| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evl1fval1lem | Structured version Visualization version GIF version | ||
| Description: Lemma for evl1fval1 22282. (Contributed by AV, 11-Sep-2019.) |
| Ref | Expression |
|---|---|
| evl1fval1.q | ⊢ 𝑄 = (eval1‘𝑅) |
| evl1fval1.b | ⊢ 𝐵 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| evl1fval1lem | ⊢ (𝑅 ∈ 𝑉 → 𝑄 = (𝑅 evalSub1 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . 3 ⊢ (eval1‘𝑅) = (eval1‘𝑅) | |
| 2 | eqid 2734 | . . 3 ⊢ (1o eval 𝑅) = (1o eval 𝑅) | |
| 3 | evl1fval1.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 4 | 1, 2, 3 | evl1fval 22279 | . 2 ⊢ (eval1‘𝑅) = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ (1o eval 𝑅)) |
| 5 | evl1fval1.q | . . 3 ⊢ 𝑄 = (eval1‘𝑅) | |
| 6 | 5 | a1i 11 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝑄 = (eval1‘𝑅)) |
| 7 | 3 | fvexi 6899 | . . . . 5 ⊢ 𝐵 ∈ V |
| 8 | 7 | pwid 4602 | . . . 4 ⊢ 𝐵 ∈ 𝒫 𝐵 |
| 9 | eqid 2734 | . . . . 5 ⊢ (𝑅 evalSub1 𝐵) = (𝑅 evalSub1 𝐵) | |
| 10 | eqid 2734 | . . . . 5 ⊢ (1o evalSub 𝑅) = (1o evalSub 𝑅) | |
| 11 | 9, 10, 3 | evls1fval 22270 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐵 ∈ 𝒫 𝐵) → (𝑅 evalSub1 𝐵) = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑅)‘𝐵))) |
| 12 | 8, 11 | mpan2 691 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (𝑅 evalSub1 𝐵) = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑅)‘𝐵))) |
| 13 | 2, 3 | evlval 22066 | . . . . 5 ⊢ (1o eval 𝑅) = ((1o evalSub 𝑅)‘𝐵) |
| 14 | 13 | eqcomi 2743 | . . . 4 ⊢ ((1o evalSub 𝑅)‘𝐵) = (1o eval 𝑅) |
| 15 | 14 | coeq2i 5851 | . . 3 ⊢ ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑅)‘𝐵)) = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ (1o eval 𝑅)) |
| 16 | 12, 15 | eqtrdi 2785 | . 2 ⊢ (𝑅 ∈ 𝑉 → (𝑅 evalSub1 𝐵) = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ (1o eval 𝑅))) |
| 17 | 4, 6, 16 | 3eqtr4a 2795 | 1 ⊢ (𝑅 ∈ 𝑉 → 𝑄 = (𝑅 evalSub1 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 𝒫 cpw 4580 {csn 4606 ↦ cmpt 5205 × cxp 5663 ∘ ccom 5669 ‘cfv 6540 (class class class)co 7412 1oc1o 8480 ↑m cmap 8847 Basecbs 17228 evalSub ces 22043 eval cevl 22044 evalSub1 ces1 22264 eval1ce1 22265 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7415 df-oprab 7416 df-mpo 7417 df-evls 22045 df-evl 22046 df-evls1 22266 df-evl1 22267 |
| This theorem is referenced by: evl1fval1 22282 |
| Copyright terms: Public domain | W3C validator |