| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fincmp | Structured version Visualization version GIF version | ||
| Description: A finite topology is compact. (Contributed by FL, 22-Dec-2008.) |
| Ref | Expression |
|---|---|
| fincmp | ⊢ (𝐽 ∈ (Top ∩ Fin) → 𝐽 ∈ Comp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elinel1 4176 | . 2 ⊢ (𝐽 ∈ (Top ∩ Fin) → 𝐽 ∈ Top) | |
| 2 | elinel2 4177 | . . 3 ⊢ (𝐽 ∈ (Top ∩ Fin) → 𝐽 ∈ Fin) | |
| 3 | vex 3463 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 4 | 3 | pwid 4597 | . . . . 5 ⊢ 𝑦 ∈ 𝒫 𝑦 |
| 5 | velpw 4580 | . . . . . 6 ⊢ (𝑦 ∈ 𝒫 𝐽 ↔ 𝑦 ⊆ 𝐽) | |
| 6 | ssfi 9187 | . . . . . 6 ⊢ ((𝐽 ∈ Fin ∧ 𝑦 ⊆ 𝐽) → 𝑦 ∈ Fin) | |
| 7 | 5, 6 | sylan2b 594 | . . . . 5 ⊢ ((𝐽 ∈ Fin ∧ 𝑦 ∈ 𝒫 𝐽) → 𝑦 ∈ Fin) |
| 8 | elin 3942 | . . . . . 6 ⊢ (𝑦 ∈ (𝒫 𝑦 ∩ Fin) ↔ (𝑦 ∈ 𝒫 𝑦 ∧ 𝑦 ∈ Fin)) | |
| 9 | unieq 4894 | . . . . . . . 8 ⊢ (𝑧 = 𝑦 → ∪ 𝑧 = ∪ 𝑦) | |
| 10 | 9 | rspceeqv 3624 | . . . . . . 7 ⊢ ((𝑦 ∈ (𝒫 𝑦 ∩ Fin) ∧ ∪ 𝐽 = ∪ 𝑦) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧) |
| 11 | 10 | ex 412 | . . . . . 6 ⊢ (𝑦 ∈ (𝒫 𝑦 ∩ Fin) → (∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧)) |
| 12 | 8, 11 | sylbir 235 | . . . . 5 ⊢ ((𝑦 ∈ 𝒫 𝑦 ∧ 𝑦 ∈ Fin) → (∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧)) |
| 13 | 4, 7, 12 | sylancr 587 | . . . 4 ⊢ ((𝐽 ∈ Fin ∧ 𝑦 ∈ 𝒫 𝐽) → (∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧)) |
| 14 | 13 | ralrimiva 3132 | . . 3 ⊢ (𝐽 ∈ Fin → ∀𝑦 ∈ 𝒫 𝐽(∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧)) |
| 15 | 2, 14 | syl 17 | . 2 ⊢ (𝐽 ∈ (Top ∩ Fin) → ∀𝑦 ∈ 𝒫 𝐽(∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧)) |
| 16 | eqid 2735 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 17 | 16 | iscmp 23326 | . 2 ⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧))) |
| 18 | 1, 15, 17 | sylanbrc 583 | 1 ⊢ (𝐽 ∈ (Top ∩ Fin) → 𝐽 ∈ Comp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 ∩ cin 3925 ⊆ wss 3926 𝒫 cpw 4575 ∪ cuni 4883 Fincfn 8959 Topctop 22831 Compccmp 23324 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-om 7862 df-1o 8480 df-en 8960 df-fin 8963 df-cmp 23325 |
| This theorem is referenced by: 0cmp 23332 discmp 23336 1stckgenlem 23491 ptcmpfi 23751 kelac2lem 43088 |
| Copyright terms: Public domain | W3C validator |