MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restlly Structured version   Visualization version   GIF version

Theorem restlly 23377
Description: If the property 𝐴 passes to open subspaces, then a space which is 𝐴 is also locally 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.)
Hypotheses
Ref Expression
restlly.1 ((𝜑 ∧ (𝑗𝐴𝑥𝑗)) → (𝑗t 𝑥) ∈ 𝐴)
restlly.2 (𝜑𝐴 ⊆ Top)
Assertion
Ref Expression
restlly (𝜑𝐴 ⊆ Locally 𝐴)
Distinct variable groups:   𝑥,𝑗,𝐴   𝜑,𝑗,𝑥

Proof of Theorem restlly
Dummy variables 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 restlly.2 . . . . 5 (𝜑𝐴 ⊆ Top)
21sselda 3949 . . . 4 ((𝜑𝑗𝐴) → 𝑗 ∈ Top)
3 simprl 770 . . . . . . 7 (((𝜑𝑗𝐴) ∧ (𝑥𝑗𝑦𝑥)) → 𝑥𝑗)
4 vex 3454 . . . . . . . . 9 𝑥 ∈ V
54pwid 4588 . . . . . . . 8 𝑥 ∈ 𝒫 𝑥
65a1i 11 . . . . . . 7 (((𝜑𝑗𝐴) ∧ (𝑥𝑗𝑦𝑥)) → 𝑥 ∈ 𝒫 𝑥)
73, 6elind 4166 . . . . . 6 (((𝜑𝑗𝐴) ∧ (𝑥𝑗𝑦𝑥)) → 𝑥 ∈ (𝑗 ∩ 𝒫 𝑥))
8 simprr 772 . . . . . 6 (((𝜑𝑗𝐴) ∧ (𝑥𝑗𝑦𝑥)) → 𝑦𝑥)
9 restlly.1 . . . . . . . 8 ((𝜑 ∧ (𝑗𝐴𝑥𝑗)) → (𝑗t 𝑥) ∈ 𝐴)
109anassrs 467 . . . . . . 7 (((𝜑𝑗𝐴) ∧ 𝑥𝑗) → (𝑗t 𝑥) ∈ 𝐴)
1110adantrr 717 . . . . . 6 (((𝜑𝑗𝐴) ∧ (𝑥𝑗𝑦𝑥)) → (𝑗t 𝑥) ∈ 𝐴)
12 elequ2 2124 . . . . . . . 8 (𝑢 = 𝑥 → (𝑦𝑢𝑦𝑥))
13 oveq2 7398 . . . . . . . . 9 (𝑢 = 𝑥 → (𝑗t 𝑢) = (𝑗t 𝑥))
1413eleq1d 2814 . . . . . . . 8 (𝑢 = 𝑥 → ((𝑗t 𝑢) ∈ 𝐴 ↔ (𝑗t 𝑥) ∈ 𝐴))
1512, 14anbi12d 632 . . . . . . 7 (𝑢 = 𝑥 → ((𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐴) ↔ (𝑦𝑥 ∧ (𝑗t 𝑥) ∈ 𝐴)))
1615rspcev 3591 . . . . . 6 ((𝑥 ∈ (𝑗 ∩ 𝒫 𝑥) ∧ (𝑦𝑥 ∧ (𝑗t 𝑥) ∈ 𝐴)) → ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐴))
177, 8, 11, 16syl12anc 836 . . . . 5 (((𝜑𝑗𝐴) ∧ (𝑥𝑗𝑦𝑥)) → ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐴))
1817ralrimivva 3181 . . . 4 ((𝜑𝑗𝐴) → ∀𝑥𝑗𝑦𝑥𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐴))
19 islly 23362 . . . 4 (𝑗 ∈ Locally 𝐴 ↔ (𝑗 ∈ Top ∧ ∀𝑥𝑗𝑦𝑥𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐴)))
202, 18, 19sylanbrc 583 . . 3 ((𝜑𝑗𝐴) → 𝑗 ∈ Locally 𝐴)
2120ex 412 . 2 (𝜑 → (𝑗𝐴𝑗 ∈ Locally 𝐴))
2221ssrdv 3955 1 (𝜑𝐴 ⊆ Locally 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3045  wrex 3054  cin 3916  wss 3917  𝒫 cpw 4566  (class class class)co 7390  t crest 17390  Topctop 22787  Locally clly 23358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-ov 7393  df-lly 23360
This theorem is referenced by:  llyidm  23382  nllyidm  23383  toplly  23384  hauslly  23386  lly1stc  23390
  Copyright terms: Public domain W3C validator