| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fincmp | Structured version Visualization version GIF version | ||
| Description: A finite topology is compact. (Contributed by FL, 22-Dec-2008.) |
| Ref | Expression |
|---|---|
| fincmp | ⊢ (𝐽 ∈ (Top ∩ Fin) → 𝐽 ∈ Comp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elinel1 4201 | . 2 ⊢ (𝐽 ∈ (Top ∩ Fin) → 𝐽 ∈ Top) | |
| 2 | elinel2 4202 | . . 3 ⊢ (𝐽 ∈ (Top ∩ Fin) → 𝐽 ∈ Fin) | |
| 3 | vex 3484 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 4 | 3 | pwid 4622 | . . . . 5 ⊢ 𝑦 ∈ 𝒫 𝑦 |
| 5 | velpw 4605 | . . . . . 6 ⊢ (𝑦 ∈ 𝒫 𝐽 ↔ 𝑦 ⊆ 𝐽) | |
| 6 | ssfi 9213 | . . . . . 6 ⊢ ((𝐽 ∈ Fin ∧ 𝑦 ⊆ 𝐽) → 𝑦 ∈ Fin) | |
| 7 | 5, 6 | sylan2b 594 | . . . . 5 ⊢ ((𝐽 ∈ Fin ∧ 𝑦 ∈ 𝒫 𝐽) → 𝑦 ∈ Fin) |
| 8 | elin 3967 | . . . . . 6 ⊢ (𝑦 ∈ (𝒫 𝑦 ∩ Fin) ↔ (𝑦 ∈ 𝒫 𝑦 ∧ 𝑦 ∈ Fin)) | |
| 9 | unieq 4918 | . . . . . . . 8 ⊢ (𝑧 = 𝑦 → ∪ 𝑧 = ∪ 𝑦) | |
| 10 | 9 | rspceeqv 3645 | . . . . . . 7 ⊢ ((𝑦 ∈ (𝒫 𝑦 ∩ Fin) ∧ ∪ 𝐽 = ∪ 𝑦) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧) |
| 11 | 10 | ex 412 | . . . . . 6 ⊢ (𝑦 ∈ (𝒫 𝑦 ∩ Fin) → (∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧)) |
| 12 | 8, 11 | sylbir 235 | . . . . 5 ⊢ ((𝑦 ∈ 𝒫 𝑦 ∧ 𝑦 ∈ Fin) → (∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧)) |
| 13 | 4, 7, 12 | sylancr 587 | . . . 4 ⊢ ((𝐽 ∈ Fin ∧ 𝑦 ∈ 𝒫 𝐽) → (∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧)) |
| 14 | 13 | ralrimiva 3146 | . . 3 ⊢ (𝐽 ∈ Fin → ∀𝑦 ∈ 𝒫 𝐽(∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧)) |
| 15 | 2, 14 | syl 17 | . 2 ⊢ (𝐽 ∈ (Top ∩ Fin) → ∀𝑦 ∈ 𝒫 𝐽(∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧)) |
| 16 | eqid 2737 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 17 | 16 | iscmp 23396 | . 2 ⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧))) |
| 18 | 1, 15, 17 | sylanbrc 583 | 1 ⊢ (𝐽 ∈ (Top ∩ Fin) → 𝐽 ∈ Comp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 ∩ cin 3950 ⊆ wss 3951 𝒫 cpw 4600 ∪ cuni 4907 Fincfn 8985 Topctop 22899 Compccmp 23394 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-om 7888 df-1o 8506 df-en 8986 df-fin 8989 df-cmp 23395 |
| This theorem is referenced by: 0cmp 23402 discmp 23406 1stckgenlem 23561 ptcmpfi 23821 kelac2lem 43076 |
| Copyright terms: Public domain | W3C validator |