MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1fval1lem Structured version   Visualization version   GIF version

Theorem evl1fval1lem 22223
Description: Lemma for evl1fval1 22224. (Contributed by AV, 11-Sep-2019.)
Hypotheses
Ref Expression
evl1fval1.q 𝑄 = (eval1𝑅)
evl1fval1.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
evl1fval1lem (𝑅𝑉𝑄 = (𝑅 evalSub1 𝐵))

Proof of Theorem evl1fval1lem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . 3 (eval1𝑅) = (eval1𝑅)
2 eqid 2730 . . 3 (1o eval 𝑅) = (1o eval 𝑅)
3 evl1fval1.b . . 3 𝐵 = (Base‘𝑅)
41, 2, 3evl1fval 22221 . 2 (eval1𝑅) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (1o eval 𝑅))
5 evl1fval1.q . . 3 𝑄 = (eval1𝑅)
65a1i 11 . 2 (𝑅𝑉𝑄 = (eval1𝑅))
73fvexi 6879 . . . . 5 𝐵 ∈ V
87pwid 4593 . . . 4 𝐵 ∈ 𝒫 𝐵
9 eqid 2730 . . . . 5 (𝑅 evalSub1 𝐵) = (𝑅 evalSub1 𝐵)
10 eqid 2730 . . . . 5 (1o evalSub 𝑅) = (1o evalSub 𝑅)
119, 10, 3evls1fval 22212 . . . 4 ((𝑅𝑉𝐵 ∈ 𝒫 𝐵) → (𝑅 evalSub1 𝐵) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑅)‘𝐵)))
128, 11mpan2 691 . . 3 (𝑅𝑉 → (𝑅 evalSub1 𝐵) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑅)‘𝐵)))
132, 3evlval 22008 . . . . 5 (1o eval 𝑅) = ((1o evalSub 𝑅)‘𝐵)
1413eqcomi 2739 . . . 4 ((1o evalSub 𝑅)‘𝐵) = (1o eval 𝑅)
1514coeq2i 5832 . . 3 ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑅)‘𝐵)) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (1o eval 𝑅))
1612, 15eqtrdi 2781 . 2 (𝑅𝑉 → (𝑅 evalSub1 𝐵) = ((𝑥 ∈ (𝐵m (𝐵m 1o)) ↦ (𝑥 ∘ (𝑦𝐵 ↦ (1o × {𝑦})))) ∘ (1o eval 𝑅)))
174, 6, 163eqtr4a 2791 1 (𝑅𝑉𝑄 = (𝑅 evalSub1 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  𝒫 cpw 4571  {csn 4597  cmpt 5196   × cxp 5644  ccom 5650  cfv 6519  (class class class)co 7394  1oc1o 8436  m cmap 8803  Basecbs 17185   evalSub ces 21985   eval cevl 21986   evalSub1 ces1 22206  eval1ce1 22207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-ov 7397  df-oprab 7398  df-mpo 7399  df-evls 21987  df-evl 21988  df-evls1 22208  df-evl1 22209
This theorem is referenced by:  evl1fval1  22224
  Copyright terms: Public domain W3C validator