MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1fval1lem Structured version   Visualization version   GIF version

Theorem evl1fval1lem 22217
Description: Lemma for evl1fval1 22218. (Contributed by AV, 11-Sep-2019.)
Hypotheses
Ref Expression
evl1fval1.q 𝑄 = (eval1𝑅)
evl1fval1.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
evl1fval1lem (𝑅𝑉𝑄 = (𝑅 evalSub1 𝐵))

Proof of Theorem evl1fval1lem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (eval1𝑅) = (eval1𝑅)
2 eqid 2729 . . 3 (1o eval 𝑅) = (1o eval 𝑅)
3 evl1fval1.b . . 3 𝐵 = (Base‘𝑅)
41, 2, 3evl1fval 22215 . 2 (eval1𝑅) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (1o eval 𝑅))
5 evl1fval1.q . . 3 𝑄 = (eval1𝑅)
65a1i 11 . 2 (𝑅𝑉𝑄 = (eval1𝑅))
73fvexi 6872 . . . . 5 𝐵 ∈ V
87pwid 4585 . . . 4 𝐵 ∈ 𝒫 𝐵
9 eqid 2729 . . . . 5 (𝑅 evalSub1 𝐵) = (𝑅 evalSub1 𝐵)
10 eqid 2729 . . . . 5 (1o evalSub 𝑅) = (1o evalSub 𝑅)
119, 10, 3evls1fval 22206 . . . 4 ((𝑅𝑉𝐵 ∈ 𝒫 𝐵) → (𝑅 evalSub1 𝐵) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑅)‘𝐵)))
128, 11mpan2 691 . . 3 (𝑅𝑉 → (𝑅 evalSub1 𝐵) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑅)‘𝐵)))
132, 3evlval 22002 . . . . 5 (1o eval 𝑅) = ((1o evalSub 𝑅)‘𝐵)
1413eqcomi 2738 . . . 4 ((1o evalSub 𝑅)‘𝐵) = (1o eval 𝑅)
1514coeq2i 5824 . . 3 ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑅)‘𝐵)) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (1o eval 𝑅))
1612, 15eqtrdi 2780 . 2 (𝑅𝑉 → (𝑅 evalSub1 𝐵) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (1o eval 𝑅)))
174, 6, 163eqtr4a 2790 1 (𝑅𝑉𝑄 = (𝑅 evalSub1 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  𝒫 cpw 4563  {csn 4589  cmpt 5188   × cxp 5636  ccom 5642  cfv 6511  (class class class)co 7387  1oc1o 8427  m cmap 8799  Basecbs 17179   evalSub ces 21979   eval cevl 21980   evalSub1 ces1 22200  eval1ce1 22201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-evls 21981  df-evl 21982  df-evls1 22202  df-evl1 22203
This theorem is referenced by:  evl1fval1  22218
  Copyright terms: Public domain W3C validator