| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rankr1id | Structured version Visualization version GIF version | ||
| Description: The rank of the hierarchy of an ordinal number is itself. (Contributed by NM, 14-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| rankr1id | ⊢ (𝐴 ∈ dom 𝑅1 ↔ (rank‘(𝑅1‘𝐴)) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3952 | . . . 4 ⊢ (𝑅1‘𝐴) ⊆ (𝑅1‘𝐴) | |
| 2 | fvex 6835 | . . . . . . . 8 ⊢ (𝑅1‘𝐴) ∈ V | |
| 3 | 2 | pwid 4569 | . . . . . . 7 ⊢ (𝑅1‘𝐴) ∈ 𝒫 (𝑅1‘𝐴) |
| 4 | r1sucg 9662 | . . . . . . 7 ⊢ (𝐴 ∈ dom 𝑅1 → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1‘𝐴)) | |
| 5 | 3, 4 | eleqtrrid 2838 | . . . . . 6 ⊢ (𝐴 ∈ dom 𝑅1 → (𝑅1‘𝐴) ∈ (𝑅1‘suc 𝐴)) |
| 6 | r1elwf 9689 | . . . . . 6 ⊢ ((𝑅1‘𝐴) ∈ (𝑅1‘suc 𝐴) → (𝑅1‘𝐴) ∈ ∪ (𝑅1 “ On)) | |
| 7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ dom 𝑅1 → (𝑅1‘𝐴) ∈ ∪ (𝑅1 “ On)) |
| 8 | rankr1bg 9696 | . . . . 5 ⊢ (((𝑅1‘𝐴) ∈ ∪ (𝑅1 “ On) ∧ 𝐴 ∈ dom 𝑅1) → ((𝑅1‘𝐴) ⊆ (𝑅1‘𝐴) ↔ (rank‘(𝑅1‘𝐴)) ⊆ 𝐴)) | |
| 9 | 7, 8 | mpancom 688 | . . . 4 ⊢ (𝐴 ∈ dom 𝑅1 → ((𝑅1‘𝐴) ⊆ (𝑅1‘𝐴) ↔ (rank‘(𝑅1‘𝐴)) ⊆ 𝐴)) |
| 10 | 1, 9 | mpbii 233 | . . 3 ⊢ (𝐴 ∈ dom 𝑅1 → (rank‘(𝑅1‘𝐴)) ⊆ 𝐴) |
| 11 | rankonid 9722 | . . . . 5 ⊢ (𝐴 ∈ dom 𝑅1 ↔ (rank‘𝐴) = 𝐴) | |
| 12 | 11 | biimpi 216 | . . . 4 ⊢ (𝐴 ∈ dom 𝑅1 → (rank‘𝐴) = 𝐴) |
| 13 | onssr1 9724 | . . . . 5 ⊢ (𝐴 ∈ dom 𝑅1 → 𝐴 ⊆ (𝑅1‘𝐴)) | |
| 14 | rankssb 9741 | . . . . 5 ⊢ ((𝑅1‘𝐴) ∈ ∪ (𝑅1 “ On) → (𝐴 ⊆ (𝑅1‘𝐴) → (rank‘𝐴) ⊆ (rank‘(𝑅1‘𝐴)))) | |
| 15 | 7, 13, 14 | sylc 65 | . . . 4 ⊢ (𝐴 ∈ dom 𝑅1 → (rank‘𝐴) ⊆ (rank‘(𝑅1‘𝐴))) |
| 16 | 12, 15 | eqsstrrd 3965 | . . 3 ⊢ (𝐴 ∈ dom 𝑅1 → 𝐴 ⊆ (rank‘(𝑅1‘𝐴))) |
| 17 | 10, 16 | eqssd 3947 | . 2 ⊢ (𝐴 ∈ dom 𝑅1 → (rank‘(𝑅1‘𝐴)) = 𝐴) |
| 18 | id 22 | . . 3 ⊢ ((rank‘(𝑅1‘𝐴)) = 𝐴 → (rank‘(𝑅1‘𝐴)) = 𝐴) | |
| 19 | rankdmr1 9694 | . . 3 ⊢ (rank‘(𝑅1‘𝐴)) ∈ dom 𝑅1 | |
| 20 | 18, 19 | eqeltrrdi 2840 | . 2 ⊢ ((rank‘(𝑅1‘𝐴)) = 𝐴 → 𝐴 ∈ dom 𝑅1) |
| 21 | 17, 20 | impbii 209 | 1 ⊢ (𝐴 ∈ dom 𝑅1 ↔ (rank‘(𝑅1‘𝐴)) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 𝒫 cpw 4547 ∪ cuni 4856 dom cdm 5614 “ cima 5617 Oncon0 6306 suc csuc 6308 ‘cfv 6481 𝑅1cr1 9655 rankcrnk 9656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-r1 9657 df-rank 9658 |
| This theorem is referenced by: rankuni 9756 |
| Copyright terms: Public domain | W3C validator |