MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfbas Structured version   Visualization version   GIF version

Theorem zfbas 23904
Description: The set of upper sets of integers is a filter base on , which corresponds to convergence of sequences on . (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
zfbas ran ℤ ∈ (fBas‘ℤ)

Proof of Theorem zfbas
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uzf 12881 . . 3 :ℤ⟶𝒫 ℤ
2 frn 6743 . . 3 (ℤ:ℤ⟶𝒫 ℤ → ran ℤ ⊆ 𝒫 ℤ)
31, 2ax-mp 5 . 2 ran ℤ ⊆ 𝒫 ℤ
4 ffn 6736 . . . . . 6 (ℤ:ℤ⟶𝒫 ℤ → ℤ Fn ℤ)
51, 4ax-mp 5 . . . . 5 Fn ℤ
6 1z 12647 . . . . 5 1 ∈ ℤ
7 fnfvelrn 7100 . . . . 5 ((ℤ Fn ℤ ∧ 1 ∈ ℤ) → (ℤ‘1) ∈ ran ℤ)
85, 6, 7mp2an 692 . . . 4 (ℤ‘1) ∈ ran ℤ
98ne0ii 4344 . . 3 ran ℤ ≠ ∅
10 uzid 12893 . . . . . . 7 (𝑥 ∈ ℤ → 𝑥 ∈ (ℤ𝑥))
11 n0i 4340 . . . . . . 7 (𝑥 ∈ (ℤ𝑥) → ¬ (ℤ𝑥) = ∅)
1210, 11syl 17 . . . . . 6 (𝑥 ∈ ℤ → ¬ (ℤ𝑥) = ∅)
1312nrex 3074 . . . . 5 ¬ ∃𝑥 ∈ ℤ (ℤ𝑥) = ∅
14 fvelrnb 6969 . . . . . 6 (ℤ Fn ℤ → (∅ ∈ ran ℤ ↔ ∃𝑥 ∈ ℤ (ℤ𝑥) = ∅))
155, 14ax-mp 5 . . . . 5 (∅ ∈ ran ℤ ↔ ∃𝑥 ∈ ℤ (ℤ𝑥) = ∅)
1613, 15mtbir 323 . . . 4 ¬ ∅ ∈ ran ℤ
1716nelir 3049 . . 3 ∅ ∉ ran ℤ
18 uzin2 15383 . . . . 5 ((𝑥 ∈ ran ℤ𝑦 ∈ ran ℤ) → (𝑥𝑦) ∈ ran ℤ)
19 vex 3484 . . . . . . 7 𝑥 ∈ V
2019inex1 5317 . . . . . 6 (𝑥𝑦) ∈ V
2120pwid 4622 . . . . 5 (𝑥𝑦) ∈ 𝒫 (𝑥𝑦)
22 inelcm 4465 . . . . 5 (((𝑥𝑦) ∈ ran ℤ ∧ (𝑥𝑦) ∈ 𝒫 (𝑥𝑦)) → (ran ℤ ∩ 𝒫 (𝑥𝑦)) ≠ ∅)
2318, 21, 22sylancl 586 . . . 4 ((𝑥 ∈ ran ℤ𝑦 ∈ ran ℤ) → (ran ℤ ∩ 𝒫 (𝑥𝑦)) ≠ ∅)
2423rgen2 3199 . . 3 𝑥 ∈ ran ℤ𝑦 ∈ ran ℤ(ran ℤ ∩ 𝒫 (𝑥𝑦)) ≠ ∅
259, 17, 243pm3.2i 1340 . 2 (ran ℤ ≠ ∅ ∧ ∅ ∉ ran ℤ ∧ ∀𝑥 ∈ ran ℤ𝑦 ∈ ran ℤ(ran ℤ ∩ 𝒫 (𝑥𝑦)) ≠ ∅)
26 zex 12622 . . 3 ℤ ∈ V
27 isfbas 23837 . . 3 (ℤ ∈ V → (ran ℤ ∈ (fBas‘ℤ) ↔ (ran ℤ ⊆ 𝒫 ℤ ∧ (ran ℤ ≠ ∅ ∧ ∅ ∉ ran ℤ ∧ ∀𝑥 ∈ ran ℤ𝑦 ∈ ran ℤ(ran ℤ ∩ 𝒫 (𝑥𝑦)) ≠ ∅))))
2826, 27ax-mp 5 . 2 (ran ℤ ∈ (fBas‘ℤ) ↔ (ran ℤ ⊆ 𝒫 ℤ ∧ (ran ℤ ≠ ∅ ∧ ∅ ∉ ran ℤ ∧ ∀𝑥 ∈ ran ℤ𝑦 ∈ ran ℤ(ran ℤ ∩ 𝒫 (𝑥𝑦)) ≠ ∅)))
293, 25, 28mpbir2an 711 1 ran ℤ ∈ (fBas‘ℤ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wnel 3046  wral 3061  wrex 3070  Vcvv 3480  cin 3950  wss 3951  c0 4333  𝒫 cpw 4600  ran crn 5686   Fn wfn 6556  wf 6557  cfv 6561  1c1 11156  cz 12613  cuz 12878  fBascfbas 21352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-i2m1 11223  ax-1ne0 11224  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-neg 11495  df-nn 12267  df-z 12614  df-uz 12879  df-fbas 21361
This theorem is referenced by:  uzfbas  23906
  Copyright terms: Public domain W3C validator