MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restlly Structured version   Visualization version   GIF version

Theorem restlly 22088
Description: If the property 𝐴 passes to open subspaces, then a space which is 𝐴 is also locally 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.)
Hypotheses
Ref Expression
restlly.1 ((𝜑 ∧ (𝑗𝐴𝑥𝑗)) → (𝑗t 𝑥) ∈ 𝐴)
restlly.2 (𝜑𝐴 ⊆ Top)
Assertion
Ref Expression
restlly (𝜑𝐴 ⊆ Locally 𝐴)
Distinct variable groups:   𝑥,𝑗,𝐴   𝜑,𝑗,𝑥

Proof of Theorem restlly
Dummy variables 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 restlly.2 . . . . 5 (𝜑𝐴 ⊆ Top)
21sselda 3915 . . . 4 ((𝜑𝑗𝐴) → 𝑗 ∈ Top)
3 simprl 770 . . . . . . 7 (((𝜑𝑗𝐴) ∧ (𝑥𝑗𝑦𝑥)) → 𝑥𝑗)
4 vex 3444 . . . . . . . . 9 𝑥 ∈ V
54pwid 4521 . . . . . . . 8 𝑥 ∈ 𝒫 𝑥
65a1i 11 . . . . . . 7 (((𝜑𝑗𝐴) ∧ (𝑥𝑗𝑦𝑥)) → 𝑥 ∈ 𝒫 𝑥)
73, 6elind 4121 . . . . . 6 (((𝜑𝑗𝐴) ∧ (𝑥𝑗𝑦𝑥)) → 𝑥 ∈ (𝑗 ∩ 𝒫 𝑥))
8 simprr 772 . . . . . 6 (((𝜑𝑗𝐴) ∧ (𝑥𝑗𝑦𝑥)) → 𝑦𝑥)
9 restlly.1 . . . . . . . 8 ((𝜑 ∧ (𝑗𝐴𝑥𝑗)) → (𝑗t 𝑥) ∈ 𝐴)
109anassrs 471 . . . . . . 7 (((𝜑𝑗𝐴) ∧ 𝑥𝑗) → (𝑗t 𝑥) ∈ 𝐴)
1110adantrr 716 . . . . . 6 (((𝜑𝑗𝐴) ∧ (𝑥𝑗𝑦𝑥)) → (𝑗t 𝑥) ∈ 𝐴)
12 elequ2 2126 . . . . . . . 8 (𝑢 = 𝑥 → (𝑦𝑢𝑦𝑥))
13 oveq2 7143 . . . . . . . . 9 (𝑢 = 𝑥 → (𝑗t 𝑢) = (𝑗t 𝑥))
1413eleq1d 2874 . . . . . . . 8 (𝑢 = 𝑥 → ((𝑗t 𝑢) ∈ 𝐴 ↔ (𝑗t 𝑥) ∈ 𝐴))
1512, 14anbi12d 633 . . . . . . 7 (𝑢 = 𝑥 → ((𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐴) ↔ (𝑦𝑥 ∧ (𝑗t 𝑥) ∈ 𝐴)))
1615rspcev 3571 . . . . . 6 ((𝑥 ∈ (𝑗 ∩ 𝒫 𝑥) ∧ (𝑦𝑥 ∧ (𝑗t 𝑥) ∈ 𝐴)) → ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐴))
177, 8, 11, 16syl12anc 835 . . . . 5 (((𝜑𝑗𝐴) ∧ (𝑥𝑗𝑦𝑥)) → ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐴))
1817ralrimivva 3156 . . . 4 ((𝜑𝑗𝐴) → ∀𝑥𝑗𝑦𝑥𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐴))
19 islly 22073 . . . 4 (𝑗 ∈ Locally 𝐴 ↔ (𝑗 ∈ Top ∧ ∀𝑥𝑗𝑦𝑥𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐴)))
202, 18, 19sylanbrc 586 . . 3 ((𝜑𝑗𝐴) → 𝑗 ∈ Locally 𝐴)
2120ex 416 . 2 (𝜑 → (𝑗𝐴𝑗 ∈ Locally 𝐴))
2221ssrdv 3921 1 (𝜑𝐴 ⊆ Locally 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2111  wral 3106  wrex 3107  cin 3880  wss 3881  𝒫 cpw 4497  (class class class)co 7135  t crest 16686  Topctop 21498  Locally clly 22069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-un 3886  df-in 3888  df-ss 3898  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-iota 6283  df-fv 6332  df-ov 7138  df-lly 22071
This theorem is referenced by:  llyidm  22093  nllyidm  22094  toplly  22095  hauslly  22097  lly1stc  22101
  Copyright terms: Public domain W3C validator