![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fincmp | Structured version Visualization version GIF version |
Description: A finite topology is compact. (Contributed by FL, 22-Dec-2008.) |
Ref | Expression |
---|---|
fincmp | ⊢ (𝐽 ∈ (Top ∩ Fin) → 𝐽 ∈ Comp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elinel1 4211 | . 2 ⊢ (𝐽 ∈ (Top ∩ Fin) → 𝐽 ∈ Top) | |
2 | elinel2 4212 | . . 3 ⊢ (𝐽 ∈ (Top ∩ Fin) → 𝐽 ∈ Fin) | |
3 | vex 3482 | . . . . . 6 ⊢ 𝑦 ∈ V | |
4 | 3 | pwid 4627 | . . . . 5 ⊢ 𝑦 ∈ 𝒫 𝑦 |
5 | velpw 4610 | . . . . . 6 ⊢ (𝑦 ∈ 𝒫 𝐽 ↔ 𝑦 ⊆ 𝐽) | |
6 | ssfi 9212 | . . . . . 6 ⊢ ((𝐽 ∈ Fin ∧ 𝑦 ⊆ 𝐽) → 𝑦 ∈ Fin) | |
7 | 5, 6 | sylan2b 594 | . . . . 5 ⊢ ((𝐽 ∈ Fin ∧ 𝑦 ∈ 𝒫 𝐽) → 𝑦 ∈ Fin) |
8 | elin 3979 | . . . . . 6 ⊢ (𝑦 ∈ (𝒫 𝑦 ∩ Fin) ↔ (𝑦 ∈ 𝒫 𝑦 ∧ 𝑦 ∈ Fin)) | |
9 | unieq 4923 | . . . . . . . 8 ⊢ (𝑧 = 𝑦 → ∪ 𝑧 = ∪ 𝑦) | |
10 | 9 | rspceeqv 3645 | . . . . . . 7 ⊢ ((𝑦 ∈ (𝒫 𝑦 ∩ Fin) ∧ ∪ 𝐽 = ∪ 𝑦) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧) |
11 | 10 | ex 412 | . . . . . 6 ⊢ (𝑦 ∈ (𝒫 𝑦 ∩ Fin) → (∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧)) |
12 | 8, 11 | sylbir 235 | . . . . 5 ⊢ ((𝑦 ∈ 𝒫 𝑦 ∧ 𝑦 ∈ Fin) → (∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧)) |
13 | 4, 7, 12 | sylancr 587 | . . . 4 ⊢ ((𝐽 ∈ Fin ∧ 𝑦 ∈ 𝒫 𝐽) → (∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧)) |
14 | 13 | ralrimiva 3144 | . . 3 ⊢ (𝐽 ∈ Fin → ∀𝑦 ∈ 𝒫 𝐽(∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧)) |
15 | 2, 14 | syl 17 | . 2 ⊢ (𝐽 ∈ (Top ∩ Fin) → ∀𝑦 ∈ 𝒫 𝐽(∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧)) |
16 | eqid 2735 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
17 | 16 | iscmp 23412 | . 2 ⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧))) |
18 | 1, 15, 17 | sylanbrc 583 | 1 ⊢ (𝐽 ∈ (Top ∩ Fin) → 𝐽 ∈ Comp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 ∩ cin 3962 ⊆ wss 3963 𝒫 cpw 4605 ∪ cuni 4912 Fincfn 8984 Topctop 22915 Compccmp 23410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-om 7888 df-1o 8505 df-en 8985 df-fin 8988 df-cmp 23411 |
This theorem is referenced by: 0cmp 23418 discmp 23422 1stckgenlem 23577 ptcmpfi 23837 kelac2lem 43053 |
Copyright terms: Public domain | W3C validator |