| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bastg | Structured version Visualization version GIF version | ||
| Description: A member of a basis is a subset of the topology it generates. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| bastg | ⊢ (𝐵 ∈ 𝑉 → 𝐵 ⊆ (topGen‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
| 2 | vex 3451 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 3 | 2 | pwid 4585 | . . . . . . 7 ⊢ 𝑥 ∈ 𝒫 𝑥 |
| 4 | 3 | a1i 11 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝒫 𝑥) |
| 5 | 1, 4 | elind 4163 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ (𝐵 ∩ 𝒫 𝑥)) |
| 6 | elssuni 4901 | . . . . 5 ⊢ (𝑥 ∈ (𝐵 ∩ 𝒫 𝑥) → 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)) | |
| 7 | 5, 6 | syl 17 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)) |
| 8 | 7 | ex 412 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝑥 ∈ 𝐵 → 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥))) |
| 9 | eltg 22844 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝑥 ∈ (topGen‘𝐵) ↔ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥))) | |
| 10 | 8, 9 | sylibrd 259 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝑥 ∈ 𝐵 → 𝑥 ∈ (topGen‘𝐵))) |
| 11 | 10 | ssrdv 3952 | 1 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ⊆ (topGen‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∩ cin 3913 ⊆ wss 3914 𝒫 cpw 4563 ∪ cuni 4871 ‘cfv 6511 topGenctg 17400 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-topgen 17406 |
| This theorem is referenced by: unitg 22854 tgclb 22857 tgtop 22860 tgidm 22867 tgss3 22873 bastop2 22881 elcls3 22970 ordtopn1 23081 ordtopn2 23082 leordtval2 23099 iocpnfordt 23102 icomnfordt 23103 iooordt 23104 tgcn 23139 tgcnp 23140 tgcmp 23288 2ndcsb 23336 2ndc1stc 23338 2ndcctbss 23342 2ndcomap 23345 ptopn 23470 xkoopn 23476 txopn 23489 txbasval 23493 ptpjcn 23498 flftg 23883 alexsubb 23933 blssopn 24383 iooretop 24653 bndth 24857 ovolicc2 25423 cncombf 25559 cnmbf 25560 ordtconnlem1 33914 elmbfmvol2 34258 dya2icoseg2 34269 iccllysconn 35237 rellysconn 35238 topjoin 36353 fnemeet2 36355 fnejoin1 36356 ontgval 36419 mblfinlem3 37653 mblfinlem4 37654 ismblfin 37655 cnambfre 37662 kelac2 43054 |
| Copyright terms: Public domain | W3C validator |