Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zfbas | Structured version Visualization version GIF version |
Description: The set of upper sets of integers is a filter base on ℤ, which corresponds to convergence of sequences on ℤ. (Contributed by Mario Carneiro, 13-Oct-2015.) |
Ref | Expression |
---|---|
zfbas | ⊢ ran ℤ≥ ∈ (fBas‘ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzf 12514 | . . 3 ⊢ ℤ≥:ℤ⟶𝒫 ℤ | |
2 | frn 6591 | . . 3 ⊢ (ℤ≥:ℤ⟶𝒫 ℤ → ran ℤ≥ ⊆ 𝒫 ℤ) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ran ℤ≥ ⊆ 𝒫 ℤ |
4 | ffn 6584 | . . . . . 6 ⊢ (ℤ≥:ℤ⟶𝒫 ℤ → ℤ≥ Fn ℤ) | |
5 | 1, 4 | ax-mp 5 | . . . . 5 ⊢ ℤ≥ Fn ℤ |
6 | 1z 12280 | . . . . 5 ⊢ 1 ∈ ℤ | |
7 | fnfvelrn 6940 | . . . . 5 ⊢ ((ℤ≥ Fn ℤ ∧ 1 ∈ ℤ) → (ℤ≥‘1) ∈ ran ℤ≥) | |
8 | 5, 6, 7 | mp2an 688 | . . . 4 ⊢ (ℤ≥‘1) ∈ ran ℤ≥ |
9 | 8 | ne0ii 4268 | . . 3 ⊢ ran ℤ≥ ≠ ∅ |
10 | uzid 12526 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ (ℤ≥‘𝑥)) | |
11 | n0i 4264 | . . . . . . 7 ⊢ (𝑥 ∈ (ℤ≥‘𝑥) → ¬ (ℤ≥‘𝑥) = ∅) | |
12 | 10, 11 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ ℤ → ¬ (ℤ≥‘𝑥) = ∅) |
13 | 12 | nrex 3196 | . . . . 5 ⊢ ¬ ∃𝑥 ∈ ℤ (ℤ≥‘𝑥) = ∅ |
14 | fvelrnb 6812 | . . . . . 6 ⊢ (ℤ≥ Fn ℤ → (∅ ∈ ran ℤ≥ ↔ ∃𝑥 ∈ ℤ (ℤ≥‘𝑥) = ∅)) | |
15 | 5, 14 | ax-mp 5 | . . . . 5 ⊢ (∅ ∈ ran ℤ≥ ↔ ∃𝑥 ∈ ℤ (ℤ≥‘𝑥) = ∅) |
16 | 13, 15 | mtbir 322 | . . . 4 ⊢ ¬ ∅ ∈ ran ℤ≥ |
17 | 16 | nelir 3051 | . . 3 ⊢ ∅ ∉ ran ℤ≥ |
18 | uzin2 14984 | . . . . 5 ⊢ ((𝑥 ∈ ran ℤ≥ ∧ 𝑦 ∈ ran ℤ≥) → (𝑥 ∩ 𝑦) ∈ ran ℤ≥) | |
19 | vex 3426 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
20 | 19 | inex1 5236 | . . . . . 6 ⊢ (𝑥 ∩ 𝑦) ∈ V |
21 | 20 | pwid 4554 | . . . . 5 ⊢ (𝑥 ∩ 𝑦) ∈ 𝒫 (𝑥 ∩ 𝑦) |
22 | inelcm 4395 | . . . . 5 ⊢ (((𝑥 ∩ 𝑦) ∈ ran ℤ≥ ∧ (𝑥 ∩ 𝑦) ∈ 𝒫 (𝑥 ∩ 𝑦)) → (ran ℤ≥ ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅) | |
23 | 18, 21, 22 | sylancl 585 | . . . 4 ⊢ ((𝑥 ∈ ran ℤ≥ ∧ 𝑦 ∈ ran ℤ≥) → (ran ℤ≥ ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅) |
24 | 23 | rgen2 3126 | . . 3 ⊢ ∀𝑥 ∈ ran ℤ≥∀𝑦 ∈ ran ℤ≥(ran ℤ≥ ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅ |
25 | 9, 17, 24 | 3pm3.2i 1337 | . 2 ⊢ (ran ℤ≥ ≠ ∅ ∧ ∅ ∉ ran ℤ≥ ∧ ∀𝑥 ∈ ran ℤ≥∀𝑦 ∈ ran ℤ≥(ran ℤ≥ ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅) |
26 | zex 12258 | . . 3 ⊢ ℤ ∈ V | |
27 | isfbas 22888 | . . 3 ⊢ (ℤ ∈ V → (ran ℤ≥ ∈ (fBas‘ℤ) ↔ (ran ℤ≥ ⊆ 𝒫 ℤ ∧ (ran ℤ≥ ≠ ∅ ∧ ∅ ∉ ran ℤ≥ ∧ ∀𝑥 ∈ ran ℤ≥∀𝑦 ∈ ran ℤ≥(ran ℤ≥ ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅)))) | |
28 | 26, 27 | ax-mp 5 | . 2 ⊢ (ran ℤ≥ ∈ (fBas‘ℤ) ↔ (ran ℤ≥ ⊆ 𝒫 ℤ ∧ (ran ℤ≥ ≠ ∅ ∧ ∅ ∉ ran ℤ≥ ∧ ∀𝑥 ∈ ran ℤ≥∀𝑦 ∈ ran ℤ≥(ran ℤ≥ ∩ 𝒫 (𝑥 ∩ 𝑦)) ≠ ∅))) |
29 | 3, 25, 28 | mpbir2an 707 | 1 ⊢ ran ℤ≥ ∈ (fBas‘ℤ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∉ wnel 3048 ∀wral 3063 ∃wrex 3064 Vcvv 3422 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 𝒫 cpw 4530 ran crn 5581 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 1c1 10803 ℤcz 12249 ℤ≥cuz 12511 fBascfbas 20498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-i2m1 10870 ax-1ne0 10871 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-neg 11138 df-nn 11904 df-z 12250 df-uz 12512 df-fbas 20507 |
This theorem is referenced by: uzfbas 22957 |
Copyright terms: Public domain | W3C validator |