Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vsetrec Structured version   Visualization version   GIF version

Theorem vsetrec 47738
Description: Construct V using set recursion. The proof indirectly uses trcl 9722, which relies on rec, but theoretically 𝐶 in trcl 9722 could be constructed using setrecs instead. The proof of this theorem uses the dummy variable 𝑎 rather than 𝑥 to avoid a distinct variable requirement between 𝐹 and 𝑥. (Contributed by Emmett Weisz, 23-Jun-2021.)
Hypothesis
Ref Expression
vsetrec.1 𝐹 = (𝑥 ∈ V ↦ 𝒫 𝑥)
Assertion
Ref Expression
vsetrec setrecs(𝐹) = V

Proof of Theorem vsetrec
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 setind 9728 . 2 (∀𝑎(𝑎 ⊆ setrecs(𝐹) → 𝑎 ∈ setrecs(𝐹)) → setrecs(𝐹) = V)
2 vex 3478 . . . 4 𝑎 ∈ V
32pwid 4624 . . 3 𝑎 ∈ 𝒫 𝑎
4 pweq 4616 . . . . . . 7 (𝑥 = 𝑎 → 𝒫 𝑥 = 𝒫 𝑎)
5 vsetrec.1 . . . . . . 7 𝐹 = (𝑥 ∈ V ↦ 𝒫 𝑥)
6 vpwex 5375 . . . . . . 7 𝒫 𝑎 ∈ V
74, 5, 6fvmpt 6998 . . . . . 6 (𝑎 ∈ V → (𝐹𝑎) = 𝒫 𝑎)
82, 7ax-mp 5 . . . . 5 (𝐹𝑎) = 𝒫 𝑎
9 eqid 2732 . . . . . 6 setrecs(𝐹) = setrecs(𝐹)
102a1i 11 . . . . . 6 (𝑎 ⊆ setrecs(𝐹) → 𝑎 ∈ V)
11 id 22 . . . . . 6 (𝑎 ⊆ setrecs(𝐹) → 𝑎 ⊆ setrecs(𝐹))
129, 10, 11setrec1 47726 . . . . 5 (𝑎 ⊆ setrecs(𝐹) → (𝐹𝑎) ⊆ setrecs(𝐹))
138, 12eqsstrrid 4031 . . . 4 (𝑎 ⊆ setrecs(𝐹) → 𝒫 𝑎 ⊆ setrecs(𝐹))
1413sseld 3981 . . 3 (𝑎 ⊆ setrecs(𝐹) → (𝑎 ∈ 𝒫 𝑎𝑎 ∈ setrecs(𝐹)))
153, 14mpi 20 . 2 (𝑎 ⊆ setrecs(𝐹) → 𝑎 ∈ setrecs(𝐹))
161, 15mpg 1799 1 setrecs(𝐹) = V
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  Vcvv 3474  wss 3948  𝒫 cpw 4602  cmpt 5231  cfv 6543  setrecscsetrecs 47718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-reg 9586  ax-inf2 9635
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-om 7855  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-r1 9758  df-rank 9759  df-setrecs 47719
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator