MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1fval1lem Structured version   Visualization version   GIF version

Theorem evl1fval1lem 21406
Description: Lemma for evl1fval1 21407. (Contributed by AV, 11-Sep-2019.)
Hypotheses
Ref Expression
evl1fval1.q 𝑄 = (eval1𝑅)
evl1fval1.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
evl1fval1lem (𝑅𝑉𝑄 = (𝑅 evalSub1 𝐵))

Proof of Theorem evl1fval1lem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 (eval1𝑅) = (eval1𝑅)
2 eqid 2738 . . 3 (1o eval 𝑅) = (1o eval 𝑅)
3 evl1fval1.b . . 3 𝐵 = (Base‘𝑅)
41, 2, 3evl1fval 21404 . 2 (eval1𝑅) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (1o eval 𝑅))
5 evl1fval1.q . . 3 𝑄 = (eval1𝑅)
65a1i 11 . 2 (𝑅𝑉𝑄 = (eval1𝑅))
73fvexi 6770 . . . . 5 𝐵 ∈ V
87pwid 4554 . . . 4 𝐵 ∈ 𝒫 𝐵
9 eqid 2738 . . . . 5 (𝑅 evalSub1 𝐵) = (𝑅 evalSub1 𝐵)
10 eqid 2738 . . . . 5 (1o evalSub 𝑅) = (1o evalSub 𝑅)
119, 10, 3evls1fval 21395 . . . 4 ((𝑅𝑉𝐵 ∈ 𝒫 𝐵) → (𝑅 evalSub1 𝐵) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑅)‘𝐵)))
128, 11mpan2 687 . . 3 (𝑅𝑉 → (𝑅 evalSub1 𝐵) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑅)‘𝐵)))
132, 3evlval 21215 . . . . 5 (1o eval 𝑅) = ((1o evalSub 𝑅)‘𝐵)
1413eqcomi 2747 . . . 4 ((1o evalSub 𝑅)‘𝐵) = (1o eval 𝑅)
1514coeq2i 5758 . . 3 ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑅)‘𝐵)) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (1o eval 𝑅))
1612, 15eqtrdi 2795 . 2 (𝑅𝑉 → (𝑅 evalSub1 𝐵) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (1o eval 𝑅)))
174, 6, 163eqtr4a 2805 1 (𝑅𝑉𝑄 = (𝑅 evalSub1 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  𝒫 cpw 4530  {csn 4558  cmpt 5153   × cxp 5578  ccom 5584  cfv 6418  (class class class)co 7255  1oc1o 8260  m cmap 8573  Basecbs 16840   evalSub ces 21190   eval cevl 21191   evalSub1 ces1 21389  eval1ce1 21390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-evls 21192  df-evl 21193  df-evls1 21391  df-evl1 21392
This theorem is referenced by:  evl1fval1  21407
  Copyright terms: Public domain W3C validator