Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vsetrec Structured version   Visualization version   GIF version

Theorem vsetrec 49689
Description: Construct V using set recursion. The proof indirectly uses trcl 9681, which relies on rec, but theoretically 𝐶 in trcl 9681 could be constructed using setrecs instead. The proof of this theorem uses the dummy variable 𝑎 rather than 𝑥 to avoid a distinct variable requirement between 𝐹 and 𝑥. (Contributed by Emmett Weisz, 23-Jun-2021.)
Hypothesis
Ref Expression
vsetrec.1 𝐹 = (𝑥 ∈ V ↦ 𝒫 𝑥)
Assertion
Ref Expression
vsetrec setrecs(𝐹) = V

Proof of Theorem vsetrec
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 setind 9687 . 2 (∀𝑎(𝑎 ⊆ setrecs(𝐹) → 𝑎 ∈ setrecs(𝐹)) → setrecs(𝐹) = V)
2 vex 3451 . . . 4 𝑎 ∈ V
32pwid 4585 . . 3 𝑎 ∈ 𝒫 𝑎
4 pweq 4577 . . . . . . 7 (𝑥 = 𝑎 → 𝒫 𝑥 = 𝒫 𝑎)
5 vsetrec.1 . . . . . . 7 𝐹 = (𝑥 ∈ V ↦ 𝒫 𝑥)
6 vpwex 5332 . . . . . . 7 𝒫 𝑎 ∈ V
74, 5, 6fvmpt 6968 . . . . . 6 (𝑎 ∈ V → (𝐹𝑎) = 𝒫 𝑎)
82, 7ax-mp 5 . . . . 5 (𝐹𝑎) = 𝒫 𝑎
9 eqid 2729 . . . . . 6 setrecs(𝐹) = setrecs(𝐹)
102a1i 11 . . . . . 6 (𝑎 ⊆ setrecs(𝐹) → 𝑎 ∈ V)
11 id 22 . . . . . 6 (𝑎 ⊆ setrecs(𝐹) → 𝑎 ⊆ setrecs(𝐹))
129, 10, 11setrec1 49677 . . . . 5 (𝑎 ⊆ setrecs(𝐹) → (𝐹𝑎) ⊆ setrecs(𝐹))
138, 12eqsstrrid 3986 . . . 4 (𝑎 ⊆ setrecs(𝐹) → 𝒫 𝑎 ⊆ setrecs(𝐹))
1413sseld 3945 . . 3 (𝑎 ⊆ setrecs(𝐹) → (𝑎 ∈ 𝒫 𝑎𝑎 ∈ setrecs(𝐹)))
153, 14mpi 20 . 2 (𝑎 ⊆ setrecs(𝐹) → 𝑎 ∈ setrecs(𝐹))
161, 15mpg 1797 1 setrecs(𝐹) = V
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3447  wss 3914  𝒫 cpw 4563  cmpt 5188  cfv 6511  setrecscsetrecs 49669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-reg 9545  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-r1 9717  df-rank 9718  df-setrecs 49670
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator