![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evl1fval1lem | Structured version Visualization version GIF version |
Description: Lemma for evl1fval1 22360. (Contributed by AV, 11-Sep-2019.) |
Ref | Expression |
---|---|
evl1fval1.q | ⊢ 𝑄 = (eval1‘𝑅) |
evl1fval1.b | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
evl1fval1lem | ⊢ (𝑅 ∈ 𝑉 → 𝑄 = (𝑅 evalSub1 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ (eval1‘𝑅) = (eval1‘𝑅) | |
2 | eqid 2737 | . . 3 ⊢ (1o eval 𝑅) = (1o eval 𝑅) | |
3 | evl1fval1.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
4 | 1, 2, 3 | evl1fval 22357 | . 2 ⊢ (eval1‘𝑅) = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ (1o eval 𝑅)) |
5 | evl1fval1.q | . . 3 ⊢ 𝑄 = (eval1‘𝑅) | |
6 | 5 | a1i 11 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝑄 = (eval1‘𝑅)) |
7 | 3 | fvexi 6928 | . . . . 5 ⊢ 𝐵 ∈ V |
8 | 7 | pwid 4630 | . . . 4 ⊢ 𝐵 ∈ 𝒫 𝐵 |
9 | eqid 2737 | . . . . 5 ⊢ (𝑅 evalSub1 𝐵) = (𝑅 evalSub1 𝐵) | |
10 | eqid 2737 | . . . . 5 ⊢ (1o evalSub 𝑅) = (1o evalSub 𝑅) | |
11 | 9, 10, 3 | evls1fval 22348 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐵 ∈ 𝒫 𝐵) → (𝑅 evalSub1 𝐵) = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑅)‘𝐵))) |
12 | 8, 11 | mpan2 691 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (𝑅 evalSub1 𝐵) = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑅)‘𝐵))) |
13 | 2, 3 | evlval 22146 | . . . . 5 ⊢ (1o eval 𝑅) = ((1o evalSub 𝑅)‘𝐵) |
14 | 13 | eqcomi 2746 | . . . 4 ⊢ ((1o evalSub 𝑅)‘𝐵) = (1o eval 𝑅) |
15 | 14 | coeq2i 5878 | . . 3 ⊢ ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑅)‘𝐵)) = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ (1o eval 𝑅)) |
16 | 12, 15 | eqtrdi 2793 | . 2 ⊢ (𝑅 ∈ 𝑉 → (𝑅 evalSub1 𝐵) = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ (1o eval 𝑅))) |
17 | 4, 6, 16 | 3eqtr4a 2803 | 1 ⊢ (𝑅 ∈ 𝑉 → 𝑄 = (𝑅 evalSub1 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 𝒫 cpw 4608 {csn 4634 ↦ cmpt 5234 × cxp 5691 ∘ ccom 5697 ‘cfv 6569 (class class class)co 7438 1oc1o 8507 ↑m cmap 8874 Basecbs 17254 evalSub ces 22123 eval cevl 22124 evalSub1 ces1 22342 eval1ce1 22343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-evls 22125 df-evl 22126 df-evls1 22344 df-evl1 22345 |
This theorem is referenced by: evl1fval1 22360 |
Copyright terms: Public domain | W3C validator |