| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zfbas | Structured version Visualization version GIF version | ||
| Description: The set of upper sets of integers is a filter base on ℤ, which corresponds to convergence of sequences on ℤ. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| Ref | Expression |
|---|---|
| zfbas | ⊢ ran ℤ≥ ∈ (fBas‘ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzf 12732 | . . 3 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
| 2 | frn 6658 | . . 3 ⊢ (ℤ≥:ℤ⟶𝒫 ℤ → ran ℤ≥ ⊆ 𝒫 ℤ) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ran ℤ≥ ⊆ 𝒫 ℤ |
| 4 | ffn 6651 | . . . . . 6 ⊢ (ℤ≥:ℤ⟶𝒫 ℤ → ℤ≥ Fn ℤ) | |
| 5 | 1, 4 | ax-mp 5 | . . . . 5 ⊢ ℤ≥ Fn ℤ |
| 6 | 1z 12499 | . . . . 5 ⊢ 1 ∈ ℤ | |
| 7 | fnfvelrn 7013 | . . . . 5 ⊢ ((ℤ≥ Fn ℤ ∧ 1 ∈ ℤ) → (ℤ≥‘1) ∈ ran ℤ≥) | |
| 8 | 5, 6, 7 | mp2an 692 | . . . 4 ⊢ (ℤ≥‘1) ∈ ran ℤ≥ |
| 9 | 8 | ne0ii 4294 | . . 3 ⊢ ran ℤ≥ ≠ ∅ |
| 10 | uzid 12744 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ (ℤ≥‘𝑥)) | |
| 11 | n0i 4290 | . . . . . . 7 ⊢ (𝑥 ∈ (ℤ≥‘𝑥) → ¬ (ℤ≥‘𝑥) = ∅) | |
| 12 | 10, 11 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → ¬ (ℤ≥‘𝑥) = ∅) |
| 13 | 12 | nrex 3060 | . . . . 5 ⊢ ¬ ∃𝑥 ∈ ℤ (ℤ≥‘𝑥) = ∅ |
| 14 | fvelrnb 6882 | . . . . . 6 ⊢ (ℤ≥ Fn ℤ → (∅ ∈ ran ℤ≥ ↔ ∃𝑥 ∈ ℤ (ℤ≥‘𝑥) = ∅)) | |
| 15 | 5, 14 | ax-mp 5 | . . . . 5 ⊢ (∅ ∈ ran ℤ≥ ↔ ∃𝑥 ∈ ℤ (ℤ≥‘𝑥) = ∅) |
| 16 | 13, 15 | mtbir 323 | . . . 4 ⊢ ¬ ∅ ∈ ran ℤ≥ |
| 17 | 16 | nelir 3035 | . . 3 ⊢ ∅ ∉ ran ℤ≥ |
| 18 | uzin2 15249 | . . . . 5 ⊢ ((𝑥 ∈ ran ℤ≥ ∧ 𝑦 ∈ ran ℤ≥) → (𝑥 ∩ 𝑦) ∈ ran ℤ≥) | |
| 19 | vex 3440 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 20 | 19 | inex1 5255 | . . . . . 6 ⊢ (𝑥 ∩ 𝑦) ∈ V |
| 21 | 20 | pwid 4572 | . . . . 5 ⊢ (𝑥 ∩ 𝑦) ∈ 𝒫 (𝑥 ∩ 𝑦) |
| 22 | inelcm 4415 | . . . . 5 ⊢ (((𝑥 ∩ 𝑦) ∈ ran ℤ≥ ∧ (𝑥 ∩ 𝑦) ∈ 𝒫 (𝑥 ∩ 𝑦)) → (ran ℤ≥ ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅) | |
| 23 | 18, 21, 22 | sylancl 586 | . . . 4 ⊢ ((𝑥 ∈ ran ℤ≥ ∧ 𝑦 ∈ ran ℤ≥) → (ran ℤ≥ ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅) |
| 24 | 23 | rgen2 3172 | . . 3 ⊢ ∀𝑥 ∈ ran ℤ≥∀𝑦 ∈ ran ℤ≥(ran ℤ≥ ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅ |
| 25 | 9, 17, 24 | 3pm3.2i 1340 | . 2 ⊢ (ran ℤ≥ ≠ ∅ ∧ ∅ ∉ ran ℤ≥ ∧ ∀𝑥 ∈ ran ℤ≥∀𝑦 ∈ ran ℤ≥(ran ℤ≥ ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅) |
| 26 | zex 12474 | . . 3 ⊢ ℤ ∈ V | |
| 27 | isfbas 23742 | . . 3 ⊢ (ℤ ∈ V → (ran ℤ≥ ∈ (fBas‘ℤ) ↔ (ran ℤ≥ ⊆ 𝒫 ℤ ∧ (ran ℤ≥ ≠ ∅ ∧ ∅ ∉ ran ℤ≥ ∧ ∀𝑥 ∈ ran ℤ≥∀𝑦 ∈ ran ℤ≥(ran ℤ≥ ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)))) | |
| 28 | 26, 27 | ax-mp 5 | . 2 ⊢ (ran ℤ≥ ∈ (fBas‘ℤ) ↔ (ran ℤ≥ ⊆ 𝒫 ℤ ∧ (ran ℤ≥ ≠ ∅ ∧ ∅ ∉ ran ℤ≥ ∧ ∀𝑥 ∈ ran ℤ≥∀𝑦 ∈ ran ℤ≥(ran ℤ≥ ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅))) |
| 29 | 3, 25, 28 | mpbir2an 711 | 1 ⊢ ran ℤ≥ ∈ (fBas‘ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∉ wnel 3032 ∀wral 3047 ∃wrex 3056 Vcvv 3436 ∩ cin 3901 ⊆ wss 3902 ∅c0 4283 𝒫 cpw 4550 ran crn 5617 Fn wfn 6476 ⟶wf 6477 ‘cfv 6481 1c1 11004 ℤcz 12465 ℤ≥cuz 12729 fBascfbas 21277 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-i2m1 11071 ax-1ne0 11072 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-neg 11344 df-nn 12123 df-z 12466 df-uz 12730 df-fbas 21286 |
| This theorem is referenced by: uzfbas 23811 |
| Copyright terms: Public domain | W3C validator |