Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bastg | Structured version Visualization version GIF version |
Description: A member of a basis is a subset of the topology it generates. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
Ref | Expression |
---|---|
bastg | ⊢ (𝐵 ∈ 𝑉 → 𝐵 ⊆ (topGen‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
2 | vex 3426 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
3 | 2 | pwid 4554 | . . . . . . 7 ⊢ 𝑥 ∈ 𝒫 𝑥 |
4 | 3 | a1i 11 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝒫 𝑥) |
5 | 1, 4 | elind 4124 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ (𝐵 ∩ 𝒫 𝑥)) |
6 | elssuni 4868 | . . . . 5 ⊢ (𝑥 ∈ (𝐵 ∩ 𝒫 𝑥) → 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)) |
8 | 7 | ex 412 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝑥 ∈ 𝐵 → 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥))) |
9 | eltg 22015 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝑥 ∈ (topGen‘𝐵) ↔ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥))) | |
10 | 8, 9 | sylibrd 258 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝑥 ∈ 𝐵 → 𝑥 ∈ (topGen‘𝐵))) |
11 | 10 | ssrdv 3923 | 1 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ⊆ (topGen‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∩ cin 3882 ⊆ wss 3883 𝒫 cpw 4530 ∪ cuni 4836 ‘cfv 6418 topGenctg 17065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-topgen 17071 |
This theorem is referenced by: unitg 22025 tgclb 22028 tgtop 22031 tgidm 22038 tgss3 22044 bastop2 22052 elcls3 22142 ordtopn1 22253 ordtopn2 22254 leordtval2 22271 iocpnfordt 22274 icomnfordt 22275 iooordt 22276 tgcn 22311 tgcnp 22312 tgcmp 22460 2ndcsb 22508 2ndc1stc 22510 2ndcctbss 22514 2ndcomap 22517 ptopn 22642 xkoopn 22648 txopn 22661 txbasval 22665 ptpjcn 22670 flftg 23055 alexsubb 23105 blssopn 23557 iooretop 23835 bndth 24027 ovolicc2 24591 cncombf 24727 cnmbf 24728 ordtconnlem1 31776 elmbfmvol2 32134 dya2icoseg2 32145 iccllysconn 33112 rellysconn 33113 topjoin 34481 fnemeet2 34483 fnejoin1 34484 ontgval 34547 mblfinlem3 35743 mblfinlem4 35744 ismblfin 35745 cnambfre 35752 kelac2 40806 |
Copyright terms: Public domain | W3C validator |