Step | Hyp | Ref
| Expression |
1 | | minvec.f |
. . 3
⊢ 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) |
2 | | ssrab2 4013 |
. . . . . 6
⊢ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)} ⊆ 𝑌 |
3 | | minvec.y |
. . . . . . . 8
⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) |
4 | 3 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) → 𝑌 ∈ (LSubSp‘𝑈)) |
5 | | elpw2g 5268 |
. . . . . . 7
⊢ (𝑌 ∈ (LSubSp‘𝑈) → ({𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)} ∈ 𝒫 𝑌 ↔ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)} ⊆ 𝑌)) |
6 | 4, 5 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) → ({𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)} ∈ 𝒫 𝑌 ↔ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)} ⊆ 𝑌)) |
7 | 2, 6 | mpbiri 257 |
. . . . 5
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) → {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)} ∈ 𝒫 𝑌) |
8 | 7 | fmpttd 6989 |
. . . 4
⊢ (𝜑 → (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}):ℝ+⟶𝒫
𝑌) |
9 | 8 | frnd 6608 |
. . 3
⊢ (𝜑 → ran (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) ⊆ 𝒫 𝑌) |
10 | 1, 9 | eqsstrid 3969 |
. 2
⊢ (𝜑 → 𝐹 ⊆ 𝒫 𝑌) |
11 | | 1rp 12734 |
. . . . . 6
⊢ 1 ∈
ℝ+ |
12 | | eqid 2738 |
. . . . . . 7
⊢ (𝑟 ∈ ℝ+
↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) = (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) |
13 | 12, 7 | dmmptd 6578 |
. . . . . 6
⊢ (𝜑 → dom (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) = ℝ+) |
14 | 11, 13 | eleqtrrid 2846 |
. . . . 5
⊢ (𝜑 → 1 ∈ dom (𝑟 ∈ ℝ+
↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})) |
15 | 14 | ne0d 4269 |
. . . 4
⊢ (𝜑 → dom (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) ≠ ∅) |
16 | | dm0rn0 5834 |
. . . . . 6
⊢ (dom
(𝑟 ∈
ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) = ∅ ↔ ran (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) = ∅) |
17 | 1 | eqeq1i 2743 |
. . . . . 6
⊢ (𝐹 = ∅ ↔ ran (𝑟 ∈ ℝ+
↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) = ∅) |
18 | 16, 17 | bitr4i 277 |
. . . . 5
⊢ (dom
(𝑟 ∈
ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) = ∅ ↔ 𝐹 = ∅) |
19 | 18 | necon3bii 2996 |
. . . 4
⊢ (dom
(𝑟 ∈
ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) ≠ ∅ ↔ 𝐹 ≠ ∅) |
20 | 15, 19 | sylib 217 |
. . 3
⊢ (𝜑 → 𝐹 ≠ ∅) |
21 | | minvec.x |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑋 = (Base‘𝑈) |
22 | | minvec.m |
. . . . . . . . . . . . . . . . . 18
⊢ − =
(-g‘𝑈) |
23 | | minvec.n |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑁 = (norm‘𝑈) |
24 | | minvec.u |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑈 ∈ ℂPreHil) |
25 | | minvec.w |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) |
26 | | minvec.a |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐴 ∈ 𝑋) |
27 | | minvec.j |
. . . . . . . . . . . . . . . . . 18
⊢ 𝐽 = (TopOpen‘𝑈) |
28 | | minvec.r |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) |
29 | | minvec.s |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑆 = inf(𝑅, ℝ, < ) |
30 | 21, 22, 23, 24, 3, 25, 26, 27, 28, 29 | minveclem4c 24589 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑆 ∈ ℝ) |
31 | 30 | resqcld 13965 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑆↑2) ∈ ℝ) |
32 | | ltaddrp 12767 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑆↑2) ∈ ℝ ∧
𝑟 ∈
ℝ+) → (𝑆↑2) < ((𝑆↑2) + 𝑟)) |
33 | 31, 32 | sylan 580 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) → (𝑆↑2) < ((𝑆↑2) + 𝑟)) |
34 | 31 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) → (𝑆↑2) ∈
ℝ) |
35 | | rpre 12738 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑟 ∈ ℝ+
→ 𝑟 ∈
ℝ) |
36 | 35 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈
ℝ) |
37 | 34, 36 | readdcld 11004 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) → ((𝑆↑2) + 𝑟) ∈ ℝ) |
38 | 37 | recnd 11003 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) → ((𝑆↑2) + 𝑟) ∈ ℂ) |
39 | 38 | sqsqrtd 15151 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) →
((√‘((𝑆↑2)
+ 𝑟))↑2) = ((𝑆↑2) + 𝑟)) |
40 | 33, 39 | breqtrrd 5102 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) → (𝑆↑2) <
((√‘((𝑆↑2)
+ 𝑟))↑2)) |
41 | 21, 22, 23, 24, 3, 25, 26, 27, 28 | minveclem1 24588 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
42 | 41 | simp1d 1141 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑅 ⊆ ℝ) |
43 | 42 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) → 𝑅 ⊆
ℝ) |
44 | 41 | simp2d 1142 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑅 ≠ ∅) |
45 | 44 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) → 𝑅 ≠ ∅) |
46 | | 0re 10977 |
. . . . . . . . . . . . . . . . . . 19
⊢ 0 ∈
ℝ |
47 | 41 | simp3d 1143 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ∀𝑤 ∈ 𝑅 0 ≤ 𝑤) |
48 | | breq1 5077 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = 0 → (𝑦 ≤ 𝑤 ↔ 0 ≤ 𝑤)) |
49 | 48 | ralbidv 3112 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 0 → (∀𝑤 ∈ 𝑅 𝑦 ≤ 𝑤 ↔ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
50 | 49 | rspcev 3561 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((0
∈ ℝ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤) → ∃𝑦 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑦 ≤ 𝑤) |
51 | 46, 47, 50 | sylancr 587 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑦 ≤ 𝑤) |
52 | 51 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) →
∃𝑦 ∈ ℝ
∀𝑤 ∈ 𝑅 𝑦 ≤ 𝑤) |
53 | | infrecl 11957 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑦 ≤ 𝑤) → inf(𝑅, ℝ, < ) ∈
ℝ) |
54 | 43, 45, 52, 53 | syl3anc 1370 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) → inf(𝑅, ℝ, < ) ∈
ℝ) |
55 | 29, 54 | eqeltrid 2843 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) → 𝑆 ∈
ℝ) |
56 | | 0red 10978 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) → 0 ∈
ℝ) |
57 | 55 | sqge0d 13966 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) → 0 ≤
(𝑆↑2)) |
58 | 56, 34, 37, 57, 33 | lelttrd 11133 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) → 0 <
((𝑆↑2) + 𝑟)) |
59 | 56, 37, 58 | ltled 11123 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) → 0 ≤
((𝑆↑2) + 𝑟)) |
60 | 37, 59 | resqrtcld 15129 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) →
(√‘((𝑆↑2)
+ 𝑟)) ∈
ℝ) |
61 | 47 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) →
∀𝑤 ∈ 𝑅 0 ≤ 𝑤) |
62 | | infregelb 11959 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑦 ≤ 𝑤) ∧ 0 ∈ ℝ) → (0 ≤
inf(𝑅, ℝ, < )
↔ ∀𝑤 ∈
𝑅 0 ≤ 𝑤)) |
63 | 43, 45, 52, 56, 62 | syl31anc 1372 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) → (0 ≤
inf(𝑅, ℝ, < )
↔ ∀𝑤 ∈
𝑅 0 ≤ 𝑤)) |
64 | 61, 63 | mpbird 256 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) → 0 ≤
inf(𝑅, ℝ, <
)) |
65 | 64, 29 | breqtrrdi 5116 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) → 0 ≤
𝑆) |
66 | 37, 59 | sqrtge0d 15132 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) → 0 ≤
(√‘((𝑆↑2)
+ 𝑟))) |
67 | 55, 60, 65, 66 | lt2sqd 13973 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) → (𝑆 < (√‘((𝑆↑2) + 𝑟)) ↔ (𝑆↑2) < ((√‘((𝑆↑2) + 𝑟))↑2))) |
68 | 40, 67 | mpbird 256 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) → 𝑆 < (√‘((𝑆↑2) + 𝑟))) |
69 | 55, 60 | ltnled 11122 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) → (𝑆 < (√‘((𝑆↑2) + 𝑟)) ↔ ¬ (√‘((𝑆↑2) + 𝑟)) ≤ 𝑆)) |
70 | 68, 69 | mpbid 231 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) → ¬
(√‘((𝑆↑2)
+ 𝑟)) ≤ 𝑆) |
71 | 29 | breq2i 5082 |
. . . . . . . . . . . . 13
⊢
((√‘((𝑆↑2) + 𝑟)) ≤ 𝑆 ↔ (√‘((𝑆↑2) + 𝑟)) ≤ inf(𝑅, ℝ, < )) |
72 | | infregelb 11959 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑦 ≤ 𝑤) ∧ (√‘((𝑆↑2) + 𝑟)) ∈ ℝ) →
((√‘((𝑆↑2)
+ 𝑟)) ≤ inf(𝑅, ℝ, < ) ↔
∀𝑤 ∈ 𝑅 (√‘((𝑆↑2) + 𝑟)) ≤ 𝑤)) |
73 | 43, 45, 52, 60, 72 | syl31anc 1372 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) →
((√‘((𝑆↑2)
+ 𝑟)) ≤ inf(𝑅, ℝ, < ) ↔
∀𝑤 ∈ 𝑅 (√‘((𝑆↑2) + 𝑟)) ≤ 𝑤)) |
74 | 28 | raleqi 3346 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑤 ∈
𝑅 (√‘((𝑆↑2) + 𝑟)) ≤ 𝑤 ↔ ∀𝑤 ∈ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦)))(√‘((𝑆↑2) + 𝑟)) ≤ 𝑤) |
75 | | fvex 6787 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁‘(𝐴 − 𝑦)) ∈ V |
76 | 75 | rgenw 3076 |
. . . . . . . . . . . . . . . 16
⊢
∀𝑦 ∈
𝑌 (𝑁‘(𝐴 − 𝑦)) ∈ V |
77 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) = (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) |
78 | | breq2 5078 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = (𝑁‘(𝐴 − 𝑦)) → ((√‘((𝑆↑2) + 𝑟)) ≤ 𝑤 ↔ (√‘((𝑆↑2) + 𝑟)) ≤ (𝑁‘(𝐴 − 𝑦)))) |
79 | 77, 78 | ralrnmptw 6970 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑦 ∈
𝑌 (𝑁‘(𝐴 − 𝑦)) ∈ V → (∀𝑤 ∈ ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦)))(√‘((𝑆↑2) + 𝑟)) ≤ 𝑤 ↔ ∀𝑦 ∈ 𝑌 (√‘((𝑆↑2) + 𝑟)) ≤ (𝑁‘(𝐴 − 𝑦)))) |
80 | 76, 79 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑤 ∈
ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦)))(√‘((𝑆↑2) + 𝑟)) ≤ 𝑤 ↔ ∀𝑦 ∈ 𝑌 (√‘((𝑆↑2) + 𝑟)) ≤ (𝑁‘(𝐴 − 𝑦))) |
81 | 74, 80 | bitri 274 |
. . . . . . . . . . . . . 14
⊢
(∀𝑤 ∈
𝑅 (√‘((𝑆↑2) + 𝑟)) ≤ 𝑤 ↔ ∀𝑦 ∈ 𝑌 (√‘((𝑆↑2) + 𝑟)) ≤ (𝑁‘(𝐴 − 𝑦))) |
82 | 73, 81 | bitrdi 287 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) →
((√‘((𝑆↑2)
+ 𝑟)) ≤ inf(𝑅, ℝ, < ) ↔
∀𝑦 ∈ 𝑌 (√‘((𝑆↑2) + 𝑟)) ≤ (𝑁‘(𝐴 − 𝑦)))) |
83 | 71, 82 | bitrid 282 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) →
((√‘((𝑆↑2)
+ 𝑟)) ≤ 𝑆 ↔ ∀𝑦 ∈ 𝑌 (√‘((𝑆↑2) + 𝑟)) ≤ (𝑁‘(𝐴 − 𝑦)))) |
84 | 70, 83 | mtbid 324 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) → ¬
∀𝑦 ∈ 𝑌 (√‘((𝑆↑2) + 𝑟)) ≤ (𝑁‘(𝐴 − 𝑦))) |
85 | | rexnal 3169 |
. . . . . . . . . . 11
⊢
(∃𝑦 ∈
𝑌 ¬
(√‘((𝑆↑2)
+ 𝑟)) ≤ (𝑁‘(𝐴 − 𝑦)) ↔ ¬ ∀𝑦 ∈ 𝑌 (√‘((𝑆↑2) + 𝑟)) ≤ (𝑁‘(𝐴 − 𝑦))) |
86 | 84, 85 | sylibr 233 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) →
∃𝑦 ∈ 𝑌 ¬ (√‘((𝑆↑2) + 𝑟)) ≤ (𝑁‘(𝐴 − 𝑦))) |
87 | 60 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑦 ∈ 𝑌) → (√‘((𝑆↑2) + 𝑟)) ∈ ℝ) |
88 | | cphngp 24337 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑈 ∈ ℂPreHil →
𝑈 ∈
NrmGrp) |
89 | 24, 88 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑈 ∈ NrmGrp) |
90 | | ngpms 23756 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑈 ∈ NrmGrp → 𝑈 ∈ MetSp) |
91 | | minvec.d |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) |
92 | 21, 91 | msmet 23610 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑈 ∈ MetSp → 𝐷 ∈ (Met‘𝑋)) |
93 | 89, 90, 92 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
94 | 93 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑦 ∈ 𝑌) → 𝐷 ∈ (Met‘𝑋)) |
95 | 26 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑦 ∈ 𝑌) → 𝐴 ∈ 𝑋) |
96 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . 19
⊢
(LSubSp‘𝑈) =
(LSubSp‘𝑈) |
97 | 21, 96 | lssss 20198 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑌 ∈ (LSubSp‘𝑈) → 𝑌 ⊆ 𝑋) |
98 | 4, 97 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) → 𝑌 ⊆ 𝑋) |
99 | 98 | sselda 3921 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ 𝑋) |
100 | | metcl 23485 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐴𝐷𝑦) ∈ ℝ) |
101 | 94, 95, 99, 100 | syl3anc 1370 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑦 ∈ 𝑌) → (𝐴𝐷𝑦) ∈ ℝ) |
102 | 66 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑦 ∈ 𝑌) → 0 ≤ (√‘((𝑆↑2) + 𝑟))) |
103 | | metge0 23498 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → 0 ≤ (𝐴𝐷𝑦)) |
104 | 94, 95, 99, 103 | syl3anc 1370 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑦 ∈ 𝑌) → 0 ≤ (𝐴𝐷𝑦)) |
105 | 87, 101, 102, 104 | le2sqd 13974 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑦 ∈ 𝑌) → ((√‘((𝑆↑2) + 𝑟)) ≤ (𝐴𝐷𝑦) ↔ ((√‘((𝑆↑2) + 𝑟))↑2) ≤ ((𝐴𝐷𝑦)↑2))) |
106 | 91 | oveqi 7288 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴𝐷𝑦) = (𝐴((dist‘𝑈) ↾ (𝑋 × 𝑋))𝑦) |
107 | 95, 99 | ovresd 7439 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑦 ∈ 𝑌) → (𝐴((dist‘𝑈) ↾ (𝑋 × 𝑋))𝑦) = (𝐴(dist‘𝑈)𝑦)) |
108 | 106, 107 | eqtrid 2790 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑦 ∈ 𝑌) → (𝐴𝐷𝑦) = (𝐴(dist‘𝑈)𝑦)) |
109 | 89 | ad2antrr 723 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑦 ∈ 𝑌) → 𝑈 ∈ NrmGrp) |
110 | | eqid 2738 |
. . . . . . . . . . . . . . . . . 18
⊢
(dist‘𝑈) =
(dist‘𝑈) |
111 | 23, 21, 22, 110 | ngpds 23760 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑈 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐴(dist‘𝑈)𝑦) = (𝑁‘(𝐴 − 𝑦))) |
112 | 109, 95, 99, 111 | syl3anc 1370 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑦 ∈ 𝑌) → (𝐴(dist‘𝑈)𝑦) = (𝑁‘(𝐴 − 𝑦))) |
113 | 108, 112 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑦 ∈ 𝑌) → (𝐴𝐷𝑦) = (𝑁‘(𝐴 − 𝑦))) |
114 | 113 | breq2d 5086 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑦 ∈ 𝑌) → ((√‘((𝑆↑2) + 𝑟)) ≤ (𝐴𝐷𝑦) ↔ (√‘((𝑆↑2) + 𝑟)) ≤ (𝑁‘(𝐴 − 𝑦)))) |
115 | 39 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑦 ∈ 𝑌) → ((√‘((𝑆↑2) + 𝑟))↑2) = ((𝑆↑2) + 𝑟)) |
116 | 115 | breq1d 5084 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑦 ∈ 𝑌) → (((√‘((𝑆↑2) + 𝑟))↑2) ≤ ((𝐴𝐷𝑦)↑2) ↔ ((𝑆↑2) + 𝑟) ≤ ((𝐴𝐷𝑦)↑2))) |
117 | 105, 114,
116 | 3bitr3d 309 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑦 ∈ 𝑌) → ((√‘((𝑆↑2) + 𝑟)) ≤ (𝑁‘(𝐴 − 𝑦)) ↔ ((𝑆↑2) + 𝑟) ≤ ((𝐴𝐷𝑦)↑2))) |
118 | 117 | notbid 318 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑦 ∈ 𝑌) → (¬ (√‘((𝑆↑2) + 𝑟)) ≤ (𝑁‘(𝐴 − 𝑦)) ↔ ¬ ((𝑆↑2) + 𝑟) ≤ ((𝐴𝐷𝑦)↑2))) |
119 | 37 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑦 ∈ 𝑌) → ((𝑆↑2) + 𝑟) ∈ ℝ) |
120 | 101 | resqcld 13965 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑦 ∈ 𝑌) → ((𝐴𝐷𝑦)↑2) ∈ ℝ) |
121 | 119, 120 | letrid 11127 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑦 ∈ 𝑌) → (((𝑆↑2) + 𝑟) ≤ ((𝐴𝐷𝑦)↑2) ∨ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟))) |
122 | 121 | ord 861 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑦 ∈ 𝑌) → (¬ ((𝑆↑2) + 𝑟) ≤ ((𝐴𝐷𝑦)↑2) → ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟))) |
123 | 118, 122 | sylbid 239 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑦 ∈ 𝑌) → (¬ (√‘((𝑆↑2) + 𝑟)) ≤ (𝑁‘(𝐴 − 𝑦)) → ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟))) |
124 | 123 | reximdva 3203 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) →
(∃𝑦 ∈ 𝑌 ¬ (√‘((𝑆↑2) + 𝑟)) ≤ (𝑁‘(𝐴 − 𝑦)) → ∃𝑦 ∈ 𝑌 ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟))) |
125 | 86, 124 | mpd 15 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) →
∃𝑦 ∈ 𝑌 ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)) |
126 | | rabn0 4319 |
. . . . . . . . 9
⊢ ({𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)} ≠ ∅ ↔ ∃𝑦 ∈ 𝑌 ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)) |
127 | 125, 126 | sylibr 233 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) → {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)} ≠ ∅) |
128 | 127 | necomd 2999 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) → ∅
≠ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) |
129 | 128 | neneqd 2948 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) → ¬
∅ = {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) |
130 | 129 | nrexdv 3198 |
. . . . 5
⊢ (𝜑 → ¬ ∃𝑟 ∈ ℝ+
∅ = {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) |
131 | 1 | eleq2i 2830 |
. . . . . 6
⊢ (∅
∈ 𝐹 ↔ ∅
∈ ran (𝑟 ∈
ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})) |
132 | | 0ex 5231 |
. . . . . . 7
⊢ ∅
∈ V |
133 | 12 | elrnmpt 5865 |
. . . . . . 7
⊢ (∅
∈ V → (∅ ∈ ran (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) ↔ ∃𝑟 ∈ ℝ+ ∅ = {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})) |
134 | 132, 133 | ax-mp 5 |
. . . . . 6
⊢ (∅
∈ ran (𝑟 ∈
ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) ↔ ∃𝑟 ∈ ℝ+ ∅ = {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) |
135 | 131, 134 | bitri 274 |
. . . . 5
⊢ (∅
∈ 𝐹 ↔
∃𝑟 ∈
ℝ+ ∅ = {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) |
136 | 130, 135 | sylnibr 329 |
. . . 4
⊢ (𝜑 → ¬ ∅ ∈ 𝐹) |
137 | | df-nel 3050 |
. . . 4
⊢ (∅
∉ 𝐹 ↔ ¬
∅ ∈ 𝐹) |
138 | 136, 137 | sylibr 233 |
. . 3
⊢ (𝜑 → ∅ ∉ 𝐹) |
139 | 55 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑦 ∈ 𝑌) → 𝑆 ∈ ℝ) |
140 | 139 | resqcld 13965 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑦 ∈ 𝑌) → (𝑆↑2) ∈ ℝ) |
141 | 36 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑦 ∈ 𝑌) → 𝑟 ∈ ℝ) |
142 | 120, 140,
141 | lesubadd2d 11574 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ ℝ+) ∧ 𝑦 ∈ 𝑌) → ((((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑟 ↔ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟))) |
143 | 142 | rabbidva 3413 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑟 ∈ ℝ+) → {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑟} = {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) |
144 | 143 | mpteq2dva 5174 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑟}) = (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})) |
145 | 144 | rneqd 5847 |
. . . . . . . . 9
⊢ (𝜑 → ran (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑟}) = ran (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})) |
146 | 1, 145 | eqtr4id 2797 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑟})) |
147 | 146 | eleq2d 2824 |
. . . . . . 7
⊢ (𝜑 → (𝑢 ∈ 𝐹 ↔ 𝑢 ∈ ran (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑟}))) |
148 | | breq2 5078 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑠 → ((((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑟 ↔ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑠)) |
149 | 148 | rabbidv 3414 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑠 → {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑟} = {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑠}) |
150 | 149 | cbvmptv 5187 |
. . . . . . . . 9
⊢ (𝑟 ∈ ℝ+
↦ {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑟}) = (𝑠 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑠}) |
151 | 150 | elrnmpt 5865 |
. . . . . . . 8
⊢ (𝑢 ∈ V → (𝑢 ∈ ran (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑟}) ↔ ∃𝑠 ∈ ℝ+ 𝑢 = {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑠})) |
152 | 151 | elv 3438 |
. . . . . . 7
⊢ (𝑢 ∈ ran (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑟}) ↔ ∃𝑠 ∈ ℝ+ 𝑢 = {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑠}) |
153 | 147, 152 | bitrdi 287 |
. . . . . 6
⊢ (𝜑 → (𝑢 ∈ 𝐹 ↔ ∃𝑠 ∈ ℝ+ 𝑢 = {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑠})) |
154 | 146 | eleq2d 2824 |
. . . . . . 7
⊢ (𝜑 → (𝑣 ∈ 𝐹 ↔ 𝑣 ∈ ran (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑟}))) |
155 | | breq2 5078 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑡 → ((((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑟 ↔ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑡)) |
156 | 155 | rabbidv 3414 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑡 → {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑟} = {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑡}) |
157 | 156 | cbvmptv 5187 |
. . . . . . . . 9
⊢ (𝑟 ∈ ℝ+
↦ {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑟}) = (𝑡 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑡}) |
158 | 157 | elrnmpt 5865 |
. . . . . . . 8
⊢ (𝑣 ∈ V → (𝑣 ∈ ran (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑟}) ↔ ∃𝑡 ∈ ℝ+ 𝑣 = {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑡})) |
159 | 158 | elv 3438 |
. . . . . . 7
⊢ (𝑣 ∈ ran (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑟}) ↔ ∃𝑡 ∈ ℝ+ 𝑣 = {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑡}) |
160 | 154, 159 | bitrdi 287 |
. . . . . 6
⊢ (𝜑 → (𝑣 ∈ 𝐹 ↔ ∃𝑡 ∈ ℝ+ 𝑣 = {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑡})) |
161 | 153, 160 | anbi12d 631 |
. . . . 5
⊢ (𝜑 → ((𝑢 ∈ 𝐹 ∧ 𝑣 ∈ 𝐹) ↔ (∃𝑠 ∈ ℝ+ 𝑢 = {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑠} ∧ ∃𝑡 ∈ ℝ+ 𝑣 = {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑡}))) |
162 | | reeanv 3294 |
. . . . . 6
⊢
(∃𝑠 ∈
ℝ+ ∃𝑡 ∈ ℝ+ (𝑢 = {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑠} ∧ 𝑣 = {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑡}) ↔ (∃𝑠 ∈ ℝ+ 𝑢 = {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑠} ∧ ∃𝑡 ∈ ℝ+ 𝑣 = {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑡})) |
163 | 93 | ad2antrr 723 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑠 ∈ ℝ+ ∧ 𝑡 ∈ ℝ+))
∧ 𝑦 ∈ 𝑌) → 𝐷 ∈ (Met‘𝑋)) |
164 | 26 | ad2antrr 723 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑠 ∈ ℝ+ ∧ 𝑡 ∈ ℝ+))
∧ 𝑦 ∈ 𝑌) → 𝐴 ∈ 𝑋) |
165 | 3, 97 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
166 | 165 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑠 ∈ ℝ+ ∧ 𝑡 ∈ ℝ+))
→ 𝑌 ⊆ 𝑋) |
167 | 166 | sselda 3921 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑠 ∈ ℝ+ ∧ 𝑡 ∈ ℝ+))
∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ 𝑋) |
168 | 163, 164,
167, 100 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑠 ∈ ℝ+ ∧ 𝑡 ∈ ℝ+))
∧ 𝑦 ∈ 𝑌) → (𝐴𝐷𝑦) ∈ ℝ) |
169 | 168 | resqcld 13965 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑠 ∈ ℝ+ ∧ 𝑡 ∈ ℝ+))
∧ 𝑦 ∈ 𝑌) → ((𝐴𝐷𝑦)↑2) ∈ ℝ) |
170 | 31 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑠 ∈ ℝ+ ∧ 𝑡 ∈ ℝ+))
∧ 𝑦 ∈ 𝑌) → (𝑆↑2) ∈ ℝ) |
171 | 169, 170 | resubcld 11403 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑠 ∈ ℝ+ ∧ 𝑡 ∈ ℝ+))
∧ 𝑦 ∈ 𝑌) → (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ∈ ℝ) |
172 | | simplrl 774 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑠 ∈ ℝ+ ∧ 𝑡 ∈ ℝ+))
∧ 𝑦 ∈ 𝑌) → 𝑠 ∈ ℝ+) |
173 | 172 | rpred 12772 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑠 ∈ ℝ+ ∧ 𝑡 ∈ ℝ+))
∧ 𝑦 ∈ 𝑌) → 𝑠 ∈ ℝ) |
174 | | simplrr 775 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑠 ∈ ℝ+ ∧ 𝑡 ∈ ℝ+))
∧ 𝑦 ∈ 𝑌) → 𝑡 ∈ ℝ+) |
175 | 174 | rpred 12772 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑠 ∈ ℝ+ ∧ 𝑡 ∈ ℝ+))
∧ 𝑦 ∈ 𝑌) → 𝑡 ∈ ℝ) |
176 | | lemin 12926 |
. . . . . . . . . . . 12
⊢
(((((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ∈ ℝ ∧ 𝑠 ∈ ℝ ∧ 𝑡 ∈ ℝ) →
((((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ if(𝑠 ≤ 𝑡, 𝑠, 𝑡) ↔ ((((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑠 ∧ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑡))) |
177 | 171, 173,
175, 176 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑠 ∈ ℝ+ ∧ 𝑡 ∈ ℝ+))
∧ 𝑦 ∈ 𝑌) → ((((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ if(𝑠 ≤ 𝑡, 𝑠, 𝑡) ↔ ((((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑠 ∧ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑡))) |
178 | 177 | rabbidva 3413 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑠 ∈ ℝ+ ∧ 𝑡 ∈ ℝ+))
→ {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ if(𝑠 ≤ 𝑡, 𝑠, 𝑡)} = {𝑦 ∈ 𝑌 ∣ ((((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑠 ∧ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑡)}) |
179 | | ifcl 4504 |
. . . . . . . . . . . 12
⊢ ((𝑠 ∈ ℝ+
∧ 𝑡 ∈
ℝ+) → if(𝑠 ≤ 𝑡, 𝑠, 𝑡) ∈
ℝ+) |
180 | 3 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑠 ∈ ℝ+ ∧ 𝑡 ∈ ℝ+))
→ 𝑌 ∈
(LSubSp‘𝑈)) |
181 | | rabexg 5255 |
. . . . . . . . . . . . 13
⊢ (𝑌 ∈ (LSubSp‘𝑈) → {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ if(𝑠 ≤ 𝑡, 𝑠, 𝑡)} ∈ V) |
182 | 180, 181 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑠 ∈ ℝ+ ∧ 𝑡 ∈ ℝ+))
→ {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ if(𝑠 ≤ 𝑡, 𝑠, 𝑡)} ∈ V) |
183 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ (𝑟 ∈ ℝ+
↦ {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑟}) = (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑟}) |
184 | | breq2 5078 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = if(𝑠 ≤ 𝑡, 𝑠, 𝑡) → ((((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑟 ↔ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ if(𝑠 ≤ 𝑡, 𝑠, 𝑡))) |
185 | 184 | rabbidv 3414 |
. . . . . . . . . . . . 13
⊢ (𝑟 = if(𝑠 ≤ 𝑡, 𝑠, 𝑡) → {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑟} = {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ if(𝑠 ≤ 𝑡, 𝑠, 𝑡)}) |
186 | 183, 185 | elrnmpt1s 5866 |
. . . . . . . . . . . 12
⊢
((if(𝑠 ≤ 𝑡, 𝑠, 𝑡) ∈ ℝ+ ∧ {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ if(𝑠 ≤ 𝑡, 𝑠, 𝑡)} ∈ V) → {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ if(𝑠 ≤ 𝑡, 𝑠, 𝑡)} ∈ ran (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑟})) |
187 | 179, 182,
186 | syl2an2 683 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑠 ∈ ℝ+ ∧ 𝑡 ∈ ℝ+))
→ {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ if(𝑠 ≤ 𝑡, 𝑠, 𝑡)} ∈ ran (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑟})) |
188 | 146 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑠 ∈ ℝ+ ∧ 𝑡 ∈ ℝ+))
→ 𝐹 = ran (𝑟 ∈ ℝ+
↦ {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑟})) |
189 | 187, 188 | eleqtrrd 2842 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑠 ∈ ℝ+ ∧ 𝑡 ∈ ℝ+))
→ {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ if(𝑠 ≤ 𝑡, 𝑠, 𝑡)} ∈ 𝐹) |
190 | 178, 189 | eqeltrrd 2840 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑠 ∈ ℝ+ ∧ 𝑡 ∈ ℝ+))
→ {𝑦 ∈ 𝑌 ∣ ((((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑠 ∧ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑡)} ∈ 𝐹) |
191 | | ineq12 4141 |
. . . . . . . . . . 11
⊢ ((𝑢 = {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑠} ∧ 𝑣 = {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑡}) → (𝑢 ∩ 𝑣) = ({𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑠} ∩ {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑡})) |
192 | | inrab 4240 |
. . . . . . . . . . 11
⊢ ({𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑠} ∩ {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑡}) = {𝑦 ∈ 𝑌 ∣ ((((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑠 ∧ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑡)} |
193 | 191, 192 | eqtrdi 2794 |
. . . . . . . . . 10
⊢ ((𝑢 = {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑠} ∧ 𝑣 = {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑡}) → (𝑢 ∩ 𝑣) = {𝑦 ∈ 𝑌 ∣ ((((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑠 ∧ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑡)}) |
194 | 193 | eleq1d 2823 |
. . . . . . . . 9
⊢ ((𝑢 = {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑠} ∧ 𝑣 = {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑡}) → ((𝑢 ∩ 𝑣) ∈ 𝐹 ↔ {𝑦 ∈ 𝑌 ∣ ((((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑠 ∧ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑡)} ∈ 𝐹)) |
195 | 190, 194 | syl5ibrcom 246 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑠 ∈ ℝ+ ∧ 𝑡 ∈ ℝ+))
→ ((𝑢 = {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑠} ∧ 𝑣 = {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑡}) → (𝑢 ∩ 𝑣) ∈ 𝐹)) |
196 | | vex 3436 |
. . . . . . . . . . 11
⊢ 𝑢 ∈ V |
197 | 196 | inex1 5241 |
. . . . . . . . . 10
⊢ (𝑢 ∩ 𝑣) ∈ V |
198 | 197 | pwid 4557 |
. . . . . . . . 9
⊢ (𝑢 ∩ 𝑣) ∈ 𝒫 (𝑢 ∩ 𝑣) |
199 | | inelcm 4398 |
. . . . . . . . 9
⊢ (((𝑢 ∩ 𝑣) ∈ 𝐹 ∧ (𝑢 ∩ 𝑣) ∈ 𝒫 (𝑢 ∩ 𝑣)) → (𝐹 ∩ 𝒫 (𝑢 ∩ 𝑣)) ≠ ∅) |
200 | 198, 199 | mpan2 688 |
. . . . . . . 8
⊢ ((𝑢 ∩ 𝑣) ∈ 𝐹 → (𝐹 ∩ 𝒫 (𝑢 ∩ 𝑣)) ≠ ∅) |
201 | 195, 200 | syl6 35 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑠 ∈ ℝ+ ∧ 𝑡 ∈ ℝ+))
→ ((𝑢 = {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑠} ∧ 𝑣 = {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑡}) → (𝐹 ∩ 𝒫 (𝑢 ∩ 𝑣)) ≠ ∅)) |
202 | 201 | rexlimdvva 3223 |
. . . . . 6
⊢ (𝜑 → (∃𝑠 ∈ ℝ+ ∃𝑡 ∈ ℝ+
(𝑢 = {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑠} ∧ 𝑣 = {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑡}) → (𝐹 ∩ 𝒫 (𝑢 ∩ 𝑣)) ≠ ∅)) |
203 | 162, 202 | syl5bir 242 |
. . . . 5
⊢ (𝜑 → ((∃𝑠 ∈ ℝ+
𝑢 = {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑠} ∧ ∃𝑡 ∈ ℝ+ 𝑣 = {𝑦 ∈ 𝑌 ∣ (((𝐴𝐷𝑦)↑2) − (𝑆↑2)) ≤ 𝑡}) → (𝐹 ∩ 𝒫 (𝑢 ∩ 𝑣)) ≠ ∅)) |
204 | 161, 203 | sylbid 239 |
. . . 4
⊢ (𝜑 → ((𝑢 ∈ 𝐹 ∧ 𝑣 ∈ 𝐹) → (𝐹 ∩ 𝒫 (𝑢 ∩ 𝑣)) ≠ ∅)) |
205 | 204 | ralrimivv 3122 |
. . 3
⊢ (𝜑 → ∀𝑢 ∈ 𝐹 ∀𝑣 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑢 ∩ 𝑣)) ≠ ∅) |
206 | 20, 138, 205 | 3jca 1127 |
. 2
⊢ (𝜑 → (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑢 ∈ 𝐹 ∀𝑣 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑢 ∩ 𝑣)) ≠ ∅)) |
207 | | isfbas 22980 |
. . 3
⊢ (𝑌 ∈ (LSubSp‘𝑈) → (𝐹 ∈ (fBas‘𝑌) ↔ (𝐹 ⊆ 𝒫 𝑌 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑢 ∈ 𝐹 ∀𝑣 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑢 ∩ 𝑣)) ≠ ∅)))) |
208 | 3, 207 | syl 17 |
. 2
⊢ (𝜑 → (𝐹 ∈ (fBas‘𝑌) ↔ (𝐹 ⊆ 𝒫 𝑌 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑢 ∈ 𝐹 ∀𝑣 ∈ 𝐹 (𝐹 ∩ 𝒫 (𝑢 ∩ 𝑣)) ≠ ∅)))) |
209 | 10, 206, 208 | mpbir2and 710 |
1
⊢ (𝜑 → 𝐹 ∈ (fBas‘𝑌)) |