![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evl1fval1lem | Structured version Visualization version GIF version |
Description: Lemma for evl1fval1 22224. (Contributed by AV, 11-Sep-2019.) |
Ref | Expression |
---|---|
evl1fval1.q | ⊢ 𝑄 = (eval1‘𝑅) |
evl1fval1.b | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
evl1fval1lem | ⊢ (𝑅 ∈ 𝑉 → 𝑄 = (𝑅 evalSub1 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2727 | . . 3 ⊢ (eval1‘𝑅) = (eval1‘𝑅) | |
2 | eqid 2727 | . . 3 ⊢ (1o eval 𝑅) = (1o eval 𝑅) | |
3 | evl1fval1.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
4 | 1, 2, 3 | evl1fval 22221 | . 2 ⊢ (eval1‘𝑅) = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ (1o eval 𝑅)) |
5 | evl1fval1.q | . . 3 ⊢ 𝑄 = (eval1‘𝑅) | |
6 | 5 | a1i 11 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝑄 = (eval1‘𝑅)) |
7 | 3 | fvexi 6905 | . . . . 5 ⊢ 𝐵 ∈ V |
8 | 7 | pwid 4620 | . . . 4 ⊢ 𝐵 ∈ 𝒫 𝐵 |
9 | eqid 2727 | . . . . 5 ⊢ (𝑅 evalSub1 𝐵) = (𝑅 evalSub1 𝐵) | |
10 | eqid 2727 | . . . . 5 ⊢ (1o evalSub 𝑅) = (1o evalSub 𝑅) | |
11 | 9, 10, 3 | evls1fval 22212 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐵 ∈ 𝒫 𝐵) → (𝑅 evalSub1 𝐵) = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑅)‘𝐵))) |
12 | 8, 11 | mpan2 690 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (𝑅 evalSub1 𝐵) = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑅)‘𝐵))) |
13 | 2, 3 | evlval 22019 | . . . . 5 ⊢ (1o eval 𝑅) = ((1o evalSub 𝑅)‘𝐵) |
14 | 13 | eqcomi 2736 | . . . 4 ⊢ ((1o evalSub 𝑅)‘𝐵) = (1o eval 𝑅) |
15 | 14 | coeq2i 5857 | . . 3 ⊢ ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑅)‘𝐵)) = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ (1o eval 𝑅)) |
16 | 12, 15 | eqtrdi 2783 | . 2 ⊢ (𝑅 ∈ 𝑉 → (𝑅 evalSub1 𝐵) = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ (1o eval 𝑅))) |
17 | 4, 6, 16 | 3eqtr4a 2793 | 1 ⊢ (𝑅 ∈ 𝑉 → 𝑄 = (𝑅 evalSub1 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 𝒫 cpw 4598 {csn 4624 ↦ cmpt 5225 × cxp 5670 ∘ ccom 5676 ‘cfv 6542 (class class class)co 7414 1oc1o 8471 ↑m cmap 8834 Basecbs 17165 evalSub ces 21994 eval cevl 21995 evalSub1 ces1 22206 eval1ce1 22207 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-evls 21996 df-evl 21997 df-evls1 22208 df-evl1 22209 |
This theorem is referenced by: evl1fval1 22224 |
Copyright terms: Public domain | W3C validator |