| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bastg | Structured version Visualization version GIF version | ||
| Description: A member of a basis is a subset of the topology it generates. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| bastg | ⊢ (𝐵 ∈ 𝑉 → 𝐵 ⊆ (topGen‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
| 2 | vex 3484 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 3 | 2 | pwid 4622 | . . . . . . 7 ⊢ 𝑥 ∈ 𝒫 𝑥 |
| 4 | 3 | a1i 11 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝒫 𝑥) |
| 5 | 1, 4 | elind 4200 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ (𝐵 ∩ 𝒫 𝑥)) |
| 6 | elssuni 4937 | . . . . 5 ⊢ (𝑥 ∈ (𝐵 ∩ 𝒫 𝑥) → 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)) | |
| 7 | 5, 6 | syl 17 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)) |
| 8 | 7 | ex 412 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝑥 ∈ 𝐵 → 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥))) |
| 9 | eltg 22964 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝑥 ∈ (topGen‘𝐵) ↔ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥))) | |
| 10 | 8, 9 | sylibrd 259 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝑥 ∈ 𝐵 → 𝑥 ∈ (topGen‘𝐵))) |
| 11 | 10 | ssrdv 3989 | 1 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ⊆ (topGen‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∩ cin 3950 ⊆ wss 3951 𝒫 cpw 4600 ∪ cuni 4907 ‘cfv 6561 topGenctg 17482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-iota 6514 df-fun 6563 df-fv 6569 df-topgen 17488 |
| This theorem is referenced by: unitg 22974 tgclb 22977 tgtop 22980 tgidm 22987 tgss3 22993 bastop2 23001 elcls3 23091 ordtopn1 23202 ordtopn2 23203 leordtval2 23220 iocpnfordt 23223 icomnfordt 23224 iooordt 23225 tgcn 23260 tgcnp 23261 tgcmp 23409 2ndcsb 23457 2ndc1stc 23459 2ndcctbss 23463 2ndcomap 23466 ptopn 23591 xkoopn 23597 txopn 23610 txbasval 23614 ptpjcn 23619 flftg 24004 alexsubb 24054 blssopn 24508 iooretop 24786 bndth 24990 ovolicc2 25557 cncombf 25693 cnmbf 25694 ordtconnlem1 33923 elmbfmvol2 34269 dya2icoseg2 34280 iccllysconn 35255 rellysconn 35256 topjoin 36366 fnemeet2 36368 fnejoin1 36369 ontgval 36432 mblfinlem3 37666 mblfinlem4 37667 ismblfin 37668 cnambfre 37675 kelac2 43077 |
| Copyright terms: Public domain | W3C validator |