MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restlly Structured version   Visualization version   GIF version

Theorem restlly 23491
Description: If the property 𝐴 passes to open subspaces, then a space which is 𝐴 is also locally 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.)
Hypotheses
Ref Expression
restlly.1 ((𝜑 ∧ (𝑗𝐴𝑥𝑗)) → (𝑗t 𝑥) ∈ 𝐴)
restlly.2 (𝜑𝐴 ⊆ Top)
Assertion
Ref Expression
restlly (𝜑𝐴 ⊆ Locally 𝐴)
Distinct variable groups:   𝑥,𝑗,𝐴   𝜑,𝑗,𝑥

Proof of Theorem restlly
Dummy variables 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 restlly.2 . . . . 5 (𝜑𝐴 ⊆ Top)
21sselda 3983 . . . 4 ((𝜑𝑗𝐴) → 𝑗 ∈ Top)
3 simprl 771 . . . . . . 7 (((𝜑𝑗𝐴) ∧ (𝑥𝑗𝑦𝑥)) → 𝑥𝑗)
4 vex 3484 . . . . . . . . 9 𝑥 ∈ V
54pwid 4622 . . . . . . . 8 𝑥 ∈ 𝒫 𝑥
65a1i 11 . . . . . . 7 (((𝜑𝑗𝐴) ∧ (𝑥𝑗𝑦𝑥)) → 𝑥 ∈ 𝒫 𝑥)
73, 6elind 4200 . . . . . 6 (((𝜑𝑗𝐴) ∧ (𝑥𝑗𝑦𝑥)) → 𝑥 ∈ (𝑗 ∩ 𝒫 𝑥))
8 simprr 773 . . . . . 6 (((𝜑𝑗𝐴) ∧ (𝑥𝑗𝑦𝑥)) → 𝑦𝑥)
9 restlly.1 . . . . . . . 8 ((𝜑 ∧ (𝑗𝐴𝑥𝑗)) → (𝑗t 𝑥) ∈ 𝐴)
109anassrs 467 . . . . . . 7 (((𝜑𝑗𝐴) ∧ 𝑥𝑗) → (𝑗t 𝑥) ∈ 𝐴)
1110adantrr 717 . . . . . 6 (((𝜑𝑗𝐴) ∧ (𝑥𝑗𝑦𝑥)) → (𝑗t 𝑥) ∈ 𝐴)
12 elequ2 2123 . . . . . . . 8 (𝑢 = 𝑥 → (𝑦𝑢𝑦𝑥))
13 oveq2 7439 . . . . . . . . 9 (𝑢 = 𝑥 → (𝑗t 𝑢) = (𝑗t 𝑥))
1413eleq1d 2826 . . . . . . . 8 (𝑢 = 𝑥 → ((𝑗t 𝑢) ∈ 𝐴 ↔ (𝑗t 𝑥) ∈ 𝐴))
1512, 14anbi12d 632 . . . . . . 7 (𝑢 = 𝑥 → ((𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐴) ↔ (𝑦𝑥 ∧ (𝑗t 𝑥) ∈ 𝐴)))
1615rspcev 3622 . . . . . 6 ((𝑥 ∈ (𝑗 ∩ 𝒫 𝑥) ∧ (𝑦𝑥 ∧ (𝑗t 𝑥) ∈ 𝐴)) → ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐴))
177, 8, 11, 16syl12anc 837 . . . . 5 (((𝜑𝑗𝐴) ∧ (𝑥𝑗𝑦𝑥)) → ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐴))
1817ralrimivva 3202 . . . 4 ((𝜑𝑗𝐴) → ∀𝑥𝑗𝑦𝑥𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐴))
19 islly 23476 . . . 4 (𝑗 ∈ Locally 𝐴 ↔ (𝑗 ∈ Top ∧ ∀𝑥𝑗𝑦𝑥𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐴)))
202, 18, 19sylanbrc 583 . . 3 ((𝜑𝑗𝐴) → 𝑗 ∈ Locally 𝐴)
2120ex 412 . 2 (𝜑 → (𝑗𝐴𝑗 ∈ Locally 𝐴))
2221ssrdv 3989 1 (𝜑𝐴 ⊆ Locally 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wral 3061  wrex 3070  cin 3950  wss 3951  𝒫 cpw 4600  (class class class)co 7431  t crest 17465  Topctop 22899  Locally clly 23472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-iota 6514  df-fv 6569  df-ov 7434  df-lly 23474
This theorem is referenced by:  llyidm  23496  nllyidm  23497  toplly  23498  hauslly  23500  lly1stc  23504
  Copyright terms: Public domain W3C validator