MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bastg Structured version   Visualization version   GIF version

Theorem bastg 22860
Description: A member of a basis is a subset of the topology it generates. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.)
Assertion
Ref Expression
bastg (𝐵𝑉𝐵 ⊆ (topGen‘𝐵))

Proof of Theorem bastg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . 6 ((𝐵𝑉𝑥𝐵) → 𝑥𝐵)
2 vex 3454 . . . . . . . 8 𝑥 ∈ V
32pwid 4588 . . . . . . 7 𝑥 ∈ 𝒫 𝑥
43a1i 11 . . . . . 6 ((𝐵𝑉𝑥𝐵) → 𝑥 ∈ 𝒫 𝑥)
51, 4elind 4166 . . . . 5 ((𝐵𝑉𝑥𝐵) → 𝑥 ∈ (𝐵 ∩ 𝒫 𝑥))
6 elssuni 4904 . . . . 5 (𝑥 ∈ (𝐵 ∩ 𝒫 𝑥) → 𝑥 (𝐵 ∩ 𝒫 𝑥))
75, 6syl 17 . . . 4 ((𝐵𝑉𝑥𝐵) → 𝑥 (𝐵 ∩ 𝒫 𝑥))
87ex 412 . . 3 (𝐵𝑉 → (𝑥𝐵𝑥 (𝐵 ∩ 𝒫 𝑥)))
9 eltg 22851 . . 3 (𝐵𝑉 → (𝑥 ∈ (topGen‘𝐵) ↔ 𝑥 (𝐵 ∩ 𝒫 𝑥)))
108, 9sylibrd 259 . 2 (𝐵𝑉 → (𝑥𝐵𝑥 ∈ (topGen‘𝐵)))
1110ssrdv 3955 1 (𝐵𝑉𝐵 ⊆ (topGen‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  cin 3916  wss 3917  𝒫 cpw 4566   cuni 4874  cfv 6514  topGenctg 17407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-topgen 17413
This theorem is referenced by:  unitg  22861  tgclb  22864  tgtop  22867  tgidm  22874  tgss3  22880  bastop2  22888  elcls3  22977  ordtopn1  23088  ordtopn2  23089  leordtval2  23106  iocpnfordt  23109  icomnfordt  23110  iooordt  23111  tgcn  23146  tgcnp  23147  tgcmp  23295  2ndcsb  23343  2ndc1stc  23345  2ndcctbss  23349  2ndcomap  23352  ptopn  23477  xkoopn  23483  txopn  23496  txbasval  23500  ptpjcn  23505  flftg  23890  alexsubb  23940  blssopn  24390  iooretop  24660  bndth  24864  ovolicc2  25430  cncombf  25566  cnmbf  25567  ordtconnlem1  33921  elmbfmvol2  34265  dya2icoseg2  34276  iccllysconn  35244  rellysconn  35245  topjoin  36360  fnemeet2  36362  fnejoin1  36363  ontgval  36426  mblfinlem3  37660  mblfinlem4  37661  ismblfin  37662  cnambfre  37669  kelac2  43061
  Copyright terms: Public domain W3C validator