![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evl1fval1lem | Structured version Visualization version GIF version |
Description: Lemma for evl1fval1 22358. (Contributed by AV, 11-Sep-2019.) |
Ref | Expression |
---|---|
evl1fval1.q | ⊢ 𝑄 = (eval1‘𝑅) |
evl1fval1.b | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
evl1fval1lem | ⊢ (𝑅 ∈ 𝑉 → 𝑄 = (𝑅 evalSub1 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (eval1‘𝑅) = (eval1‘𝑅) | |
2 | eqid 2740 | . . 3 ⊢ (1o eval 𝑅) = (1o eval 𝑅) | |
3 | evl1fval1.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
4 | 1, 2, 3 | evl1fval 22355 | . 2 ⊢ (eval1‘𝑅) = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ (1o eval 𝑅)) |
5 | evl1fval1.q | . . 3 ⊢ 𝑄 = (eval1‘𝑅) | |
6 | 5 | a1i 11 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝑄 = (eval1‘𝑅)) |
7 | 3 | fvexi 6936 | . . . . 5 ⊢ 𝐵 ∈ V |
8 | 7 | pwid 4644 | . . . 4 ⊢ 𝐵 ∈ 𝒫 𝐵 |
9 | eqid 2740 | . . . . 5 ⊢ (𝑅 evalSub1 𝐵) = (𝑅 evalSub1 𝐵) | |
10 | eqid 2740 | . . . . 5 ⊢ (1o evalSub 𝑅) = (1o evalSub 𝑅) | |
11 | 9, 10, 3 | evls1fval 22346 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐵 ∈ 𝒫 𝐵) → (𝑅 evalSub1 𝐵) = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑅)‘𝐵))) |
12 | 8, 11 | mpan2 690 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (𝑅 evalSub1 𝐵) = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑅)‘𝐵))) |
13 | 2, 3 | evlval 22144 | . . . . 5 ⊢ (1o eval 𝑅) = ((1o evalSub 𝑅)‘𝐵) |
14 | 13 | eqcomi 2749 | . . . 4 ⊢ ((1o evalSub 𝑅)‘𝐵) = (1o eval 𝑅) |
15 | 14 | coeq2i 5885 | . . 3 ⊢ ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑅)‘𝐵)) = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ (1o eval 𝑅)) |
16 | 12, 15 | eqtrdi 2796 | . 2 ⊢ (𝑅 ∈ 𝑉 → (𝑅 evalSub1 𝐵) = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ (1o eval 𝑅))) |
17 | 4, 6, 16 | 3eqtr4a 2806 | 1 ⊢ (𝑅 ∈ 𝑉 → 𝑄 = (𝑅 evalSub1 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 𝒫 cpw 4622 {csn 4648 ↦ cmpt 5249 × cxp 5698 ∘ ccom 5704 ‘cfv 6575 (class class class)co 7450 1oc1o 8517 ↑m cmap 8886 Basecbs 17260 evalSub ces 22121 eval cevl 22122 evalSub1 ces1 22340 eval1ce1 22341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-ov 7453 df-oprab 7454 df-mpo 7455 df-evls 22123 df-evl 22124 df-evls1 22342 df-evl1 22343 |
This theorem is referenced by: evl1fval1 22358 |
Copyright terms: Public domain | W3C validator |