Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfbas Structured version   Visualization version   GIF version

Theorem zfbas 22420
 Description: The set of upper sets of integers is a filter base on ℤ, which corresponds to convergence of sequences on ℤ. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
zfbas ran ℤ ∈ (fBas‘ℤ)

Proof of Theorem zfbas
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uzf 12235 . . 3 :ℤ⟶𝒫 ℤ
2 frn 6517 . . 3 (ℤ:ℤ⟶𝒫 ℤ → ran ℤ ⊆ 𝒫 ℤ)
31, 2ax-mp 5 . 2 ran ℤ ⊆ 𝒫 ℤ
4 ffn 6511 . . . . . 6 (ℤ:ℤ⟶𝒫 ℤ → ℤ Fn ℤ)
51, 4ax-mp 5 . . . . 5 Fn ℤ
6 1z 12001 . . . . 5 1 ∈ ℤ
7 fnfvelrn 6844 . . . . 5 ((ℤ Fn ℤ ∧ 1 ∈ ℤ) → (ℤ‘1) ∈ ran ℤ)
85, 6, 7mp2an 688 . . . 4 (ℤ‘1) ∈ ran ℤ
98ne0ii 4307 . . 3 ran ℤ ≠ ∅
10 uzid 12247 . . . . . . 7 (𝑥 ∈ ℤ → 𝑥 ∈ (ℤ𝑥))
11 n0i 4303 . . . . . . 7 (𝑥 ∈ (ℤ𝑥) → ¬ (ℤ𝑥) = ∅)
1210, 11syl 17 . . . . . 6 (𝑥 ∈ ℤ → ¬ (ℤ𝑥) = ∅)
1312nrex 3274 . . . . 5 ¬ ∃𝑥 ∈ ℤ (ℤ𝑥) = ∅
14 fvelrnb 6723 . . . . . 6 (ℤ Fn ℤ → (∅ ∈ ran ℤ ↔ ∃𝑥 ∈ ℤ (ℤ𝑥) = ∅))
155, 14ax-mp 5 . . . . 5 (∅ ∈ ran ℤ ↔ ∃𝑥 ∈ ℤ (ℤ𝑥) = ∅)
1613, 15mtbir 324 . . . 4 ¬ ∅ ∈ ran ℤ
1716nelir 3131 . . 3 ∅ ∉ ran ℤ
18 uzin2 14694 . . . . 5 ((𝑥 ∈ ran ℤ𝑦 ∈ ran ℤ) → (𝑥𝑦) ∈ ran ℤ)
19 vex 3503 . . . . . . 7 𝑥 ∈ V
2019inex1 5218 . . . . . 6 (𝑥𝑦) ∈ V
2120pwid 4561 . . . . 5 (𝑥𝑦) ∈ 𝒫 (𝑥𝑦)
22 inelcm 4417 . . . . 5 (((𝑥𝑦) ∈ ran ℤ ∧ (𝑥𝑦) ∈ 𝒫 (𝑥𝑦)) → (ran ℤ ∩ 𝒫 (𝑥𝑦)) ≠ ∅)
2318, 21, 22sylancl 586 . . . 4 ((𝑥 ∈ ran ℤ𝑦 ∈ ran ℤ) → (ran ℤ ∩ 𝒫 (𝑥𝑦)) ≠ ∅)
2423rgen2 3208 . . 3 𝑥 ∈ ran ℤ𝑦 ∈ ran ℤ(ran ℤ ∩ 𝒫 (𝑥𝑦)) ≠ ∅
259, 17, 243pm3.2i 1333 . 2 (ran ℤ ≠ ∅ ∧ ∅ ∉ ran ℤ ∧ ∀𝑥 ∈ ran ℤ𝑦 ∈ ran ℤ(ran ℤ ∩ 𝒫 (𝑥𝑦)) ≠ ∅)
26 zex 11979 . . 3 ℤ ∈ V
27 isfbas 22353 . . 3 (ℤ ∈ V → (ran ℤ ∈ (fBas‘ℤ) ↔ (ran ℤ ⊆ 𝒫 ℤ ∧ (ran ℤ ≠ ∅ ∧ ∅ ∉ ran ℤ ∧ ∀𝑥 ∈ ran ℤ𝑦 ∈ ran ℤ(ran ℤ ∩ 𝒫 (𝑥𝑦)) ≠ ∅))))
2826, 27ax-mp 5 . 2 (ran ℤ ∈ (fBas‘ℤ) ↔ (ran ℤ ⊆ 𝒫 ℤ ∧ (ran ℤ ≠ ∅ ∧ ∅ ∉ ran ℤ ∧ ∀𝑥 ∈ ran ℤ𝑦 ∈ ran ℤ(ran ℤ ∩ 𝒫 (𝑥𝑦)) ≠ ∅)))
293, 25, 28mpbir2an 707 1 ran ℤ ∈ (fBas‘ℤ)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ↔ wb 207   ∧ wa 396   ∧ w3a 1081   = wceq 1530   ∈ wcel 2107   ≠ wne 3021   ∉ wnel 3128  ∀wral 3143  ∃wrex 3144  Vcvv 3500   ∩ cin 3939   ⊆ wss 3940  ∅c0 4295  𝒫 cpw 4542  ran crn 5555   Fn wfn 6347  ⟶wf 6348  ‘cfv 6352  1c1 10527  ℤcz 11970  ℤ≥cuz 12232  fBascfbas 20449 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-i2m1 10594  ax-1ne0 10595  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-ov 7151  df-om 7569  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-neg 10862  df-nn 11628  df-z 11971  df-uz 12233  df-fbas 20458 This theorem is referenced by:  uzfbas  22422
 Copyright terms: Public domain W3C validator