![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bastg | Structured version Visualization version GIF version |
Description: A member of a basis is a subset of the topology it generates. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
Ref | Expression |
---|---|
bastg | ⊢ (𝐵 ∈ 𝑉 → 𝐵 ⊆ (topGen‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
2 | vex 3492 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
3 | 2 | pwid 4644 | . . . . . . 7 ⊢ 𝑥 ∈ 𝒫 𝑥 |
4 | 3 | a1i 11 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝒫 𝑥) |
5 | 1, 4 | elind 4223 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ (𝐵 ∩ 𝒫 𝑥)) |
6 | elssuni 4961 | . . . . 5 ⊢ (𝑥 ∈ (𝐵 ∩ 𝒫 𝑥) → 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)) |
8 | 7 | ex 412 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝑥 ∈ 𝐵 → 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥))) |
9 | eltg 22985 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝑥 ∈ (topGen‘𝐵) ↔ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥))) | |
10 | 8, 9 | sylibrd 259 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝑥 ∈ 𝐵 → 𝑥 ∈ (topGen‘𝐵))) |
11 | 10 | ssrdv 4014 | 1 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ⊆ (topGen‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∩ cin 3975 ⊆ wss 3976 𝒫 cpw 4622 ∪ cuni 4931 ‘cfv 6573 topGenctg 17497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-topgen 17503 |
This theorem is referenced by: unitg 22995 tgclb 22998 tgtop 23001 tgidm 23008 tgss3 23014 bastop2 23022 elcls3 23112 ordtopn1 23223 ordtopn2 23224 leordtval2 23241 iocpnfordt 23244 icomnfordt 23245 iooordt 23246 tgcn 23281 tgcnp 23282 tgcmp 23430 2ndcsb 23478 2ndc1stc 23480 2ndcctbss 23484 2ndcomap 23487 ptopn 23612 xkoopn 23618 txopn 23631 txbasval 23635 ptpjcn 23640 flftg 24025 alexsubb 24075 blssopn 24529 iooretop 24807 bndth 25009 ovolicc2 25576 cncombf 25712 cnmbf 25713 ordtconnlem1 33870 elmbfmvol2 34232 dya2icoseg2 34243 iccllysconn 35218 rellysconn 35219 topjoin 36331 fnemeet2 36333 fnejoin1 36334 ontgval 36397 mblfinlem3 37619 mblfinlem4 37620 ismblfin 37621 cnambfre 37628 kelac2 43022 |
Copyright terms: Public domain | W3C validator |