MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1fval1lem Structured version   Visualization version   GIF version

Theorem evl1fval1lem 22240
Description: Lemma for evl1fval1 22241. (Contributed by AV, 11-Sep-2019.)
Hypotheses
Ref Expression
evl1fval1.q 𝑄 = (eval1𝑅)
evl1fval1.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
evl1fval1lem (𝑅𝑉𝑄 = (𝑅 evalSub1 𝐵))

Proof of Theorem evl1fval1lem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 (eval1𝑅) = (eval1𝑅)
2 eqid 2731 . . 3 (1o eval 𝑅) = (1o eval 𝑅)
3 evl1fval1.b . . 3 𝐵 = (Base‘𝑅)
41, 2, 3evl1fval 22238 . 2 (eval1𝑅) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (1o eval 𝑅))
5 evl1fval1.q . . 3 𝑄 = (eval1𝑅)
65a1i 11 . 2 (𝑅𝑉𝑄 = (eval1𝑅))
73fvexi 6831 . . . . 5 𝐵 ∈ V
87pwid 4567 . . . 4 𝐵 ∈ 𝒫 𝐵
9 eqid 2731 . . . . 5 (𝑅 evalSub1 𝐵) = (𝑅 evalSub1 𝐵)
10 eqid 2731 . . . . 5 (1o evalSub 𝑅) = (1o evalSub 𝑅)
119, 10, 3evls1fval 22229 . . . 4 ((𝑅𝑉𝐵 ∈ 𝒫 𝐵) → (𝑅 evalSub1 𝐵) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑅)‘𝐵)))
128, 11mpan2 691 . . 3 (𝑅𝑉 → (𝑅 evalSub1 𝐵) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑅)‘𝐵)))
132, 3evlval 22025 . . . . 5 (1o eval 𝑅) = ((1o evalSub 𝑅)‘𝐵)
1413eqcomi 2740 . . . 4 ((1o evalSub 𝑅)‘𝐵) = (1o eval 𝑅)
1514coeq2i 5795 . . 3 ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑅)‘𝐵)) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (1o eval 𝑅))
1612, 15eqtrdi 2782 . 2 (𝑅𝑉 → (𝑅 evalSub1 𝐵) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (1o eval 𝑅)))
174, 6, 163eqtr4a 2792 1 (𝑅𝑉𝑄 = (𝑅 evalSub1 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  𝒫 cpw 4545  {csn 4571  cmpt 5167   × cxp 5609  ccom 5615  cfv 6476  (class class class)co 7341  1oc1o 8373  m cmap 8745  Basecbs 17115   evalSub ces 22002   eval cevl 22003   evalSub1 ces1 22223  eval1ce1 22224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-evls 22004  df-evl 22005  df-evls1 22225  df-evl1 22226
This theorem is referenced by:  evl1fval1  22241
  Copyright terms: Public domain W3C validator