Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > evl1fval1lem | Structured version Visualization version GIF version |
Description: Lemma for evl1fval1 21407. (Contributed by AV, 11-Sep-2019.) |
Ref | Expression |
---|---|
evl1fval1.q | ⊢ 𝑄 = (eval1‘𝑅) |
evl1fval1.b | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
evl1fval1lem | ⊢ (𝑅 ∈ 𝑉 → 𝑄 = (𝑅 evalSub1 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (eval1‘𝑅) = (eval1‘𝑅) | |
2 | eqid 2738 | . . 3 ⊢ (1o eval 𝑅) = (1o eval 𝑅) | |
3 | evl1fval1.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
4 | 1, 2, 3 | evl1fval 21404 | . 2 ⊢ (eval1‘𝑅) = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ (1o eval 𝑅)) |
5 | evl1fval1.q | . . 3 ⊢ 𝑄 = (eval1‘𝑅) | |
6 | 5 | a1i 11 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝑄 = (eval1‘𝑅)) |
7 | 3 | fvexi 6770 | . . . . 5 ⊢ 𝐵 ∈ V |
8 | 7 | pwid 4554 | . . . 4 ⊢ 𝐵 ∈ 𝒫 𝐵 |
9 | eqid 2738 | . . . . 5 ⊢ (𝑅 evalSub1 𝐵) = (𝑅 evalSub1 𝐵) | |
10 | eqid 2738 | . . . . 5 ⊢ (1o evalSub 𝑅) = (1o evalSub 𝑅) | |
11 | 9, 10, 3 | evls1fval 21395 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐵 ∈ 𝒫 𝐵) → (𝑅 evalSub1 𝐵) = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑅)‘𝐵))) |
12 | 8, 11 | mpan2 687 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (𝑅 evalSub1 𝐵) = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑅)‘𝐵))) |
13 | 2, 3 | evlval 21215 | . . . . 5 ⊢ (1o eval 𝑅) = ((1o evalSub 𝑅)‘𝐵) |
14 | 13 | eqcomi 2747 | . . . 4 ⊢ ((1o evalSub 𝑅)‘𝐵) = (1o eval 𝑅) |
15 | 14 | coeq2i 5758 | . . 3 ⊢ ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑅)‘𝐵)) = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ (1o eval 𝑅)) |
16 | 12, 15 | eqtrdi 2795 | . 2 ⊢ (𝑅 ∈ 𝑉 → (𝑅 evalSub1 𝐵) = ((𝑥 ∈ (𝐵 ↑m (𝐵 ↑m 1o)) ↦ (𝑥 ∘ (𝑦 ∈ 𝐵 ↦ (1o × {𝑦})))) ∘ (1o eval 𝑅))) |
17 | 4, 6, 16 | 3eqtr4a 2805 | 1 ⊢ (𝑅 ∈ 𝑉 → 𝑄 = (𝑅 evalSub1 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 𝒫 cpw 4530 {csn 4558 ↦ cmpt 5153 × cxp 5578 ∘ ccom 5584 ‘cfv 6418 (class class class)co 7255 1oc1o 8260 ↑m cmap 8573 Basecbs 16840 evalSub ces 21190 eval cevl 21191 evalSub1 ces1 21389 eval1ce1 21390 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-evls 21192 df-evl 21193 df-evls1 21391 df-evl1 21392 |
This theorem is referenced by: evl1fval1 21407 |
Copyright terms: Public domain | W3C validator |