| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zfbas | Structured version Visualization version GIF version | ||
| Description: The set of upper sets of integers is a filter base on ℤ, which corresponds to convergence of sequences on ℤ. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| Ref | Expression |
|---|---|
| zfbas | ⊢ ran ℤ≥ ∈ (fBas‘ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzf 12756 | . . 3 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
| 2 | frn 6663 | . . 3 ⊢ (ℤ≥:ℤ⟶𝒫 ℤ → ran ℤ≥ ⊆ 𝒫 ℤ) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ran ℤ≥ ⊆ 𝒫 ℤ |
| 4 | ffn 6656 | . . . . . 6 ⊢ (ℤ≥:ℤ⟶𝒫 ℤ → ℤ≥ Fn ℤ) | |
| 5 | 1, 4 | ax-mp 5 | . . . . 5 ⊢ ℤ≥ Fn ℤ |
| 6 | 1z 12523 | . . . . 5 ⊢ 1 ∈ ℤ | |
| 7 | fnfvelrn 7018 | . . . . 5 ⊢ ((ℤ≥ Fn ℤ ∧ 1 ∈ ℤ) → (ℤ≥‘1) ∈ ran ℤ≥) | |
| 8 | 5, 6, 7 | mp2an 692 | . . . 4 ⊢ (ℤ≥‘1) ∈ ran ℤ≥ |
| 9 | 8 | ne0ii 4297 | . . 3 ⊢ ran ℤ≥ ≠ ∅ |
| 10 | uzid 12768 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ (ℤ≥‘𝑥)) | |
| 11 | n0i 4293 | . . . . . . 7 ⊢ (𝑥 ∈ (ℤ≥‘𝑥) → ¬ (ℤ≥‘𝑥) = ∅) | |
| 12 | 10, 11 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → ¬ (ℤ≥‘𝑥) = ∅) |
| 13 | 12 | nrex 3057 | . . . . 5 ⊢ ¬ ∃𝑥 ∈ ℤ (ℤ≥‘𝑥) = ∅ |
| 14 | fvelrnb 6887 | . . . . . 6 ⊢ (ℤ≥ Fn ℤ → (∅ ∈ ran ℤ≥ ↔ ∃𝑥 ∈ ℤ (ℤ≥‘𝑥) = ∅)) | |
| 15 | 5, 14 | ax-mp 5 | . . . . 5 ⊢ (∅ ∈ ran ℤ≥ ↔ ∃𝑥 ∈ ℤ (ℤ≥‘𝑥) = ∅) |
| 16 | 13, 15 | mtbir 323 | . . . 4 ⊢ ¬ ∅ ∈ ran ℤ≥ |
| 17 | 16 | nelir 3032 | . . 3 ⊢ ∅ ∉ ran ℤ≥ |
| 18 | uzin2 15270 | . . . . 5 ⊢ ((𝑥 ∈ ran ℤ≥ ∧ 𝑦 ∈ ran ℤ≥) → (𝑥 ∩ 𝑦) ∈ ran ℤ≥) | |
| 19 | vex 3442 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 20 | 19 | inex1 5259 | . . . . . 6 ⊢ (𝑥 ∩ 𝑦) ∈ V |
| 21 | 20 | pwid 4575 | . . . . 5 ⊢ (𝑥 ∩ 𝑦) ∈ 𝒫 (𝑥 ∩ 𝑦) |
| 22 | inelcm 4418 | . . . . 5 ⊢ (((𝑥 ∩ 𝑦) ∈ ran ℤ≥ ∧ (𝑥 ∩ 𝑦) ∈ 𝒫 (𝑥 ∩ 𝑦)) → (ran ℤ≥ ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅) | |
| 23 | 18, 21, 22 | sylancl 586 | . . . 4 ⊢ ((𝑥 ∈ ran ℤ≥ ∧ 𝑦 ∈ ran ℤ≥) → (ran ℤ≥ ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅) |
| 24 | 23 | rgen2 3169 | . . 3 ⊢ ∀𝑥 ∈ ran ℤ≥∀𝑦 ∈ ran ℤ≥(ran ℤ≥ ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅ |
| 25 | 9, 17, 24 | 3pm3.2i 1340 | . 2 ⊢ (ran ℤ≥ ≠ ∅ ∧ ∅ ∉ ran ℤ≥ ∧ ∀𝑥 ∈ ran ℤ≥∀𝑦 ∈ ran ℤ≥(ran ℤ≥ ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅) |
| 26 | zex 12498 | . . 3 ⊢ ℤ ∈ V | |
| 27 | isfbas 23732 | . . 3 ⊢ (ℤ ∈ V → (ran ℤ≥ ∈ (fBas‘ℤ) ↔ (ran ℤ≥ ⊆ 𝒫 ℤ ∧ (ran ℤ≥ ≠ ∅ ∧ ∅ ∉ ran ℤ≥ ∧ ∀𝑥 ∈ ran ℤ≥∀𝑦 ∈ ran ℤ≥(ran ℤ≥ ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)))) | |
| 28 | 26, 27 | ax-mp 5 | . 2 ⊢ (ran ℤ≥ ∈ (fBas‘ℤ) ↔ (ran ℤ≥ ⊆ 𝒫 ℤ ∧ (ran ℤ≥ ≠ ∅ ∧ ∅ ∉ ran ℤ≥ ∧ ∀𝑥 ∈ ran ℤ≥∀𝑦 ∈ ran ℤ≥(ran ℤ≥ ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅))) |
| 29 | 3, 25, 28 | mpbir2an 711 | 1 ⊢ ran ℤ≥ ∈ (fBas‘ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∉ wnel 3029 ∀wral 3044 ∃wrex 3053 Vcvv 3438 ∩ cin 3904 ⊆ wss 3905 ∅c0 4286 𝒫 cpw 4553 ran crn 5624 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 1c1 11029 ℤcz 12489 ℤ≥cuz 12753 fBascfbas 21267 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-i2m1 11096 ax-1ne0 11097 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-neg 11368 df-nn 12147 df-z 12490 df-uz 12754 df-fbas 21276 |
| This theorem is referenced by: uzfbas 23801 |
| Copyright terms: Public domain | W3C validator |