![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zfbas | Structured version Visualization version GIF version |
Description: The set of upper sets of integers is a filter base on ℤ, which corresponds to convergence of sequences on ℤ. (Contributed by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
zfbas | ⊢ ran ℤ≥ ∈ (fBas‘ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzf 12906 | . . 3 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
2 | frn 6754 | . . 3 ⊢ (ℤ≥:ℤ⟶𝒫 ℤ → ran ℤ≥ ⊆ 𝒫 ℤ) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ran ℤ≥ ⊆ 𝒫 ℤ |
4 | ffn 6747 | . . . . . 6 ⊢ (ℤ≥:ℤ⟶𝒫 ℤ → ℤ≥ Fn ℤ) | |
5 | 1, 4 | ax-mp 5 | . . . . 5 ⊢ ℤ≥ Fn ℤ |
6 | 1z 12673 | . . . . 5 ⊢ 1 ∈ ℤ | |
7 | fnfvelrn 7114 | . . . . 5 ⊢ ((ℤ≥ Fn ℤ ∧ 1 ∈ ℤ) → (ℤ≥‘1) ∈ ran ℤ≥) | |
8 | 5, 6, 7 | mp2an 691 | . . . 4 ⊢ (ℤ≥‘1) ∈ ran ℤ≥ |
9 | 8 | ne0ii 4367 | . . 3 ⊢ ran ℤ≥ ≠ ∅ |
10 | uzid 12918 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ (ℤ≥‘𝑥)) | |
11 | n0i 4363 | . . . . . . 7 ⊢ (𝑥 ∈ (ℤ≥‘𝑥) → ¬ (ℤ≥‘𝑥) = ∅) | |
12 | 10, 11 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → ¬ (ℤ≥‘𝑥) = ∅) |
13 | 12 | nrex 3080 | . . . . 5 ⊢ ¬ ∃𝑥 ∈ ℤ (ℤ≥‘𝑥) = ∅ |
14 | fvelrnb 6982 | . . . . . 6 ⊢ (ℤ≥ Fn ℤ → (∅ ∈ ran ℤ≥ ↔ ∃𝑥 ∈ ℤ (ℤ≥‘𝑥) = ∅)) | |
15 | 5, 14 | ax-mp 5 | . . . . 5 ⊢ (∅ ∈ ran ℤ≥ ↔ ∃𝑥 ∈ ℤ (ℤ≥‘𝑥) = ∅) |
16 | 13, 15 | mtbir 323 | . . . 4 ⊢ ¬ ∅ ∈ ran ℤ≥ |
17 | 16 | nelir 3055 | . . 3 ⊢ ∅ ∉ ran ℤ≥ |
18 | uzin2 15393 | . . . . 5 ⊢ ((𝑥 ∈ ran ℤ≥ ∧ 𝑦 ∈ ran ℤ≥) → (𝑥 ∩ 𝑦) ∈ ran ℤ≥) | |
19 | vex 3492 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
20 | 19 | inex1 5335 | . . . . . 6 ⊢ (𝑥 ∩ 𝑦) ∈ V |
21 | 20 | pwid 4644 | . . . . 5 ⊢ (𝑥 ∩ 𝑦) ∈ 𝒫 (𝑥 ∩ 𝑦) |
22 | inelcm 4488 | . . . . 5 ⊢ (((𝑥 ∩ 𝑦) ∈ ran ℤ≥ ∧ (𝑥 ∩ 𝑦) ∈ 𝒫 (𝑥 ∩ 𝑦)) → (ran ℤ≥ ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅) | |
23 | 18, 21, 22 | sylancl 585 | . . . 4 ⊢ ((𝑥 ∈ ran ℤ≥ ∧ 𝑦 ∈ ran ℤ≥) → (ran ℤ≥ ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅) |
24 | 23 | rgen2 3205 | . . 3 ⊢ ∀𝑥 ∈ ran ℤ≥∀𝑦 ∈ ran ℤ≥(ran ℤ≥ ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅ |
25 | 9, 17, 24 | 3pm3.2i 1339 | . 2 ⊢ (ran ℤ≥ ≠ ∅ ∧ ∅ ∉ ran ℤ≥ ∧ ∀𝑥 ∈ ran ℤ≥∀𝑦 ∈ ran ℤ≥(ran ℤ≥ ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅) |
26 | zex 12648 | . . 3 ⊢ ℤ ∈ V | |
27 | isfbas 23858 | . . 3 ⊢ (ℤ ∈ V → (ran ℤ≥ ∈ (fBas‘ℤ) ↔ (ran ℤ≥ ⊆ 𝒫 ℤ ∧ (ran ℤ≥ ≠ ∅ ∧ ∅ ∉ ran ℤ≥ ∧ ∀𝑥 ∈ ran ℤ≥∀𝑦 ∈ ran ℤ≥(ran ℤ≥ ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)))) | |
28 | 26, 27 | ax-mp 5 | . 2 ⊢ (ran ℤ≥ ∈ (fBas‘ℤ) ↔ (ran ℤ≥ ⊆ 𝒫 ℤ ∧ (ran ℤ≥ ≠ ∅ ∧ ∅ ∉ ran ℤ≥ ∧ ∀𝑥 ∈ ran ℤ≥∀𝑦 ∈ ran ℤ≥(ran ℤ≥ ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅))) |
29 | 3, 25, 28 | mpbir2an 710 | 1 ⊢ ran ℤ≥ ∈ (fBas‘ℤ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∉ wnel 3052 ∀wral 3067 ∃wrex 3076 Vcvv 3488 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 𝒫 cpw 4622 ran crn 5701 Fn wfn 6568 ⟶wf 6569 ‘cfv 6573 1c1 11185 ℤcz 12639 ℤ≥cuz 12903 fBascfbas 21375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-i2m1 11252 ax-1ne0 11253 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-neg 11523 df-nn 12294 df-z 12640 df-uz 12904 df-fbas 21384 |
This theorem is referenced by: uzfbas 23927 |
Copyright terms: Public domain | W3C validator |