MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wilthlem3 Structured version   Visualization version   GIF version

Theorem wilthlem3 26980
Description: Lemma for wilth 26981. Here we round out the argument of wilthlem2 26979 with the final step of the induction. The induction argument shows that every subset of 1...(𝑃 − 1) that is closed under inverse and contains 𝑃 − 1 multiplies to -1 mod 𝑃, and clearly 1...(𝑃 − 1) itself is such a set. Thus, the product of all the elements is -1, and all that is left is to translate the group sum notation (which we used for its unordered summing capabilities) into an ordered sequence to match the definition of the factorial. (Contributed by Mario Carneiro, 24-Jan-2015.) (Proof shortened by AV, 27-Jul-2019.)
Hypotheses
Ref Expression
wilthlem.t 𝑇 = (mulGrp‘ℂfld)
wilthlem.a 𝐴 = {𝑥 ∈ 𝒫 (1...(𝑃 − 1)) ∣ ((𝑃 − 1) ∈ 𝑥 ∧ ∀𝑦𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥)}
Assertion
Ref Expression
wilthlem3 (𝑃 ∈ ℙ → 𝑃 ∥ ((!‘(𝑃 − 1)) + 1))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑃,𝑦   𝑥,𝑇,𝑦

Proof of Theorem wilthlem3
Dummy variables 𝑡 𝑠 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmuz2 16666 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
2 uz2m1nn 12882 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → (𝑃 − 1) ∈ ℕ)
31, 2syl 17 . . . . . . 7 (𝑃 ∈ ℙ → (𝑃 − 1) ∈ ℕ)
4 nnuz 12836 . . . . . . 7 ℕ = (ℤ‘1)
53, 4eleqtrdi 2838 . . . . . 6 (𝑃 ∈ ℙ → (𝑃 − 1) ∈ (ℤ‘1))
6 eluzfz2 13493 . . . . . 6 ((𝑃 − 1) ∈ (ℤ‘1) → (𝑃 − 1) ∈ (1...(𝑃 − 1)))
75, 6syl 17 . . . . 5 (𝑃 ∈ ℙ → (𝑃 − 1) ∈ (1...(𝑃 − 1)))
8 simpl 482 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ (1...(𝑃 − 1))) → 𝑃 ∈ ℙ)
9 elfzelz 13485 . . . . . . . . 9 (𝑦 ∈ (1...(𝑃 − 1)) → 𝑦 ∈ ℤ)
109adantl 481 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ (1...(𝑃 − 1))) → 𝑦 ∈ ℤ)
11 prmnn 16644 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
12 fzm1ndvds 16292 . . . . . . . . 9 ((𝑃 ∈ ℕ ∧ 𝑦 ∈ (1...(𝑃 − 1))) → ¬ 𝑃𝑦)
1311, 12sylan 580 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ (1...(𝑃 − 1))) → ¬ 𝑃𝑦)
14 eqid 2729 . . . . . . . . 9 ((𝑦↑(𝑃 − 2)) mod 𝑃) = ((𝑦↑(𝑃 − 2)) mod 𝑃)
1514prmdiv 16755 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ ℤ ∧ ¬ 𝑃𝑦) → (((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝑦 · ((𝑦↑(𝑃 − 2)) mod 𝑃)) − 1)))
168, 10, 13, 15syl3anc 1373 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ (1...(𝑃 − 1))) → (((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝑦 · ((𝑦↑(𝑃 − 2)) mod 𝑃)) − 1)))
1716simpld 494 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ (1...(𝑃 − 1))) → ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)))
1817ralrimiva 3125 . . . . 5 (𝑃 ∈ ℙ → ∀𝑦 ∈ (1...(𝑃 − 1))((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)))
19 ovex 7420 . . . . . . 7 (1...(𝑃 − 1)) ∈ V
2019pwid 4585 . . . . . 6 (1...(𝑃 − 1)) ∈ 𝒫 (1...(𝑃 − 1))
21 eleq2 2817 . . . . . . . 8 (𝑥 = (1...(𝑃 − 1)) → ((𝑃 − 1) ∈ 𝑥 ↔ (𝑃 − 1) ∈ (1...(𝑃 − 1))))
22 eleq2 2817 . . . . . . . . 9 (𝑥 = (1...(𝑃 − 1)) → (((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥 ↔ ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1))))
2322raleqbi1dv 3311 . . . . . . . 8 (𝑥 = (1...(𝑃 − 1)) → (∀𝑦𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥 ↔ ∀𝑦 ∈ (1...(𝑃 − 1))((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1))))
2421, 23anbi12d 632 . . . . . . 7 (𝑥 = (1...(𝑃 − 1)) → (((𝑃 − 1) ∈ 𝑥 ∧ ∀𝑦𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥) ↔ ((𝑃 − 1) ∈ (1...(𝑃 − 1)) ∧ ∀𝑦 ∈ (1...(𝑃 − 1))((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)))))
25 wilthlem.a . . . . . . 7 𝐴 = {𝑥 ∈ 𝒫 (1...(𝑃 − 1)) ∣ ((𝑃 − 1) ∈ 𝑥 ∧ ∀𝑦𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥)}
2624, 25elrab2 3662 . . . . . 6 ((1...(𝑃 − 1)) ∈ 𝐴 ↔ ((1...(𝑃 − 1)) ∈ 𝒫 (1...(𝑃 − 1)) ∧ ((𝑃 − 1) ∈ (1...(𝑃 − 1)) ∧ ∀𝑦 ∈ (1...(𝑃 − 1))((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)))))
2720, 26mpbiran 709 . . . . 5 ((1...(𝑃 − 1)) ∈ 𝐴 ↔ ((𝑃 − 1) ∈ (1...(𝑃 − 1)) ∧ ∀𝑦 ∈ (1...(𝑃 − 1))((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1))))
287, 18, 27sylanbrc 583 . . . 4 (𝑃 ∈ ℙ → (1...(𝑃 − 1)) ∈ 𝐴)
29 fzfi 13937 . . . . 5 (1...(𝑃 − 1)) ∈ Fin
30 eleq1 2816 . . . . . . . 8 (𝑠 = 𝑡 → (𝑠𝐴𝑡𝐴))
31 reseq2 5945 . . . . . . . . . . 11 (𝑠 = 𝑡 → ( I ↾ 𝑠) = ( I ↾ 𝑡))
3231oveq2d 7403 . . . . . . . . . 10 (𝑠 = 𝑡 → (𝑇 Σg ( I ↾ 𝑠)) = (𝑇 Σg ( I ↾ 𝑡)))
3332oveq1d 7402 . . . . . . . . 9 (𝑠 = 𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = ((𝑇 Σg ( I ↾ 𝑡)) mod 𝑃))
3433eqeq1d 2731 . . . . . . . 8 (𝑠 = 𝑡 → (((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃) ↔ ((𝑇 Σg ( I ↾ 𝑡)) mod 𝑃) = (-1 mod 𝑃)))
3530, 34imbi12d 344 . . . . . . 7 (𝑠 = 𝑡 → ((𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)) ↔ (𝑡𝐴 → ((𝑇 Σg ( I ↾ 𝑡)) mod 𝑃) = (-1 mod 𝑃))))
3635imbi2d 340 . . . . . 6 (𝑠 = 𝑡 → ((𝑃 ∈ ℙ → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃))) ↔ (𝑃 ∈ ℙ → (𝑡𝐴 → ((𝑇 Σg ( I ↾ 𝑡)) mod 𝑃) = (-1 mod 𝑃)))))
37 eleq1 2816 . . . . . . . 8 (𝑠 = (1...(𝑃 − 1)) → (𝑠𝐴 ↔ (1...(𝑃 − 1)) ∈ 𝐴))
38 reseq2 5945 . . . . . . . . . . 11 (𝑠 = (1...(𝑃 − 1)) → ( I ↾ 𝑠) = ( I ↾ (1...(𝑃 − 1))))
3938oveq2d 7403 . . . . . . . . . 10 (𝑠 = (1...(𝑃 − 1)) → (𝑇 Σg ( I ↾ 𝑠)) = (𝑇 Σg ( I ↾ (1...(𝑃 − 1)))))
4039oveq1d 7402 . . . . . . . . 9 (𝑠 = (1...(𝑃 − 1)) → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) mod 𝑃))
4140eqeq1d 2731 . . . . . . . 8 (𝑠 = (1...(𝑃 − 1)) → (((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃) ↔ ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) mod 𝑃) = (-1 mod 𝑃)))
4237, 41imbi12d 344 . . . . . . 7 (𝑠 = (1...(𝑃 − 1)) → ((𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)) ↔ ((1...(𝑃 − 1)) ∈ 𝐴 → ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) mod 𝑃) = (-1 mod 𝑃))))
4342imbi2d 340 . . . . . 6 (𝑠 = (1...(𝑃 − 1)) → ((𝑃 ∈ ℙ → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃))) ↔ (𝑃 ∈ ℙ → ((1...(𝑃 − 1)) ∈ 𝐴 → ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) mod 𝑃) = (-1 mod 𝑃)))))
44 bi2.04 387 . . . . . . . . . . 11 ((𝑠𝑡 → (𝑃 ∈ ℙ → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))) ↔ (𝑃 ∈ ℙ → (𝑠𝑡 → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))))
45 pm2.27 42 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → ((𝑃 ∈ ℙ → (𝑠𝑡 → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))) → (𝑠𝑡 → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))))
4645com34 91 . . . . . . . . . . 11 (𝑃 ∈ ℙ → ((𝑃 ∈ ℙ → (𝑠𝑡 → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))) → (𝑠𝐴 → (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))))
4744, 46biimtrid 242 . . . . . . . . . 10 (𝑃 ∈ ℙ → ((𝑠𝑡 → (𝑃 ∈ ℙ → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))) → (𝑠𝐴 → (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))))
4847alimdv 1916 . . . . . . . . 9 (𝑃 ∈ ℙ → (∀𝑠(𝑠𝑡 → (𝑃 ∈ ℙ → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))) → ∀𝑠(𝑠𝐴 → (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))))
49 df-ral 3045 . . . . . . . . 9 (∀𝑠𝐴 (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)) ↔ ∀𝑠(𝑠𝐴 → (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃))))
5048, 49imbitrrdi 252 . . . . . . . 8 (𝑃 ∈ ℙ → (∀𝑠(𝑠𝑡 → (𝑃 ∈ ℙ → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))) → ∀𝑠𝐴 (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃))))
51 wilthlem.t . . . . . . . . . 10 𝑇 = (mulGrp‘ℂfld)
52 simp1 1136 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ ∀𝑠𝐴 (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)) ∧ 𝑡𝐴) → 𝑃 ∈ ℙ)
53 simp3 1138 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ ∀𝑠𝐴 (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)) ∧ 𝑡𝐴) → 𝑡𝐴)
54 simp2 1137 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ ∀𝑠𝐴 (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)) ∧ 𝑡𝐴) → ∀𝑠𝐴 (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))
5551, 25, 52, 53, 54wilthlem2 26979 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ ∀𝑠𝐴 (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)) ∧ 𝑡𝐴) → ((𝑇 Σg ( I ↾ 𝑡)) mod 𝑃) = (-1 mod 𝑃))
56553exp 1119 . . . . . . . 8 (𝑃 ∈ ℙ → (∀𝑠𝐴 (𝑠𝑡 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)) → (𝑡𝐴 → ((𝑇 Σg ( I ↾ 𝑡)) mod 𝑃) = (-1 mod 𝑃))))
5750, 56syldc 48 . . . . . . 7 (∀𝑠(𝑠𝑡 → (𝑃 ∈ ℙ → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))) → (𝑃 ∈ ℙ → (𝑡𝐴 → ((𝑇 Σg ( I ↾ 𝑡)) mod 𝑃) = (-1 mod 𝑃))))
5857a1i 11 . . . . . 6 (𝑡 ∈ Fin → (∀𝑠(𝑠𝑡 → (𝑃 ∈ ℙ → (𝑠𝐴 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))) → (𝑃 ∈ ℙ → (𝑡𝐴 → ((𝑇 Σg ( I ↾ 𝑡)) mod 𝑃) = (-1 mod 𝑃)))))
5936, 43, 58findcard3 9229 . . . . 5 ((1...(𝑃 − 1)) ∈ Fin → (𝑃 ∈ ℙ → ((1...(𝑃 − 1)) ∈ 𝐴 → ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) mod 𝑃) = (-1 mod 𝑃))))
6029, 59ax-mp 5 . . . 4 (𝑃 ∈ ℙ → ((1...(𝑃 − 1)) ∈ 𝐴 → ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) mod 𝑃) = (-1 mod 𝑃)))
6128, 60mpd 15 . . 3 (𝑃 ∈ ℙ → ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) mod 𝑃) = (-1 mod 𝑃))
62 cnfld1 21305 . . . . . 6 1 = (1r‘ℂfld)
6351, 62ringidval 20092 . . . . 5 1 = (0g𝑇)
64 cncrng 21300 . . . . . 6 fld ∈ CRing
6551crngmgp 20150 . . . . . 6 (ℂfld ∈ CRing → 𝑇 ∈ CMnd)
6664, 65mp1i 13 . . . . 5 (𝑃 ∈ ℙ → 𝑇 ∈ CMnd)
6729a1i 11 . . . . 5 (𝑃 ∈ ℙ → (1...(𝑃 − 1)) ∈ Fin)
68 zsubrg 21337 . . . . . 6 ℤ ∈ (SubRing‘ℂfld)
6951subrgsubm 20494 . . . . . 6 (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubMnd‘𝑇))
7068, 69mp1i 13 . . . . 5 (𝑃 ∈ ℙ → ℤ ∈ (SubMnd‘𝑇))
71 f1oi 6838 . . . . . . . 8 ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))–1-1-onto→(1...(𝑃 − 1))
72 f1of 6800 . . . . . . . 8 (( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))–1-1-onto→(1...(𝑃 − 1)) → ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶(1...(𝑃 − 1)))
7371, 72ax-mp 5 . . . . . . 7 ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶(1...(𝑃 − 1))
74 fzssz 13487 . . . . . . 7 (1...(𝑃 − 1)) ⊆ ℤ
75 fss 6704 . . . . . . 7 ((( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶(1...(𝑃 − 1)) ∧ (1...(𝑃 − 1)) ⊆ ℤ) → ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶ℤ)
7673, 74, 75mp2an 692 . . . . . 6 ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶ℤ
7776a1i 11 . . . . 5 (𝑃 ∈ ℙ → ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶ℤ)
78 1ex 11170 . . . . . . 7 1 ∈ V
7978a1i 11 . . . . . 6 (𝑃 ∈ ℙ → 1 ∈ V)
8077, 67, 79fdmfifsupp 9326 . . . . 5 (𝑃 ∈ ℙ → ( I ↾ (1...(𝑃 − 1))) finSupp 1)
8163, 66, 67, 70, 77, 80gsumsubmcl 19849 . . . 4 (𝑃 ∈ ℙ → (𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) ∈ ℤ)
82 1z 12563 . . . . 5 1 ∈ ℤ
83 znegcl 12568 . . . . 5 (1 ∈ ℤ → -1 ∈ ℤ)
8482, 83mp1i 13 . . . 4 (𝑃 ∈ ℙ → -1 ∈ ℤ)
85 moddvds 16233 . . . 4 ((𝑃 ∈ ℕ ∧ (𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) ∈ ℤ ∧ -1 ∈ ℤ) → (((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) mod 𝑃) = (-1 mod 𝑃) ↔ 𝑃 ∥ ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) − -1)))
8611, 81, 84, 85syl3anc 1373 . . 3 (𝑃 ∈ ℙ → (((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) mod 𝑃) = (-1 mod 𝑃) ↔ 𝑃 ∥ ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) − -1)))
8761, 86mpbid 232 . 2 (𝑃 ∈ ℙ → 𝑃 ∥ ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) − -1))
88 fcoi1 6734 . . . . . . . . . 10 (( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶(1...(𝑃 − 1)) → (( I ↾ (1...(𝑃 − 1))) ∘ ( I ↾ (1...(𝑃 − 1)))) = ( I ↾ (1...(𝑃 − 1))))
8973, 88ax-mp 5 . . . . . . . . 9 (( I ↾ (1...(𝑃 − 1))) ∘ ( I ↾ (1...(𝑃 − 1)))) = ( I ↾ (1...(𝑃 − 1)))
9089fveq1i 6859 . . . . . . . 8 ((( I ↾ (1...(𝑃 − 1))) ∘ ( I ↾ (1...(𝑃 − 1))))‘𝑘) = (( I ↾ (1...(𝑃 − 1)))‘𝑘)
91 fvres 6877 . . . . . . . 8 (𝑘 ∈ (1...(𝑃 − 1)) → (( I ↾ (1...(𝑃 − 1)))‘𝑘) = ( I ‘𝑘))
9290, 91eqtrid 2776 . . . . . . 7 (𝑘 ∈ (1...(𝑃 − 1)) → ((( I ↾ (1...(𝑃 − 1))) ∘ ( I ↾ (1...(𝑃 − 1))))‘𝑘) = ( I ‘𝑘))
9392adantl 481 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑘 ∈ (1...(𝑃 − 1))) → ((( I ↾ (1...(𝑃 − 1))) ∘ ( I ↾ (1...(𝑃 − 1))))‘𝑘) = ( I ‘𝑘))
945, 93seqfveq 13991 . . . . 5 (𝑃 ∈ ℙ → (seq1( · , (( I ↾ (1...(𝑃 − 1))) ∘ ( I ↾ (1...(𝑃 − 1)))))‘(𝑃 − 1)) = (seq1( · , I )‘(𝑃 − 1)))
95 cnfldbas 21268 . . . . . . 7 ℂ = (Base‘ℂfld)
9651, 95mgpbas 20054 . . . . . 6 ℂ = (Base‘𝑇)
97 cnfldmul 21272 . . . . . . 7 · = (.r‘ℂfld)
9851, 97mgpplusg 20053 . . . . . 6 · = (+g𝑇)
99 eqid 2729 . . . . . 6 (Cntz‘𝑇) = (Cntz‘𝑇)
100 cnring 21302 . . . . . . 7 fld ∈ Ring
10151ringmgp 20148 . . . . . . 7 (ℂfld ∈ Ring → 𝑇 ∈ Mnd)
102100, 101mp1i 13 . . . . . 6 (𝑃 ∈ ℙ → 𝑇 ∈ Mnd)
103 zsscn 12537 . . . . . . . 8 ℤ ⊆ ℂ
104 fss 6704 . . . . . . . 8 ((( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶ℤ ∧ ℤ ⊆ ℂ) → ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶ℂ)
10576, 103, 104mp2an 692 . . . . . . 7 ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶ℂ
106105a1i 11 . . . . . 6 (𝑃 ∈ ℙ → ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))⟶ℂ)
10796, 99, 66, 106cntzcmnf 19775 . . . . . 6 (𝑃 ∈ ℙ → ran ( I ↾ (1...(𝑃 − 1))) ⊆ ((Cntz‘𝑇)‘ran ( I ↾ (1...(𝑃 − 1)))))
108 f1of1 6799 . . . . . . 7 (( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))–1-1-onto→(1...(𝑃 − 1)) → ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))–1-1→(1...(𝑃 − 1)))
10971, 108mp1i 13 . . . . . 6 (𝑃 ∈ ℙ → ( I ↾ (1...(𝑃 − 1))):(1...(𝑃 − 1))–1-1→(1...(𝑃 − 1)))
110 suppssdm 8156 . . . . . . . . 9 (( I ↾ (1...(𝑃 − 1))) supp 1) ⊆ dom ( I ↾ (1...(𝑃 − 1)))
111 dmresi 6023 . . . . . . . . 9 dom ( I ↾ (1...(𝑃 − 1))) = (1...(𝑃 − 1))
112110, 111sseqtri 3995 . . . . . . . 8 (( I ↾ (1...(𝑃 − 1))) supp 1) ⊆ (1...(𝑃 − 1))
113 rnresi 6046 . . . . . . . 8 ran ( I ↾ (1...(𝑃 − 1))) = (1...(𝑃 − 1))
114112, 113sseqtrri 3996 . . . . . . 7 (( I ↾ (1...(𝑃 − 1))) supp 1) ⊆ ran ( I ↾ (1...(𝑃 − 1)))
115114a1i 11 . . . . . 6 (𝑃 ∈ ℙ → (( I ↾ (1...(𝑃 − 1))) supp 1) ⊆ ran ( I ↾ (1...(𝑃 − 1))))
116 eqid 2729 . . . . . 6 ((( I ↾ (1...(𝑃 − 1))) ∘ ( I ↾ (1...(𝑃 − 1)))) supp 1) = ((( I ↾ (1...(𝑃 − 1))) ∘ ( I ↾ (1...(𝑃 − 1)))) supp 1)
11796, 63, 98, 99, 102, 67, 106, 107, 3, 109, 115, 116gsumval3 19837 . . . . 5 (𝑃 ∈ ℙ → (𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) = (seq1( · , (( I ↾ (1...(𝑃 − 1))) ∘ ( I ↾ (1...(𝑃 − 1)))))‘(𝑃 − 1)))
118 facnn 14240 . . . . . 6 ((𝑃 − 1) ∈ ℕ → (!‘(𝑃 − 1)) = (seq1( · , I )‘(𝑃 − 1)))
1193, 118syl 17 . . . . 5 (𝑃 ∈ ℙ → (!‘(𝑃 − 1)) = (seq1( · , I )‘(𝑃 − 1)))
12094, 117, 1193eqtr4d 2774 . . . 4 (𝑃 ∈ ℙ → (𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) = (!‘(𝑃 − 1)))
121120oveq1d 7402 . . 3 (𝑃 ∈ ℙ → ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) − -1) = ((!‘(𝑃 − 1)) − -1))
122 nnm1nn0 12483 . . . . . . 7 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
12311, 122syl 17 . . . . . 6 (𝑃 ∈ ℙ → (𝑃 − 1) ∈ ℕ0)
124123faccld 14249 . . . . 5 (𝑃 ∈ ℙ → (!‘(𝑃 − 1)) ∈ ℕ)
125124nncnd 12202 . . . 4 (𝑃 ∈ ℙ → (!‘(𝑃 − 1)) ∈ ℂ)
126 ax-1cn 11126 . . . 4 1 ∈ ℂ
127 subneg 11471 . . . 4 (((!‘(𝑃 − 1)) ∈ ℂ ∧ 1 ∈ ℂ) → ((!‘(𝑃 − 1)) − -1) = ((!‘(𝑃 − 1)) + 1))
128125, 126, 127sylancl 586 . . 3 (𝑃 ∈ ℙ → ((!‘(𝑃 − 1)) − -1) = ((!‘(𝑃 − 1)) + 1))
129121, 128eqtrd 2764 . 2 (𝑃 ∈ ℙ → ((𝑇 Σg ( I ↾ (1...(𝑃 − 1)))) − -1) = ((!‘(𝑃 − 1)) + 1))
13087, 129breqtrd 5133 1 (𝑃 ∈ ℙ → 𝑃 ∥ ((!‘(𝑃 − 1)) + 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2109  wral 3044  {crab 3405  Vcvv 3447  wss 3914  wpss 3915  𝒫 cpw 4563   class class class wbr 5107   I cid 5532  dom cdm 5638  ran crn 5639  cres 5640  ccom 5642  wf 6507  1-1wf1 6508  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387   supp csupp 8139  Fincfn 8918  cc 11066  1c1 11069   + caddc 11071   · cmul 11073  cmin 11405  -cneg 11406  cn 12186  2c2 12241  0cn0 12442  cz 12529  cuz 12793  ...cfz 13468   mod cmo 13831  seqcseq 13966  cexp 14026  !cfa 14238  cdvds 16222  cprime 16641   Σg cgsu 17403  Mndcmnd 18661  SubMndcsubmnd 18709  Cntzccntz 19247  CMndccmn 19710  mulGrpcmgp 20049  Ringcrg 20142  CRingccrg 20143  SubRingcsubrg 20478  fldccnfld 21264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-gcd 16465  df-prm 16642  df-phi 16736  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-0g 17404  df-gsum 17405  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-grp 18868  df-minusg 18869  df-mulg 19000  df-subg 19055  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-subrng 20455  df-subrg 20479  df-cnfld 21265
This theorem is referenced by:  wilth  26981
  Copyright terms: Public domain W3C validator