| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bastg | Structured version Visualization version GIF version | ||
| Description: A member of a basis is a subset of the topology it generates. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| bastg | ⊢ (𝐵 ∈ 𝑉 → 𝐵 ⊆ (topGen‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
| 2 | vex 3454 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 3 | 2 | pwid 4588 | . . . . . . 7 ⊢ 𝑥 ∈ 𝒫 𝑥 |
| 4 | 3 | a1i 11 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝒫 𝑥) |
| 5 | 1, 4 | elind 4166 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ (𝐵 ∩ 𝒫 𝑥)) |
| 6 | elssuni 4904 | . . . . 5 ⊢ (𝑥 ∈ (𝐵 ∩ 𝒫 𝑥) → 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)) | |
| 7 | 5, 6 | syl 17 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)) |
| 8 | 7 | ex 412 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝑥 ∈ 𝐵 → 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥))) |
| 9 | eltg 22851 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝑥 ∈ (topGen‘𝐵) ↔ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥))) | |
| 10 | 8, 9 | sylibrd 259 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝑥 ∈ 𝐵 → 𝑥 ∈ (topGen‘𝐵))) |
| 11 | 10 | ssrdv 3955 | 1 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ⊆ (topGen‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∩ cin 3916 ⊆ wss 3917 𝒫 cpw 4566 ∪ cuni 4874 ‘cfv 6514 topGenctg 17407 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-topgen 17413 |
| This theorem is referenced by: unitg 22861 tgclb 22864 tgtop 22867 tgidm 22874 tgss3 22880 bastop2 22888 elcls3 22977 ordtopn1 23088 ordtopn2 23089 leordtval2 23106 iocpnfordt 23109 icomnfordt 23110 iooordt 23111 tgcn 23146 tgcnp 23147 tgcmp 23295 2ndcsb 23343 2ndc1stc 23345 2ndcctbss 23349 2ndcomap 23352 ptopn 23477 xkoopn 23483 txopn 23496 txbasval 23500 ptpjcn 23505 flftg 23890 alexsubb 23940 blssopn 24390 iooretop 24660 bndth 24864 ovolicc2 25430 cncombf 25566 cnmbf 25567 ordtconnlem1 33921 elmbfmvol2 34265 dya2icoseg2 34276 iccllysconn 35244 rellysconn 35245 topjoin 36360 fnemeet2 36362 fnejoin1 36363 ontgval 36426 mblfinlem3 37660 mblfinlem4 37661 ismblfin 37662 cnambfre 37669 kelac2 43061 |
| Copyright terms: Public domain | W3C validator |