MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfbas Structured version   Visualization version   GIF version

Theorem zfbas 22501
Description: The set of upper sets of integers is a filter base on , which corresponds to convergence of sequences on . (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
zfbas ran ℤ ∈ (fBas‘ℤ)

Proof of Theorem zfbas
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uzf 12234 . . 3 :ℤ⟶𝒫 ℤ
2 frn 6493 . . 3 (ℤ:ℤ⟶𝒫 ℤ → ran ℤ ⊆ 𝒫 ℤ)
31, 2ax-mp 5 . 2 ran ℤ ⊆ 𝒫 ℤ
4 ffn 6487 . . . . . 6 (ℤ:ℤ⟶𝒫 ℤ → ℤ Fn ℤ)
51, 4ax-mp 5 . . . . 5 Fn ℤ
6 1z 12000 . . . . 5 1 ∈ ℤ
7 fnfvelrn 6825 . . . . 5 ((ℤ Fn ℤ ∧ 1 ∈ ℤ) → (ℤ‘1) ∈ ran ℤ)
85, 6, 7mp2an 691 . . . 4 (ℤ‘1) ∈ ran ℤ
98ne0ii 4253 . . 3 ran ℤ ≠ ∅
10 uzid 12246 . . . . . . 7 (𝑥 ∈ ℤ → 𝑥 ∈ (ℤ𝑥))
11 n0i 4249 . . . . . . 7 (𝑥 ∈ (ℤ𝑥) → ¬ (ℤ𝑥) = ∅)
1210, 11syl 17 . . . . . 6 (𝑥 ∈ ℤ → ¬ (ℤ𝑥) = ∅)
1312nrex 3228 . . . . 5 ¬ ∃𝑥 ∈ ℤ (ℤ𝑥) = ∅
14 fvelrnb 6701 . . . . . 6 (ℤ Fn ℤ → (∅ ∈ ran ℤ ↔ ∃𝑥 ∈ ℤ (ℤ𝑥) = ∅))
155, 14ax-mp 5 . . . . 5 (∅ ∈ ran ℤ ↔ ∃𝑥 ∈ ℤ (ℤ𝑥) = ∅)
1613, 15mtbir 326 . . . 4 ¬ ∅ ∈ ran ℤ
1716nelir 3094 . . 3 ∅ ∉ ran ℤ
18 uzin2 14696 . . . . 5 ((𝑥 ∈ ran ℤ𝑦 ∈ ran ℤ) → (𝑥𝑦) ∈ ran ℤ)
19 vex 3444 . . . . . . 7 𝑥 ∈ V
2019inex1 5185 . . . . . 6 (𝑥𝑦) ∈ V
2120pwid 4521 . . . . 5 (𝑥𝑦) ∈ 𝒫 (𝑥𝑦)
22 inelcm 4372 . . . . 5 (((𝑥𝑦) ∈ ran ℤ ∧ (𝑥𝑦) ∈ 𝒫 (𝑥𝑦)) → (ran ℤ ∩ 𝒫 (𝑥𝑦)) ≠ ∅)
2318, 21, 22sylancl 589 . . . 4 ((𝑥 ∈ ran ℤ𝑦 ∈ ran ℤ) → (ran ℤ ∩ 𝒫 (𝑥𝑦)) ≠ ∅)
2423rgen2 3168 . . 3 𝑥 ∈ ran ℤ𝑦 ∈ ran ℤ(ran ℤ ∩ 𝒫 (𝑥𝑦)) ≠ ∅
259, 17, 243pm3.2i 1336 . 2 (ran ℤ ≠ ∅ ∧ ∅ ∉ ran ℤ ∧ ∀𝑥 ∈ ran ℤ𝑦 ∈ ran ℤ(ran ℤ ∩ 𝒫 (𝑥𝑦)) ≠ ∅)
26 zex 11978 . . 3 ℤ ∈ V
27 isfbas 22434 . . 3 (ℤ ∈ V → (ran ℤ ∈ (fBas‘ℤ) ↔ (ran ℤ ⊆ 𝒫 ℤ ∧ (ran ℤ ≠ ∅ ∧ ∅ ∉ ran ℤ ∧ ∀𝑥 ∈ ran ℤ𝑦 ∈ ran ℤ(ran ℤ ∩ 𝒫 (𝑥𝑦)) ≠ ∅))))
2826, 27ax-mp 5 . 2 (ran ℤ ∈ (fBas‘ℤ) ↔ (ran ℤ ⊆ 𝒫 ℤ ∧ (ran ℤ ≠ ∅ ∧ ∅ ∉ ran ℤ ∧ ∀𝑥 ∈ ran ℤ𝑦 ∈ ran ℤ(ran ℤ ∩ 𝒫 (𝑥𝑦)) ≠ ∅)))
293, 25, 28mpbir2an 710 1 ran ℤ ∈ (fBas‘ℤ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wnel 3091  wral 3106  wrex 3107  Vcvv 3441  cin 3880  wss 3881  c0 4243  𝒫 cpw 4497  ran crn 5520   Fn wfn 6319  wf 6320  cfv 6324  1c1 10527  cz 11969  cuz 12231  fBascfbas 20079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-i2m1 10594  ax-1ne0 10595  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-neg 10862  df-nn 11626  df-z 11970  df-uz 12232  df-fbas 20088
This theorem is referenced by:  uzfbas  22503
  Copyright terms: Public domain W3C validator