Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fincmp Structured version   Visualization version   GIF version

Theorem fincmp 21987
 Description: A finite topology is compact. (Contributed by FL, 22-Dec-2008.)
Assertion
Ref Expression
fincmp (𝐽 ∈ (Top ∩ Fin) → 𝐽 ∈ Comp)

Proof of Theorem fincmp
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elinel1 4155 . 2 (𝐽 ∈ (Top ∩ Fin) → 𝐽 ∈ Top)
2 elinel2 4156 . . 3 (𝐽 ∈ (Top ∩ Fin) → 𝐽 ∈ Fin)
3 vex 3482 . . . . . 6 𝑦 ∈ V
43pwid 4544 . . . . 5 𝑦 ∈ 𝒫 𝑦
5 velpw 4525 . . . . . 6 (𝑦 ∈ 𝒫 𝐽𝑦𝐽)
6 ssfi 8722 . . . . . 6 ((𝐽 ∈ Fin ∧ 𝑦𝐽) → 𝑦 ∈ Fin)
75, 6sylan2b 596 . . . . 5 ((𝐽 ∈ Fin ∧ 𝑦 ∈ 𝒫 𝐽) → 𝑦 ∈ Fin)
8 elin 3934 . . . . . 6 (𝑦 ∈ (𝒫 𝑦 ∩ Fin) ↔ (𝑦 ∈ 𝒫 𝑦𝑦 ∈ Fin))
9 unieq 4830 . . . . . . . 8 (𝑧 = 𝑦 𝑧 = 𝑦)
109rspceeqv 3623 . . . . . . 7 ((𝑦 ∈ (𝒫 𝑦 ∩ Fin) ∧ 𝐽 = 𝑦) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧)
1110ex 416 . . . . . 6 (𝑦 ∈ (𝒫 𝑦 ∩ Fin) → ( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧))
128, 11sylbir 238 . . . . 5 ((𝑦 ∈ 𝒫 𝑦𝑦 ∈ Fin) → ( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧))
134, 7, 12sylancr 590 . . . 4 ((𝐽 ∈ Fin ∧ 𝑦 ∈ 𝒫 𝐽) → ( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧))
1413ralrimiva 3176 . . 3 (𝐽 ∈ Fin → ∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧))
152, 14syl 17 . 2 (𝐽 ∈ (Top ∩ Fin) → ∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧))
16 eqid 2824 . . 3 𝐽 = 𝐽
1716iscmp 21982 . 2 (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧)))
181, 15, 17sylanbrc 586 1 (𝐽 ∈ (Top ∩ Fin) → 𝐽 ∈ Comp)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2115  ∀wral 3132  ∃wrex 3133   ∩ cin 3917   ⊆ wss 3918  𝒫 cpw 4520  ∪ cuni 4819  Fincfn 8492  Topctop 21487  Compccmp 21980 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-ral 3137  df-rex 3138  df-rab 3141  df-v 3481  df-sbc 3758  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-br 5048  df-opab 5110  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-om 7564  df-er 8272  df-en 8493  df-fin 8496  df-cmp 21981 This theorem is referenced by:  0cmp  21988  discmp  21992  1stckgenlem  22147  ptcmpfi  22407  kelac2lem  39840
 Copyright terms: Public domain W3C validator