![]() |
Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > vsetrec | Structured version Visualization version GIF version |
Description: Construct V using set recursion. The proof indirectly uses trcl 9766, which relies on rec, but theoretically 𝐶 in trcl 9766 could be constructed using setrecs instead. The proof of this theorem uses the dummy variable 𝑎 rather than 𝑥 to avoid a distinct variable requirement between 𝐹 and 𝑥. (Contributed by Emmett Weisz, 23-Jun-2021.) |
Ref | Expression |
---|---|
vsetrec.1 | ⊢ 𝐹 = (𝑥 ∈ V ↦ 𝒫 𝑥) |
Ref | Expression |
---|---|
vsetrec | ⊢ setrecs(𝐹) = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setind 9772 | . 2 ⊢ (∀𝑎(𝑎 ⊆ setrecs(𝐹) → 𝑎 ∈ setrecs(𝐹)) → setrecs(𝐹) = V) | |
2 | vex 3482 | . . . 4 ⊢ 𝑎 ∈ V | |
3 | 2 | pwid 4627 | . . 3 ⊢ 𝑎 ∈ 𝒫 𝑎 |
4 | pweq 4619 | . . . . . . 7 ⊢ (𝑥 = 𝑎 → 𝒫 𝑥 = 𝒫 𝑎) | |
5 | vsetrec.1 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ V ↦ 𝒫 𝑥) | |
6 | vpwex 5383 | . . . . . . 7 ⊢ 𝒫 𝑎 ∈ V | |
7 | 4, 5, 6 | fvmpt 7016 | . . . . . 6 ⊢ (𝑎 ∈ V → (𝐹‘𝑎) = 𝒫 𝑎) |
8 | 2, 7 | ax-mp 5 | . . . . 5 ⊢ (𝐹‘𝑎) = 𝒫 𝑎 |
9 | eqid 2735 | . . . . . 6 ⊢ setrecs(𝐹) = setrecs(𝐹) | |
10 | 2 | a1i 11 | . . . . . 6 ⊢ (𝑎 ⊆ setrecs(𝐹) → 𝑎 ∈ V) |
11 | id 22 | . . . . . 6 ⊢ (𝑎 ⊆ setrecs(𝐹) → 𝑎 ⊆ setrecs(𝐹)) | |
12 | 9, 10, 11 | setrec1 48922 | . . . . 5 ⊢ (𝑎 ⊆ setrecs(𝐹) → (𝐹‘𝑎) ⊆ setrecs(𝐹)) |
13 | 8, 12 | eqsstrrid 4045 | . . . 4 ⊢ (𝑎 ⊆ setrecs(𝐹) → 𝒫 𝑎 ⊆ setrecs(𝐹)) |
14 | 13 | sseld 3994 | . . 3 ⊢ (𝑎 ⊆ setrecs(𝐹) → (𝑎 ∈ 𝒫 𝑎 → 𝑎 ∈ setrecs(𝐹))) |
15 | 3, 14 | mpi 20 | . 2 ⊢ (𝑎 ⊆ setrecs(𝐹) → 𝑎 ∈ setrecs(𝐹)) |
16 | 1, 15 | mpg 1794 | 1 ⊢ setrecs(𝐹) = V |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ⊆ wss 3963 𝒫 cpw 4605 ↦ cmpt 5231 ‘cfv 6563 setrecscsetrecs 48914 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-reg 9630 ax-inf2 9679 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-r1 9802 df-rank 9803 df-setrecs 48915 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |