![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bastg | Structured version Visualization version GIF version |
Description: A member of a basis is a subset of the topology it generates. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
Ref | Expression |
---|---|
bastg | β’ (π΅ β π β π΅ β (topGenβπ΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . . . . 6 β’ ((π΅ β π β§ π₯ β π΅) β π₯ β π΅) | |
2 | vex 3478 | . . . . . . . 8 β’ π₯ β V | |
3 | 2 | pwid 4624 | . . . . . . 7 β’ π₯ β π« π₯ |
4 | 3 | a1i 11 | . . . . . 6 β’ ((π΅ β π β§ π₯ β π΅) β π₯ β π« π₯) |
5 | 1, 4 | elind 4194 | . . . . 5 β’ ((π΅ β π β§ π₯ β π΅) β π₯ β (π΅ β© π« π₯)) |
6 | elssuni 4941 | . . . . 5 β’ (π₯ β (π΅ β© π« π₯) β π₯ β βͺ (π΅ β© π« π₯)) | |
7 | 5, 6 | syl 17 | . . . 4 β’ ((π΅ β π β§ π₯ β π΅) β π₯ β βͺ (π΅ β© π« π₯)) |
8 | 7 | ex 413 | . . 3 β’ (π΅ β π β (π₯ β π΅ β π₯ β βͺ (π΅ β© π« π₯))) |
9 | eltg 22459 | . . 3 β’ (π΅ β π β (π₯ β (topGenβπ΅) β π₯ β βͺ (π΅ β© π« π₯))) | |
10 | 8, 9 | sylibrd 258 | . 2 β’ (π΅ β π β (π₯ β π΅ β π₯ β (topGenβπ΅))) |
11 | 10 | ssrdv 3988 | 1 β’ (π΅ β π β π΅ β (topGenβπ΅)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β wcel 2106 β© cin 3947 β wss 3948 π« cpw 4602 βͺ cuni 4908 βcfv 6543 topGenctg 17382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-topgen 17388 |
This theorem is referenced by: unitg 22469 tgclb 22472 tgtop 22475 tgidm 22482 tgss3 22488 bastop2 22496 elcls3 22586 ordtopn1 22697 ordtopn2 22698 leordtval2 22715 iocpnfordt 22718 icomnfordt 22719 iooordt 22720 tgcn 22755 tgcnp 22756 tgcmp 22904 2ndcsb 22952 2ndc1stc 22954 2ndcctbss 22958 2ndcomap 22961 ptopn 23086 xkoopn 23092 txopn 23105 txbasval 23109 ptpjcn 23114 flftg 23499 alexsubb 23549 blssopn 24003 iooretop 24281 bndth 24473 ovolicc2 25038 cncombf 25174 cnmbf 25175 ordtconnlem1 32899 elmbfmvol2 33261 dya2icoseg2 33272 iccllysconn 34236 rellysconn 34237 topjoin 35245 fnemeet2 35247 fnejoin1 35248 ontgval 35311 mblfinlem3 36522 mblfinlem4 36523 ismblfin 36524 cnambfre 36531 kelac2 41797 |
Copyright terms: Public domain | W3C validator |