MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fincmp Structured version   Visualization version   GIF version

Theorem fincmp 23280
Description: A finite topology is compact. (Contributed by FL, 22-Dec-2008.)
Assertion
Ref Expression
fincmp (𝐽 ∈ (Top ∩ Fin) → 𝐽 ∈ Comp)

Proof of Theorem fincmp
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elinel1 4164 . 2 (𝐽 ∈ (Top ∩ Fin) → 𝐽 ∈ Top)
2 elinel2 4165 . . 3 (𝐽 ∈ (Top ∩ Fin) → 𝐽 ∈ Fin)
3 vex 3451 . . . . . 6 𝑦 ∈ V
43pwid 4585 . . . . 5 𝑦 ∈ 𝒫 𝑦
5 velpw 4568 . . . . . 6 (𝑦 ∈ 𝒫 𝐽𝑦𝐽)
6 ssfi 9137 . . . . . 6 ((𝐽 ∈ Fin ∧ 𝑦𝐽) → 𝑦 ∈ Fin)
75, 6sylan2b 594 . . . . 5 ((𝐽 ∈ Fin ∧ 𝑦 ∈ 𝒫 𝐽) → 𝑦 ∈ Fin)
8 elin 3930 . . . . . 6 (𝑦 ∈ (𝒫 𝑦 ∩ Fin) ↔ (𝑦 ∈ 𝒫 𝑦𝑦 ∈ Fin))
9 unieq 4882 . . . . . . . 8 (𝑧 = 𝑦 𝑧 = 𝑦)
109rspceeqv 3611 . . . . . . 7 ((𝑦 ∈ (𝒫 𝑦 ∩ Fin) ∧ 𝐽 = 𝑦) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧)
1110ex 412 . . . . . 6 (𝑦 ∈ (𝒫 𝑦 ∩ Fin) → ( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧))
128, 11sylbir 235 . . . . 5 ((𝑦 ∈ 𝒫 𝑦𝑦 ∈ Fin) → ( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧))
134, 7, 12sylancr 587 . . . 4 ((𝐽 ∈ Fin ∧ 𝑦 ∈ 𝒫 𝐽) → ( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧))
1413ralrimiva 3125 . . 3 (𝐽 ∈ Fin → ∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧))
152, 14syl 17 . 2 (𝐽 ∈ (Top ∩ Fin) → ∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧))
16 eqid 2729 . . 3 𝐽 = 𝐽
1716iscmp 23275 . 2 (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧)))
181, 15, 17sylanbrc 583 1 (𝐽 ∈ (Top ∩ Fin) → 𝐽 ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cin 3913  wss 3914  𝒫 cpw 4563   cuni 4871  Fincfn 8918  Topctop 22780  Compccmp 23273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-om 7843  df-1o 8434  df-en 8919  df-fin 8922  df-cmp 23274
This theorem is referenced by:  0cmp  23281  discmp  23285  1stckgenlem  23440  ptcmpfi  23700  kelac2lem  43053
  Copyright terms: Public domain W3C validator