MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfbas Structured version   Visualization version   GIF version

Theorem zfbas 21919
Description: The set of upper sets of integers is a filter base on , which corresponds to convergence of sequences on . (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
zfbas ran ℤ ∈ (fBas‘ℤ)

Proof of Theorem zfbas
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uzf 11890 . . 3 :ℤ⟶𝒫 ℤ
2 frn 6193 . . 3 (ℤ:ℤ⟶𝒫 ℤ → ran ℤ ⊆ 𝒫 ℤ)
31, 2ax-mp 5 . 2 ran ℤ ⊆ 𝒫 ℤ
4 ffn 6185 . . . . . 6 (ℤ:ℤ⟶𝒫 ℤ → ℤ Fn ℤ)
51, 4ax-mp 5 . . . . 5 Fn ℤ
6 1z 11608 . . . . 5 1 ∈ ℤ
7 fnfvelrn 6499 . . . . 5 ((ℤ Fn ℤ ∧ 1 ∈ ℤ) → (ℤ‘1) ∈ ran ℤ)
85, 6, 7mp2an 664 . . . 4 (ℤ‘1) ∈ ran ℤ
98ne0ii 4071 . . 3 ran ℤ ≠ ∅
10 uzid 11902 . . . . . . 7 (𝑥 ∈ ℤ → 𝑥 ∈ (ℤ𝑥))
11 n0i 4068 . . . . . . 7 (𝑥 ∈ (ℤ𝑥) → ¬ (ℤ𝑥) = ∅)
1210, 11syl 17 . . . . . 6 (𝑥 ∈ ℤ → ¬ (ℤ𝑥) = ∅)
1312nrex 3148 . . . . 5 ¬ ∃𝑥 ∈ ℤ (ℤ𝑥) = ∅
14 fvelrnb 6385 . . . . . 6 (ℤ Fn ℤ → (∅ ∈ ran ℤ ↔ ∃𝑥 ∈ ℤ (ℤ𝑥) = ∅))
155, 14ax-mp 5 . . . . 5 (∅ ∈ ran ℤ ↔ ∃𝑥 ∈ ℤ (ℤ𝑥) = ∅)
1613, 15mtbir 312 . . . 4 ¬ ∅ ∈ ran ℤ
1716nelir 3049 . . 3 ∅ ∉ ran ℤ
18 uzin2 14291 . . . . 5 ((𝑥 ∈ ran ℤ𝑦 ∈ ran ℤ) → (𝑥𝑦) ∈ ran ℤ)
19 vex 3354 . . . . . . 7 𝑥 ∈ V
2019inex1 4933 . . . . . 6 (𝑥𝑦) ∈ V
2120pwid 4313 . . . . 5 (𝑥𝑦) ∈ 𝒫 (𝑥𝑦)
22 inelcm 4175 . . . . 5 (((𝑥𝑦) ∈ ran ℤ ∧ (𝑥𝑦) ∈ 𝒫 (𝑥𝑦)) → (ran ℤ ∩ 𝒫 (𝑥𝑦)) ≠ ∅)
2318, 21, 22sylancl 566 . . . 4 ((𝑥 ∈ ran ℤ𝑦 ∈ ran ℤ) → (ran ℤ ∩ 𝒫 (𝑥𝑦)) ≠ ∅)
2423rgen2a 3126 . . 3 𝑥 ∈ ran ℤ𝑦 ∈ ran ℤ(ran ℤ ∩ 𝒫 (𝑥𝑦)) ≠ ∅
259, 17, 243pm3.2i 1423 . 2 (ran ℤ ≠ ∅ ∧ ∅ ∉ ran ℤ ∧ ∀𝑥 ∈ ran ℤ𝑦 ∈ ran ℤ(ran ℤ ∩ 𝒫 (𝑥𝑦)) ≠ ∅)
26 zex 11587 . . 3 ℤ ∈ V
27 isfbas 21852 . . 3 (ℤ ∈ V → (ran ℤ ∈ (fBas‘ℤ) ↔ (ran ℤ ⊆ 𝒫 ℤ ∧ (ran ℤ ≠ ∅ ∧ ∅ ∉ ran ℤ ∧ ∀𝑥 ∈ ran ℤ𝑦 ∈ ran ℤ(ran ℤ ∩ 𝒫 (𝑥𝑦)) ≠ ∅))))
2826, 27ax-mp 5 . 2 (ran ℤ ∈ (fBas‘ℤ) ↔ (ran ℤ ⊆ 𝒫 ℤ ∧ (ran ℤ ≠ ∅ ∧ ∅ ∉ ran ℤ ∧ ∀𝑥 ∈ ran ℤ𝑦 ∈ ran ℤ(ran ℤ ∩ 𝒫 (𝑥𝑦)) ≠ ∅)))
293, 25, 28mpbir2an 682 1 ran ℤ ∈ (fBas‘ℤ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943  wnel 3046  wral 3061  wrex 3062  Vcvv 3351  cin 3722  wss 3723  c0 4063  𝒫 cpw 4297  ran crn 5250   Fn wfn 6026  wf 6027  cfv 6031  1c1 10138  cz 11578  cuz 11887  fBascfbas 19948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-z 11579  df-uz 11888  df-fbas 19957
This theorem is referenced by:  uzfbas  21921
  Copyright terms: Public domain W3C validator