![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fincmp | Structured version Visualization version GIF version |
Description: A finite topology is compact. (Contributed by FL, 22-Dec-2008.) |
Ref | Expression |
---|---|
fincmp | ⊢ (𝐽 ∈ (Top ∩ Fin) → 𝐽 ∈ Comp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elinel1 4159 | . 2 ⊢ (𝐽 ∈ (Top ∩ Fin) → 𝐽 ∈ Top) | |
2 | elinel2 4160 | . . 3 ⊢ (𝐽 ∈ (Top ∩ Fin) → 𝐽 ∈ Fin) | |
3 | vex 3451 | . . . . . 6 ⊢ 𝑦 ∈ V | |
4 | 3 | pwid 4586 | . . . . 5 ⊢ 𝑦 ∈ 𝒫 𝑦 |
5 | velpw 4569 | . . . . . 6 ⊢ (𝑦 ∈ 𝒫 𝐽 ↔ 𝑦 ⊆ 𝐽) | |
6 | ssfi 9123 | . . . . . 6 ⊢ ((𝐽 ∈ Fin ∧ 𝑦 ⊆ 𝐽) → 𝑦 ∈ Fin) | |
7 | 5, 6 | sylan2b 595 | . . . . 5 ⊢ ((𝐽 ∈ Fin ∧ 𝑦 ∈ 𝒫 𝐽) → 𝑦 ∈ Fin) |
8 | elin 3930 | . . . . . 6 ⊢ (𝑦 ∈ (𝒫 𝑦 ∩ Fin) ↔ (𝑦 ∈ 𝒫 𝑦 ∧ 𝑦 ∈ Fin)) | |
9 | unieq 4880 | . . . . . . . 8 ⊢ (𝑧 = 𝑦 → ∪ 𝑧 = ∪ 𝑦) | |
10 | 9 | rspceeqv 3599 | . . . . . . 7 ⊢ ((𝑦 ∈ (𝒫 𝑦 ∩ Fin) ∧ ∪ 𝐽 = ∪ 𝑦) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧) |
11 | 10 | ex 414 | . . . . . 6 ⊢ (𝑦 ∈ (𝒫 𝑦 ∩ Fin) → (∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧)) |
12 | 8, 11 | sylbir 234 | . . . . 5 ⊢ ((𝑦 ∈ 𝒫 𝑦 ∧ 𝑦 ∈ Fin) → (∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧)) |
13 | 4, 7, 12 | sylancr 588 | . . . 4 ⊢ ((𝐽 ∈ Fin ∧ 𝑦 ∈ 𝒫 𝐽) → (∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧)) |
14 | 13 | ralrimiva 3140 | . . 3 ⊢ (𝐽 ∈ Fin → ∀𝑦 ∈ 𝒫 𝐽(∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧)) |
15 | 2, 14 | syl 17 | . 2 ⊢ (𝐽 ∈ (Top ∩ Fin) → ∀𝑦 ∈ 𝒫 𝐽(∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧)) |
16 | eqid 2733 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
17 | 16 | iscmp 22762 | . 2 ⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧))) |
18 | 1, 15, 17 | sylanbrc 584 | 1 ⊢ (𝐽 ∈ (Top ∩ Fin) → 𝐽 ∈ Comp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3061 ∃wrex 3070 ∩ cin 3913 ⊆ wss 3914 𝒫 cpw 4564 ∪ cuni 4869 Fincfn 8889 Topctop 22265 Compccmp 22760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pr 5388 ax-un 7676 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-br 5110 df-opab 5172 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-om 7807 df-1o 8416 df-en 8890 df-fin 8893 df-cmp 22761 |
This theorem is referenced by: 0cmp 22768 discmp 22772 1stckgenlem 22927 ptcmpfi 23187 kelac2lem 41438 |
Copyright terms: Public domain | W3C validator |