MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fincmp Structured version   Visualization version   GIF version

Theorem fincmp 23331
Description: A finite topology is compact. (Contributed by FL, 22-Dec-2008.)
Assertion
Ref Expression
fincmp (𝐽 ∈ (Top ∩ Fin) → 𝐽 ∈ Comp)

Proof of Theorem fincmp
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elinel1 4176 . 2 (𝐽 ∈ (Top ∩ Fin) → 𝐽 ∈ Top)
2 elinel2 4177 . . 3 (𝐽 ∈ (Top ∩ Fin) → 𝐽 ∈ Fin)
3 vex 3463 . . . . . 6 𝑦 ∈ V
43pwid 4597 . . . . 5 𝑦 ∈ 𝒫 𝑦
5 velpw 4580 . . . . . 6 (𝑦 ∈ 𝒫 𝐽𝑦𝐽)
6 ssfi 9187 . . . . . 6 ((𝐽 ∈ Fin ∧ 𝑦𝐽) → 𝑦 ∈ Fin)
75, 6sylan2b 594 . . . . 5 ((𝐽 ∈ Fin ∧ 𝑦 ∈ 𝒫 𝐽) → 𝑦 ∈ Fin)
8 elin 3942 . . . . . 6 (𝑦 ∈ (𝒫 𝑦 ∩ Fin) ↔ (𝑦 ∈ 𝒫 𝑦𝑦 ∈ Fin))
9 unieq 4894 . . . . . . . 8 (𝑧 = 𝑦 𝑧 = 𝑦)
109rspceeqv 3624 . . . . . . 7 ((𝑦 ∈ (𝒫 𝑦 ∩ Fin) ∧ 𝐽 = 𝑦) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧)
1110ex 412 . . . . . 6 (𝑦 ∈ (𝒫 𝑦 ∩ Fin) → ( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧))
128, 11sylbir 235 . . . . 5 ((𝑦 ∈ 𝒫 𝑦𝑦 ∈ Fin) → ( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧))
134, 7, 12sylancr 587 . . . 4 ((𝐽 ∈ Fin ∧ 𝑦 ∈ 𝒫 𝐽) → ( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧))
1413ralrimiva 3132 . . 3 (𝐽 ∈ Fin → ∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧))
152, 14syl 17 . 2 (𝐽 ∈ (Top ∩ Fin) → ∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧))
16 eqid 2735 . . 3 𝐽 = 𝐽
1716iscmp 23326 . 2 (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧)))
181, 15, 17sylanbrc 583 1 (𝐽 ∈ (Top ∩ Fin) → 𝐽 ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060  cin 3925  wss 3926  𝒫 cpw 4575   cuni 4883  Fincfn 8959  Topctop 22831  Compccmp 23324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-om 7862  df-1o 8480  df-en 8960  df-fin 8963  df-cmp 23325
This theorem is referenced by:  0cmp  23332  discmp  23336  1stckgenlem  23491  ptcmpfi  23751  kelac2lem  43088
  Copyright terms: Public domain W3C validator