Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vsetrec Structured version   Visualization version   GIF version

Theorem vsetrec 49534
Description: Construct V using set recursion. The proof indirectly uses trcl 9747, which relies on rec, but theoretically 𝐶 in trcl 9747 could be constructed using setrecs instead. The proof of this theorem uses the dummy variable 𝑎 rather than 𝑥 to avoid a distinct variable requirement between 𝐹 and 𝑥. (Contributed by Emmett Weisz, 23-Jun-2021.)
Hypothesis
Ref Expression
vsetrec.1 𝐹 = (𝑥 ∈ V ↦ 𝒫 𝑥)
Assertion
Ref Expression
vsetrec setrecs(𝐹) = V

Proof of Theorem vsetrec
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 setind 9753 . 2 (∀𝑎(𝑎 ⊆ setrecs(𝐹) → 𝑎 ∈ setrecs(𝐹)) → setrecs(𝐹) = V)
2 vex 3468 . . . 4 𝑎 ∈ V
32pwid 4602 . . 3 𝑎 ∈ 𝒫 𝑎
4 pweq 4594 . . . . . . 7 (𝑥 = 𝑎 → 𝒫 𝑥 = 𝒫 𝑎)
5 vsetrec.1 . . . . . . 7 𝐹 = (𝑥 ∈ V ↦ 𝒫 𝑥)
6 vpwex 5352 . . . . . . 7 𝒫 𝑎 ∈ V
74, 5, 6fvmpt 6991 . . . . . 6 (𝑎 ∈ V → (𝐹𝑎) = 𝒫 𝑎)
82, 7ax-mp 5 . . . . 5 (𝐹𝑎) = 𝒫 𝑎
9 eqid 2736 . . . . . 6 setrecs(𝐹) = setrecs(𝐹)
102a1i 11 . . . . . 6 (𝑎 ⊆ setrecs(𝐹) → 𝑎 ∈ V)
11 id 22 . . . . . 6 (𝑎 ⊆ setrecs(𝐹) → 𝑎 ⊆ setrecs(𝐹))
129, 10, 11setrec1 49522 . . . . 5 (𝑎 ⊆ setrecs(𝐹) → (𝐹𝑎) ⊆ setrecs(𝐹))
138, 12eqsstrrid 4003 . . . 4 (𝑎 ⊆ setrecs(𝐹) → 𝒫 𝑎 ⊆ setrecs(𝐹))
1413sseld 3962 . . 3 (𝑎 ⊆ setrecs(𝐹) → (𝑎 ∈ 𝒫 𝑎𝑎 ∈ setrecs(𝐹)))
153, 14mpi 20 . 2 (𝑎 ⊆ setrecs(𝐹) → 𝑎 ∈ setrecs(𝐹))
161, 15mpg 1797 1 setrecs(𝐹) = V
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3464  wss 3931  𝒫 cpw 4580  cmpt 5206  cfv 6536  setrecscsetrecs 49514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-reg 9611  ax-inf2 9660
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-r1 9783  df-rank 9784  df-setrecs 49515
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator