MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fincmp Structured version   Visualization version   GIF version

Theorem fincmp 23297
Description: A finite topology is compact. (Contributed by FL, 22-Dec-2008.)
Assertion
Ref Expression
fincmp (𝐽 ∈ (Top ∩ Fin) → 𝐽 ∈ Comp)

Proof of Theorem fincmp
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elinel1 4154 . 2 (𝐽 ∈ (Top ∩ Fin) → 𝐽 ∈ Top)
2 elinel2 4155 . . 3 (𝐽 ∈ (Top ∩ Fin) → 𝐽 ∈ Fin)
3 vex 3442 . . . . . 6 𝑦 ∈ V
43pwid 4575 . . . . 5 𝑦 ∈ 𝒫 𝑦
5 velpw 4558 . . . . . 6 (𝑦 ∈ 𝒫 𝐽𝑦𝐽)
6 ssfi 9097 . . . . . 6 ((𝐽 ∈ Fin ∧ 𝑦𝐽) → 𝑦 ∈ Fin)
75, 6sylan2b 594 . . . . 5 ((𝐽 ∈ Fin ∧ 𝑦 ∈ 𝒫 𝐽) → 𝑦 ∈ Fin)
8 elin 3921 . . . . . 6 (𝑦 ∈ (𝒫 𝑦 ∩ Fin) ↔ (𝑦 ∈ 𝒫 𝑦𝑦 ∈ Fin))
9 unieq 4872 . . . . . . . 8 (𝑧 = 𝑦 𝑧 = 𝑦)
109rspceeqv 3602 . . . . . . 7 ((𝑦 ∈ (𝒫 𝑦 ∩ Fin) ∧ 𝐽 = 𝑦) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧)
1110ex 412 . . . . . 6 (𝑦 ∈ (𝒫 𝑦 ∩ Fin) → ( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧))
128, 11sylbir 235 . . . . 5 ((𝑦 ∈ 𝒫 𝑦𝑦 ∈ Fin) → ( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧))
134, 7, 12sylancr 587 . . . 4 ((𝐽 ∈ Fin ∧ 𝑦 ∈ 𝒫 𝐽) → ( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧))
1413ralrimiva 3121 . . 3 (𝐽 ∈ Fin → ∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧))
152, 14syl 17 . 2 (𝐽 ∈ (Top ∩ Fin) → ∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧))
16 eqid 2729 . . 3 𝐽 = 𝐽
1716iscmp 23292 . 2 (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧)))
181, 15, 17sylanbrc 583 1 (𝐽 ∈ (Top ∩ Fin) → 𝐽 ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cin 3904  wss 3905  𝒫 cpw 4553   cuni 4861  Fincfn 8879  Topctop 22797  Compccmp 23290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-om 7807  df-1o 8395  df-en 8880  df-fin 8883  df-cmp 23291
This theorem is referenced by:  0cmp  23298  discmp  23302  1stckgenlem  23457  ptcmpfi  23717  kelac2lem  43057
  Copyright terms: Public domain W3C validator