Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > vsetrec | Structured version Visualization version GIF version |
Description: Construct V using set recursion. The proof indirectly uses trcl 9203, which relies on rec, but theoretically 𝐶 in trcl 9203 could be constructed using setrecs instead. The proof of this theorem uses the dummy variable 𝑎 rather than 𝑥 to avoid a distinct variable requirement between 𝐹 and 𝑥. (Contributed by Emmett Weisz, 23-Jun-2021.) |
Ref | Expression |
---|---|
vsetrec.1 | ⊢ 𝐹 = (𝑥 ∈ V ↦ 𝒫 𝑥) |
Ref | Expression |
---|---|
vsetrec | ⊢ setrecs(𝐹) = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setind 9209 | . 2 ⊢ (∀𝑎(𝑎 ⊆ setrecs(𝐹) → 𝑎 ∈ setrecs(𝐹)) → setrecs(𝐹) = V) | |
2 | vex 3413 | . . . 4 ⊢ 𝑎 ∈ V | |
3 | 2 | pwid 4518 | . . 3 ⊢ 𝑎 ∈ 𝒫 𝑎 |
4 | pweq 4510 | . . . . . . 7 ⊢ (𝑥 = 𝑎 → 𝒫 𝑥 = 𝒫 𝑎) | |
5 | vsetrec.1 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ V ↦ 𝒫 𝑥) | |
6 | 2 | pwex 5249 | . . . . . . 7 ⊢ 𝒫 𝑎 ∈ V |
7 | 4, 5, 6 | fvmpt 6759 | . . . . . 6 ⊢ (𝑎 ∈ V → (𝐹‘𝑎) = 𝒫 𝑎) |
8 | 2, 7 | ax-mp 5 | . . . . 5 ⊢ (𝐹‘𝑎) = 𝒫 𝑎 |
9 | eqid 2758 | . . . . . 6 ⊢ setrecs(𝐹) = setrecs(𝐹) | |
10 | 2 | a1i 11 | . . . . . 6 ⊢ (𝑎 ⊆ setrecs(𝐹) → 𝑎 ∈ V) |
11 | id 22 | . . . . . 6 ⊢ (𝑎 ⊆ setrecs(𝐹) → 𝑎 ⊆ setrecs(𝐹)) | |
12 | 9, 10, 11 | setrec1 45612 | . . . . 5 ⊢ (𝑎 ⊆ setrecs(𝐹) → (𝐹‘𝑎) ⊆ setrecs(𝐹)) |
13 | 8, 12 | eqsstrrid 3941 | . . . 4 ⊢ (𝑎 ⊆ setrecs(𝐹) → 𝒫 𝑎 ⊆ setrecs(𝐹)) |
14 | 13 | sseld 3891 | . . 3 ⊢ (𝑎 ⊆ setrecs(𝐹) → (𝑎 ∈ 𝒫 𝑎 → 𝑎 ∈ setrecs(𝐹))) |
15 | 3, 14 | mpi 20 | . 2 ⊢ (𝑎 ⊆ setrecs(𝐹) → 𝑎 ∈ setrecs(𝐹)) |
16 | 1, 15 | mpg 1799 | 1 ⊢ setrecs(𝐹) = V |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ⊆ wss 3858 𝒫 cpw 4494 ↦ cmpt 5112 ‘cfv 6335 setrecscsetrecs 45604 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-reg 9089 ax-inf2 9137 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-iin 4886 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-om 7580 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-r1 9226 df-rank 9227 df-setrecs 45605 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |