Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vsetrec Structured version   Visualization version   GIF version

Theorem vsetrec 44307
Description: Construct V using set recursion. The proof indirectly uses trcl 9023, which relies on rec, but theoretically 𝐶 in trcl 9023 could be constructed using setrecs instead. The proof of this theorem uses the dummy variable 𝑎 rather than 𝑥 to avoid a distinct variable requirement between 𝐹 and 𝑥. (Contributed by Emmett Weisz, 23-Jun-2021.)
Hypothesis
Ref Expression
vsetrec.1 𝐹 = (𝑥 ∈ V ↦ 𝒫 𝑥)
Assertion
Ref Expression
vsetrec setrecs(𝐹) = V

Proof of Theorem vsetrec
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 setind 9029 . 2 (∀𝑎(𝑎 ⊆ setrecs(𝐹) → 𝑎 ∈ setrecs(𝐹)) → setrecs(𝐹) = V)
2 vex 3443 . . . 4 𝑎 ∈ V
32pwid 4475 . . 3 𝑎 ∈ 𝒫 𝑎
4 pweq 4462 . . . . . . 7 (𝑥 = 𝑎 → 𝒫 𝑥 = 𝒫 𝑎)
5 vsetrec.1 . . . . . . 7 𝐹 = (𝑥 ∈ V ↦ 𝒫 𝑥)
62pwex 5179 . . . . . . 7 𝒫 𝑎 ∈ V
74, 5, 6fvmpt 6642 . . . . . 6 (𝑎 ∈ V → (𝐹𝑎) = 𝒫 𝑎)
82, 7ax-mp 5 . . . . 5 (𝐹𝑎) = 𝒫 𝑎
9 eqid 2797 . . . . . 6 setrecs(𝐹) = setrecs(𝐹)
102a1i 11 . . . . . 6 (𝑎 ⊆ setrecs(𝐹) → 𝑎 ∈ V)
11 id 22 . . . . . 6 (𝑎 ⊆ setrecs(𝐹) → 𝑎 ⊆ setrecs(𝐹))
129, 10, 11setrec1 44296 . . . . 5 (𝑎 ⊆ setrecs(𝐹) → (𝐹𝑎) ⊆ setrecs(𝐹))
138, 12eqsstrrid 3943 . . . 4 (𝑎 ⊆ setrecs(𝐹) → 𝒫 𝑎 ⊆ setrecs(𝐹))
1413sseld 3894 . . 3 (𝑎 ⊆ setrecs(𝐹) → (𝑎 ∈ 𝒫 𝑎𝑎 ∈ setrecs(𝐹)))
153, 14mpi 20 . 2 (𝑎 ⊆ setrecs(𝐹) → 𝑎 ∈ setrecs(𝐹))
161, 15mpg 1783 1 setrecs(𝐹) = V
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1525  wcel 2083  Vcvv 3440  wss 3865  𝒫 cpw 4459  cmpt 5047  cfv 6232  setrecscsetrecs 44288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-reg 8909  ax-inf2 8957
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-iin 4834  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-om 7444  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-r1 9046  df-rank 9047  df-setrecs 44289
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator