| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bastg | Structured version Visualization version GIF version | ||
| Description: A member of a basis is a subset of the topology it generates. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| bastg | ⊢ (𝐵 ∈ 𝑉 → 𝐵 ⊆ (topGen‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
| 2 | vex 3442 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 3 | 2 | pwid 4575 | . . . . . . 7 ⊢ 𝑥 ∈ 𝒫 𝑥 |
| 4 | 3 | a1i 11 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝒫 𝑥) |
| 5 | 1, 4 | elind 4153 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ (𝐵 ∩ 𝒫 𝑥)) |
| 6 | elssuni 4891 | . . . . 5 ⊢ (𝑥 ∈ (𝐵 ∩ 𝒫 𝑥) → 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)) | |
| 7 | 5, 6 | syl 17 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)) |
| 8 | 7 | ex 412 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝑥 ∈ 𝐵 → 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥))) |
| 9 | eltg 22860 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝑥 ∈ (topGen‘𝐵) ↔ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥))) | |
| 10 | 8, 9 | sylibrd 259 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝑥 ∈ 𝐵 → 𝑥 ∈ (topGen‘𝐵))) |
| 11 | 10 | ssrdv 3943 | 1 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ⊆ (topGen‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∩ cin 3904 ⊆ wss 3905 𝒫 cpw 4553 ∪ cuni 4861 ‘cfv 6486 topGenctg 17359 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-topgen 17365 |
| This theorem is referenced by: unitg 22870 tgclb 22873 tgtop 22876 tgidm 22883 tgss3 22889 bastop2 22897 elcls3 22986 ordtopn1 23097 ordtopn2 23098 leordtval2 23115 iocpnfordt 23118 icomnfordt 23119 iooordt 23120 tgcn 23155 tgcnp 23156 tgcmp 23304 2ndcsb 23352 2ndc1stc 23354 2ndcctbss 23358 2ndcomap 23361 ptopn 23486 xkoopn 23492 txopn 23505 txbasval 23509 ptpjcn 23514 flftg 23899 alexsubb 23949 blssopn 24399 iooretop 24669 bndth 24873 ovolicc2 25439 cncombf 25575 cnmbf 25576 ordtconnlem1 33890 elmbfmvol2 34234 dya2icoseg2 34245 iccllysconn 35222 rellysconn 35223 topjoin 36338 fnemeet2 36340 fnejoin1 36341 ontgval 36404 mblfinlem3 37638 mblfinlem4 37639 ismblfin 37640 cnambfre 37647 kelac2 43038 |
| Copyright terms: Public domain | W3C validator |