MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wilthlem3 Structured version   Visualization version   GIF version

Theorem wilthlem3 27113
Description: Lemma for wilth 27114. Here we round out the argument of wilthlem2 27112 with the final step of the induction. The induction argument shows that every subset of 1...(𝑃 − 1) that is closed under inverse and contains 𝑃 − 1 multiplies to -1 mod 𝑃, and clearly 1...(𝑃 − 1) itself is such a set. Thus, the product of all the elements is -1, and all that is left is to translate the group sum notation (which we used for its unordered summing capabilities) into an ordered sequence to match the definition of the factorial. (Contributed by Mario Carneiro, 24-Jan-2015.) (Proof shortened by AV, 27-Jul-2019.)
Hypotheses
Ref Expression
wilthlem.t 𝑇 = (mulGrp‘ℂfld)
wilthlem.a 𝐴 = {𝑥 ∈ 𝒫 (1...(𝑃 − 1)) ∣ ((𝑃 − 1) ∈ 𝑥 ∧ ∀𝑦𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥)}
Assertion
Ref Expression
wilthlem3 (𝑃 ∈ ℙ → 𝑃 ∥ ((!‘(𝑃 − 1)) + 1))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑃,𝑦   𝑥,𝑇,𝑦

Proof of Theorem wilthlem3
Dummy variables 𝑡 𝑠 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmuz2 16733 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
2 uz2m1nn 12965 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → (𝑃 − 1) ∈ ℕ)
31, 2syl 17 . . . . . . 7 (𝑃 ∈ ℙ → (𝑃 − 1) ∈ ℕ)
4 nnuz 12921 . . . . . . 7 ℕ = (ℤ‘1)
53, 4eleqtrdi 2851 . . . . . 6 (𝑃 ∈ ℙ → (𝑃 − 1) ∈ (ℤ‘1))
6 eluzfz2 13572 . . . . . 6 ((𝑃 − 1) ∈ (ℤ‘1) → (𝑃 − 1) ∈ (1...(𝑃 − 1)))
75, 6syl 17 . . . . 5 (𝑃 ∈ ℙ → (𝑃 − 1) ∈ (1...(𝑃 − 1)))
8 simpl 482 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ ℙ)
9 elfzelz 13564 . . . . . . . . 9 (𝑦 ∈ (1...(𝑃 − 1)) → 𝑦 ∈ ℤ)
109adantl 481 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ (1...(𝑃 − 1))) → 𝑦 ∈ ℤ)
11 prmnn 16711 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
12 fzm1ndvds 16359 . . . . . . . . 9 ((𝑃 ∈ ℕ ∧ 𝑦 ∈ (1...(𝑃 − 1))) → ¬ 𝑃𝑦)
1311, 12sylan 580 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ (1...(𝑃 − 1))) → ¬ 𝑃𝑦)
14 eqid 2737 . . . . . . . . 9 ((𝑦↑(𝑃 − 2)) mod 𝑃) = ((𝑦↑(𝑃 − 2)) mod 𝑃)
1514prmdiv 16822 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ ℤ ∧ ¬ 𝑃𝑦) → (((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝑦 · ((𝑦↑(𝑃 − 2)) mod 𝑃)) − 1)))
168, 10, 13, 15syl3anc 1373 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ (1...(𝑃 − 1))) → (((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝑦 · ((𝑦↑(𝑃 − 2)) mod 𝑃)) − 1)))
1716simpld 494 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ (1...(𝑃 − 1))) → ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)))
1817ralrimiva 3146 . . . . 5 (𝑃 ∈ ℙ → ∀𝑦 ∈ (1...(𝑃 − 1))((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)))
19 ovex 7464 . . . . . . 7 (1...(𝑃 − 1)) ∈ V
2019pwid 4622 . . . . . 6 (1...(𝑃 − 1)) ∈ 𝒫 (1...(𝑃 − 1))
21 eleq2 2830 . . . . . . . 8 (𝑥 = (1...(𝑃 − 1)) → ((𝑃 − 1) ∈ 𝑥 ↔ (𝑃 − 1) ∈ (1...(𝑃 − 1))))
22 eleq2 2830 . . . . . . . . 9 (𝑥 = (1...(𝑃 − 1)) → (((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥 ↔ ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1))))
2322raleqbi1dv 3338 . . . . . . . 8 (𝑥 = (1...(𝑃 − 1)) → (∀𝑦𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥 ↔ ∀𝑦 ∈ (1...(𝑃 − 1))((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1))))
2421, 23anbi12d 632 . . . . . . 7 (𝑥 = (1...(𝑃 − 1)) → (((𝑃 − 1) ∈ 𝑥 ∧ ∀𝑦𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥) ↔ ((𝑃 − 1) ∈ (1...(𝑃 − 1)) ∧ ∀𝑦 ∈ (1...(𝑃 − 1))((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)))))
25 wilthlem.a . . . . . . 7 𝐴 = {𝑥 ∈ 𝒫 (1...(𝑃 − 1)) ∣ ((𝑃 − 1) ∈ 𝑥 ∧ ∀𝑦𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥)}
2624, 25elrab2 3695 . . . . . 6 ((1...(𝑃 − 1)) ∈ 𝐴 ↔ ((1...(𝑃 − 1)) ∈ 𝒫 (1...(𝑃 − 1)) ∧ ((𝑃 − 1) ∈ (1...(𝑃 − 1)) ∧ ∀𝑦 ∈ (1...(𝑃 − 1))((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)))))
2720, 26mpbiran 709 . . . . 5 ((1...(𝑃 − 1)) ∈ 𝐴 ↔ ((𝑃 − 1) ∈ (1...(𝑃 − 1)) ∧ ∀𝑦 ∈ (1...(𝑃 − 1))((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1))))
287, 18, 27sylanbrc 583 . . . 4 (𝑃 ∈ ℙ → (1...(𝑃 − 1)) ∈ 𝐴)
29 fzfi 14013 . . . . 5 (1...(𝑃 − 1)) ∈ Fin
30 eleq1 2829 . . . . . . . 8 (𝑠 = 𝑡 → (𝑠𝐴𝑡𝐴))
31 reseq2 5992 . . . . . . . . . . 11 (𝑠 = 𝑡 → ( I ↾ 𝑠) = ( I ↾ 𝑡))
3231oveq2d 7447 . . . . . . . . . 10 (𝑠 = 𝑡 → (𝑇 Σg ( I ↾ 𝑠)) = (𝑇 Σg ( I ↾ 𝑡)))
3332oveq1d 7446 . . . . . . . . 9 (𝑠 = 𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = ((𝑇 Σg ( I ↾ 𝑡)) mod 𝑃))
3433eqeq1d 2739 . . . . . . . 8 (𝑠 = 𝑡 → (((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃) ↔ ((𝑇 Σg ( I ↾ 𝑡)) mod 𝑃) = (-1 mod 𝑃)))
3530, 34imbi12d 344 . . . . . . 7 (𝑠 = 𝑡 → ((𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)) ↔ (𝑡𝐴 → ((𝑇 Σg ( I ↾ 𝑡)) mod 𝑃) = (-1 mod 𝑃))))
3635imbi2d 340 . . . . . 6 (𝑠 = 𝑡 → ((𝑃 ∈ ℙ → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃))) ↔ (𝑃 ∈ ℙ → (𝑡𝐴 → ((𝑇 Σg ( I ↾ 𝑡)) mod 𝑃) = (-1 mod 𝑃)))))
37 eleq1 2829 . . . . . . . 8 (𝑠 = (1...(𝑃 − 1)) → (𝑠𝐴 ↔ (1...(𝑃 − 1)) ∈ 𝐴))
38 reseq2 5992 . . . . . . . . . . 11 (𝑠 = (1...(𝑃 − 1)) → ( I ↾ 𝑠) = ( I ↾ (1...(𝑃 − 1))))
3938oveq2d 7447 . . . . . . . . . 10 (𝑠 = (1...(𝑃 − 1)) → (𝑇 Σg ( I ↾ 𝑠)) = (𝑇 Σg ( I ↾ (1...(𝑃 − 1)))))
4039oveq1d 7446 . . . . . . . . 9 (𝑠 = (1...(𝑃 − 1)) → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) mod 𝑃))
4140eqeq1d 2739 . . . . . . . 8 (𝑠 = (1...(𝑃 − 1)) → (((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃) ↔ ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) mod 𝑃) = (-1 mod 𝑃)))
4237, 41imbi12d 344 . . . . . . 7 (𝑠 = (1...(𝑃 − 1)) → ((𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)) ↔ ((1...(𝑃 − 1)) ∈ 𝐴 → ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) mod 𝑃) = (-1 mod 𝑃))))
4342imbi2d 340 . . . . . 6 (𝑠 = (1...(𝑃 − 1)) → ((𝑃 ∈ ℙ → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃))) ↔ (𝑃 ∈ ℙ → ((1...(𝑃 − 1)) ∈ 𝐴 → ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) mod 𝑃) = (-1 mod 𝑃)))))
44 bi2.04 387 . . . . . . . . . . 11 ((𝑠𝑡 → (𝑃 ∈ ℙ → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))) ↔ (𝑃 ∈ ℙ → (𝑠𝑡 → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))))
45 pm2.27 42 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → ((𝑃 ∈ ℙ → (𝑠𝑡 → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))) → (𝑠𝑡 → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))))
4645com34 91 . . . . . . . . . . 11 (𝑃 ∈ ℙ → ((𝑃 ∈ ℙ → (𝑠𝑡 → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))) → (𝑠𝐴 → (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))))
4744, 46biimtrid 242 . . . . . . . . . 10 (𝑃 ∈ ℙ → ((𝑠𝑡 → (𝑃 ∈ ℙ → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))) → (𝑠𝐴 → (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))))
4847alimdv 1916 . . . . . . . . 9 (𝑃 ∈ ℙ → (∀𝑠(𝑠𝑡 → (𝑃 ∈ ℙ → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))) → ∀𝑠(𝑠𝐴 → (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))))
49 df-ral 3062 . . . . . . . . 9 (∀𝑠𝐴 (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)) ↔ ∀𝑠(𝑠𝐴 → (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃))))
5048, 49imbitrrdi 252 . . . . . . . 8 (𝑃 ∈ ℙ → (∀𝑠(𝑠𝑡 → (𝑃 ∈ ℙ → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))) → ∀𝑠𝐴 (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃))))
51 wilthlem.t . . . . . . . . . 10 𝑇 = (mulGrp‘ℂfld)
52 simp1 1137 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ ∀𝑠𝐴 (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)) ∧ 𝑡𝐴) → 𝑃 ∈ ℙ)
53 simp3 1139 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ ∀𝑠𝐴 (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)) ∧ 𝑡𝐴) → 𝑡𝐴)
54 simp2 1138 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ ∀𝑠𝐴 (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)) ∧ 𝑡𝐴) → ∀𝑠𝐴 (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))
5551, 25, 52, 53, 54wilthlem2 27112 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ ∀𝑠𝐴 (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)) ∧ 𝑡𝐴) → ((𝑇 Σg ( I ↾ 𝑡)) mod 𝑃) = (-1 mod 𝑃))
56553exp 1120 . . . . . . . 8 (𝑃 ∈ ℙ → (∀𝑠𝐴 (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)) → (𝑡𝐴 → ((𝑇 Σg ( I ↾ 𝑡)) mod 𝑃) = (-1 mod 𝑃))))
5750, 56syldc 48 . . . . . . 7 (∀𝑠(𝑠𝑡 → (𝑃 ∈ ℙ → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))) → (𝑃 ∈ ℙ → (𝑡𝐴 → ((𝑇 Σg ( I ↾ 𝑡)) mod 𝑃) = (-1 mod 𝑃))))
5857a1i 11 . . . . . 6 (𝑡 ∈ Fin → (∀𝑠(𝑠𝑡 → (𝑃 ∈ ℙ → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))) → (𝑃 ∈ ℙ → (𝑡𝐴 → ((𝑇 Σg ( I ↾ 𝑡)) mod 𝑃) = (-1 mod 𝑃)))))
5936, 43, 58findcard3 9318 . . . . 5 ((1...(𝑃 − 1)) ∈ Fin → (𝑃 ∈ ℙ → ((1...(𝑃 − 1)) ∈ 𝐴 → ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) mod 𝑃) = (-1 mod 𝑃))))
6029, 59ax-mp 5 . . . 4 (𝑃 ∈ ℙ → ((1...(𝑃 − 1)) ∈ 𝐴 → ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) mod 𝑃) = (-1 mod 𝑃)))
6128, 60mpd 15 . . 3 (𝑃 ∈ ℙ → ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) mod 𝑃) = (-1 mod 𝑃))
62 cnfld1 21406 . . . . . 6 1 = (1r‘ℂfld)
6351, 62ringidval 20180 . . . . 5 1 = (0g𝑇)
64 cncrng 21401 . . . . . 6 fld ∈ CRing
6551crngmgp 20238 . . . . . 6 (ℂfld ∈ CRing → 𝑇 ∈ CMnd)
6664, 65mp1i 13 . . . . 5 (𝑃 ∈ ℙ → 𝑇 ∈ CMnd)
6729a1i 11 . . . . 5 (𝑃 ∈ ℙ → (1...(𝑃 − 1)) ∈ Fin)
68 zsubrg 21438 . . . . . 6 ℤ ∈ (SubRing‘ℂfld)
6951subrgsubm 20585 . . . . . 6 (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubMnd‘𝑇))
7068, 69mp1i 13 . . . . 5 (𝑃 ∈ ℙ → ℤ ∈ (SubMnd‘𝑇))
71 f1oi 6886 . . . . . . . 8 ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))–1-1-onto→(1...(𝑃 − 1))
72 f1of 6848 . . . . . . . 8 (( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))–1-1-onto→(1...(𝑃 − 1)) → ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶(1...(𝑃 − 1)))
7371, 72ax-mp 5 . . . . . . 7 ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶(1...(𝑃 − 1))
74 fzssz 13566 . . . . . . 7 (1...(𝑃 − 1)) ⊆ ℤ
75 fss 6752 . . . . . . 7 ((( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶(1...(𝑃 − 1)) ∧ (1...(𝑃 − 1)) ⊆ ℤ) → ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶ℤ)
7673, 74, 75mp2an 692 . . . . . 6 ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶ℤ
7776a1i 11 . . . . 5 (𝑃 ∈ ℙ → ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶ℤ)
78 1ex 11257 . . . . . . 7 1 ∈ V
7978a1i 11 . . . . . 6 (𝑃 ∈ ℙ → 1 ∈ V)
8077, 67, 79fdmfifsupp 9415 . . . . 5 (𝑃 ∈ ℙ → ( I ↾ (1...(𝑃 − 1))) finSupp 1)
8163, 66, 67, 70, 77, 80gsumsubmcl 19937 . . . 4 (𝑃 ∈ ℙ → (𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) ∈ ℤ)
82 1z 12647 . . . . 5 1 ∈ ℤ
83 znegcl 12652 . . . . 5 (1 ∈ ℤ → -1 ∈ ℤ)
8482, 83mp1i 13 . . . 4 (𝑃 ∈ ℙ → -1 ∈ ℤ)
85 moddvds 16301 . . . 4 ((𝑃 ∈ ℕ ∧ (𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) ∈ ℤ ∧ -1 ∈ ℤ) → (((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) mod 𝑃) = (-1 mod 𝑃) ↔ 𝑃 ∥ ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) − -1)))
8611, 81, 84, 85syl3anc 1373 . . 3 (𝑃 ∈ ℙ → (((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) mod 𝑃) = (-1 mod 𝑃) ↔ 𝑃 ∥ ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) − -1)))
8761, 86mpbid 232 . 2 (𝑃 ∈ ℙ → 𝑃 ∥ ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) − -1))
88 fcoi1 6782 . . . . . . . . . 10 (( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶(1...(𝑃 − 1)) → (( I ↾ (1...(𝑃 − 1))) ∘ ( I ↾ (1...(𝑃 − 1)))) = ( I ↾ (1...(𝑃 − 1))))
8973, 88ax-mp 5 . . . . . . . . 9 (( I ↾ (1...(𝑃 − 1))) ∘ ( I ↾ (1...(𝑃 − 1)))) = ( I ↾ (1...(𝑃 − 1)))
9089fveq1i 6907 . . . . . . . 8 ((( I ↾ (1...(𝑃 − 1))) ∘ ( I ↾ (1...(𝑃 − 1))))‘𝑘) = (( I ↾ (1...(𝑃 − 1)))‘𝑘)
91 fvres 6925 . . . . . . . 8 (𝑘 ∈ (1...(𝑃 − 1)) → (( I ↾ (1...(𝑃 − 1)))‘𝑘) = ( I ‘𝑘))
9290, 91eqtrid 2789 . . . . . . 7 (𝑘 ∈ (1...(𝑃 − 1)) → ((( I ↾ (1...(𝑃 − 1))) ∘ ( I ↾ (1...(𝑃 − 1))))‘𝑘) = ( I ‘𝑘))
9392adantl 481 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑘 ∈ (1...(𝑃 − 1))) → ((( I ↾ (1...(𝑃 − 1))) ∘ ( I ↾ (1...(𝑃 − 1))))‘𝑘) = ( I ‘𝑘))
945, 93seqfveq 14067 . . . . 5 (𝑃 ∈ ℙ → (seq1( · , (( I ↾ (1...(𝑃 − 1))) ∘ ( I ↾ (1...(𝑃 − 1)))))‘(𝑃 − 1)) = (seq1( · , I )‘(𝑃 − 1)))
95 cnfldbas 21368 . . . . . . 7 ℂ = (Base‘ℂfld)
9651, 95mgpbas 20142 . . . . . 6 ℂ = (Base‘𝑇)
97 cnfldmul 21372 . . . . . . 7 · = (.r‘ℂfld)
9851, 97mgpplusg 20141 . . . . . 6 · = (+g𝑇)
99 eqid 2737 . . . . . 6 (Cntz‘𝑇) = (Cntz‘𝑇)
100 cnring 21403 . . . . . . 7 fld ∈ Ring
10151ringmgp 20236 . . . . . . 7 (ℂfld ∈ Ring → 𝑇 ∈ Mnd)
102100, 101mp1i 13 . . . . . 6 (𝑃 ∈ ℙ → 𝑇 ∈ Mnd)
103 zsscn 12621 . . . . . . . 8 ℤ ⊆ ℂ
104 fss 6752 . . . . . . . 8 ((( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶ℤ ∧ ℤ ⊆ ℂ) → ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶ℂ)
10576, 103, 104mp2an 692 . . . . . . 7 ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶ℂ
106105a1i 11 . . . . . 6 (𝑃 ∈ ℙ → ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶ℂ)
10796, 99, 66, 106cntzcmnf 19863 . . . . . 6 (𝑃 ∈ ℙ → ran ( I ↾ (1...(𝑃 − 1))) ⊆ ((Cntz‘𝑇)‘ran ( I ↾ (1...(𝑃 − 1)))))
108 f1of1 6847 . . . . . . 7 (( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))–1-1-onto→(1...(𝑃 − 1)) → ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))–1-1→(1...(𝑃 − 1)))
10971, 108mp1i 13 . . . . . 6 (𝑃 ∈ ℙ → ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))–1-1→(1...(𝑃 − 1)))
110 suppssdm 8202 . . . . . . . . 9 (( I ↾ (1...(𝑃 − 1))) supp 1) ⊆ dom ( I ↾ (1...(𝑃 − 1)))
111 dmresi 6070 . . . . . . . . 9 dom ( I ↾ (1...(𝑃 − 1))) = (1...(𝑃 − 1))
112110, 111sseqtri 4032 . . . . . . . 8 (( I ↾ (1...(𝑃 − 1))) supp 1) ⊆ (1...(𝑃 − 1))
113 rnresi 6093 . . . . . . . 8 ran ( I ↾ (1...(𝑃 − 1))) = (1...(𝑃 − 1))
114112, 113sseqtrri 4033 . . . . . . 7 (( I ↾ (1...(𝑃 − 1))) supp 1) ⊆ ran ( I ↾ (1...(𝑃 − 1)))
115114a1i 11 . . . . . 6 (𝑃 ∈ ℙ → (( I ↾ (1...(𝑃 − 1))) supp 1) ⊆ ran ( I ↾ (1...(𝑃 − 1))))
116 eqid 2737 . . . . . 6 ((( I ↾ (1...(𝑃 − 1))) ∘ ( I ↾ (1...(𝑃 − 1)))) supp 1) = ((( I ↾ (1...(𝑃 − 1))) ∘ ( I ↾ (1...(𝑃 − 1)))) supp 1)
11796, 63, 98, 99, 102, 67, 106, 107, 3, 109, 115, 116gsumval3 19925 . . . . 5 (𝑃 ∈ ℙ → (𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) = (seq1( · , (( I ↾ (1...(𝑃 − 1))) ∘ ( I ↾ (1...(𝑃 − 1)))))‘(𝑃 − 1)))
118 facnn 14314 . . . . . 6 ((𝑃 − 1) ∈ ℕ → (!‘(𝑃 − 1)) = (seq1( · , I )‘(𝑃 − 1)))
1193, 118syl 17 . . . . 5 (𝑃 ∈ ℙ → (!‘(𝑃 − 1)) = (seq1( · , I )‘(𝑃 − 1)))
12094, 117, 1193eqtr4d 2787 . . . 4 (𝑃 ∈ ℙ → (𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) = (!‘(𝑃 − 1)))
121120oveq1d 7446 . . 3 (𝑃 ∈ ℙ → ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) − -1) = ((!‘(𝑃 − 1)) − -1))
122 nnm1nn0 12567 . . . . . . 7 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
12311, 122syl 17 . . . . . 6 (𝑃 ∈ ℙ → (𝑃 − 1) ∈ ℕ0)
124123faccld 14323 . . . . 5 (𝑃 ∈ ℙ → (!‘(𝑃 − 1)) ∈ ℕ)
125124nncnd 12282 . . . 4 (𝑃 ∈ ℙ → (!‘(𝑃 − 1)) ∈ ℂ)
126 ax-1cn 11213 . . . 4 1 ∈ ℂ
127 subneg 11558 . . . 4 (((!‘(𝑃 − 1)) ∈ ℂ ∧ 1 ∈ ℂ) → ((!‘(𝑃 − 1)) − -1) = ((!‘(𝑃 − 1)) + 1))
128125, 126, 127sylancl 586 . . 3 (𝑃 ∈ ℙ → ((!‘(𝑃 − 1)) − -1) = ((!‘(𝑃 − 1)) + 1))
129121, 128eqtrd 2777 . 2 (𝑃 ∈ ℙ → ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) − -1) = ((!‘(𝑃 − 1)) + 1))
13087, 129breqtrd 5169 1 (𝑃 ∈ ℙ → 𝑃 ∥ ((!‘(𝑃 − 1)) + 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087  wal 1538   = wceq 1540  wcel 2108  wral 3061  {crab 3436  Vcvv 3480  wss 3951  wpss 3952  𝒫 cpw 4600   class class class wbr 5143   I cid 5577  dom cdm 5685  ran crn 5686  cres 5687  ccom 5689  wf 6557  1-1wf1 6558  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431   supp csupp 8185  Fincfn 8985  cc 11153  1c1 11156   + caddc 11158   · cmul 11160  cmin 11492  -cneg 11493  cn 12266  2c2 12321  0cn0 12526  cz 12613  cuz 12878  ...cfz 13547   mod cmo 13909  seqcseq 14042  cexp 14102  !cfa 14312  cdvds 16290  cprime 16708   Σg cgsu 17485  Mndcmnd 18747  SubMndcsubmnd 18795  Cntzccntz 19333  CMndccmn 19798  mulGrpcmgp 20137  Ringcrg 20230  CRingccrg 20231  SubRingcsubrg 20569  fldccnfld 21364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-xnn0 12600  df-z 12614  df-dec 12734  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-gcd 16532  df-prm 16709  df-phi 16803  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-0g 17486  df-gsum 17487  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-grp 18954  df-minusg 18955  df-mulg 19086  df-subg 19141  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-subrng 20546  df-subrg 20570  df-cnfld 21365
This theorem is referenced by:  wilth  27114
  Copyright terms: Public domain W3C validator