘𝑇)‘ran ( I ↾ (1...(𝑃 − 1))))) |
108 | | f1of1 6699 |
. . . . . . 7
⊢ (( I
↾ (1...(𝑃 −
1))):(1...(𝑃 −
1))–1-1-onto→(1...(𝑃 − 1)) → ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))–1-1→(1...(𝑃 − 1))) |
109 | 71, 108 | mp1i 13 |
. . . . . 6
⊢ (𝑃 ∈ ℙ → ( I
↾ (1...(𝑃 −
1))):(1...(𝑃 −
1))–1-1→(1...(𝑃 − 1))) |
110 | | suppssdm 7964 |
. . . . . . . . 9
⊢ (( I
↾ (1...(𝑃 −
1))) supp 1) ⊆ dom ( I ↾ (1...(𝑃 − 1))) |
111 | | dmresi 5950 |
. . . . . . . . 9
⊢ dom ( I
↾ (1...(𝑃 −
1))) = (1...(𝑃 −
1)) |
112 | 110, 111 | sseqtri 3953 |
. . . . . . . 8
⊢ (( I
↾ (1...(𝑃 −
1))) supp 1) ⊆ (1...(𝑃 − 1)) |
113 | | rnresi 5972 |
. . . . . . . 8
⊢ ran ( I
↾ (1...(𝑃 −
1))) = (1...(𝑃 −
1)) |
114 | 112, 113 | sseqtrri 3954 |
. . . . . . 7
⊢ (( I
↾ (1...(𝑃 −
1))) supp 1) ⊆ ran ( I ↾ (1...(𝑃 − 1))) |
115 | 114 | a1i 11 |
. . . . . 6
⊢ (𝑃 ∈ ℙ → (( I
↾ (1...(𝑃 −
1))) supp 1) ⊆ ran ( I ↾ (1...(𝑃 − 1)))) |
116 | | eqid 2738 |
. . . . . 6
⊢ ((( I
↾ (1...(𝑃 −
1))) ∘ ( I ↾ (1...(𝑃 − 1)))) supp 1) = ((( I ↾
(1...(𝑃 − 1)))
∘ ( I ↾ (1...(𝑃
− 1)))) supp 1) |
117 | 96, 63, 98, 99, 102, 67, 106, 107, 3, 109, 115, 116 | gsumval3 19423 |
. . . . 5
⊢ (𝑃 ∈ ℙ → (𝑇 Σg ( I
↾ (1...(𝑃 −
1)))) = (seq1( · , (( I ↾ (1...(𝑃 − 1))) ∘ ( I ↾
(1...(𝑃 −
1)))))‘(𝑃 −
1))) |
118 | | facnn 13917 |
. . . . . 6
⊢ ((𝑃 − 1) ∈ ℕ
→ (!‘(𝑃 −
1)) = (seq1( · , I )‘(𝑃 − 1))) |
119 | 3, 118 | syl 17 |
. . . . 5
⊢ (𝑃 ∈ ℙ →
(!‘(𝑃 − 1)) =
(seq1( · , I )‘(𝑃 − 1))) |
120 | 94, 117, 119 | 3eqtr4d 2788 |
. . . 4
⊢ (𝑃 ∈ ℙ → (𝑇 Σg ( I
↾ (1...(𝑃 −
1)))) = (!‘(𝑃 −
1))) |
121 | 120 | oveq1d 7270 |
. . 3
⊢ (𝑃 ∈ ℙ → ((𝑇 Σg ( I
↾ (1...(𝑃 −
1)))) − -1) = ((!‘(𝑃 − 1)) − -1)) |
122 | | nnm1nn0 12204 |
. . . . . . 7
⊢ (𝑃 ∈ ℕ → (𝑃 − 1) ∈
ℕ0) |
123 | 11, 122 | syl 17 |
. . . . . 6
⊢ (𝑃 ∈ ℙ → (𝑃 − 1) ∈
ℕ0) |
124 | 123 | faccld 13926 |
. . . . 5
⊢ (𝑃 ∈ ℙ →
(!‘(𝑃 − 1))
∈ ℕ) |
125 | 124 | nncnd 11919 |
. . . 4
⊢ (𝑃 ∈ ℙ →
(!‘(𝑃 − 1))
∈ ℂ) |
126 | | ax-1cn 10860 |
. . . 4
⊢ 1 ∈
ℂ |
127 | | subneg 11200 |
. . . 4
⊢
(((!‘(𝑃
− 1)) ∈ ℂ ∧ 1 ∈ ℂ) → ((!‘(𝑃 − 1)) − -1) =
((!‘(𝑃 − 1)) +
1)) |
128 | 125, 126,
127 | sylancl 585 |
. . 3
⊢ (𝑃 ∈ ℙ →
((!‘(𝑃 − 1))
− -1) = ((!‘(𝑃
− 1)) + 1)) |
129 | 121, 128 | eqtrd 2778 |
. 2
⊢ (𝑃 ∈ ℙ → ((𝑇 Σg ( I
↾ (1...(𝑃 −
1)))) − -1) = ((!‘(𝑃 − 1)) + 1)) |
130 | 87, 129 | breqtrd 5096 |
1
⊢ (𝑃 ∈ ℙ → 𝑃 ∥ ((!‘(𝑃 − 1)) +
1)) |