| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rankr1id | Structured version Visualization version GIF version | ||
| Description: The rank of the hierarchy of an ordinal number is itself. (Contributed by NM, 14-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| rankr1id | ⊢ (𝐴 ∈ dom 𝑅1 ↔ (rank‘(𝑅1‘𝐴)) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3981 | . . . 4 ⊢ (𝑅1‘𝐴) ⊆ (𝑅1‘𝐴) | |
| 2 | fvex 6889 | . . . . . . . 8 ⊢ (𝑅1‘𝐴) ∈ V | |
| 3 | 2 | pwid 4597 | . . . . . . 7 ⊢ (𝑅1‘𝐴) ∈ 𝒫 (𝑅1‘𝐴) |
| 4 | r1sucg 9783 | . . . . . . 7 ⊢ (𝐴 ∈ dom 𝑅1 → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1‘𝐴)) | |
| 5 | 3, 4 | eleqtrrid 2841 | . . . . . 6 ⊢ (𝐴 ∈ dom 𝑅1 → (𝑅1‘𝐴) ∈ (𝑅1‘suc 𝐴)) |
| 6 | r1elwf 9810 | . . . . . 6 ⊢ ((𝑅1‘𝐴) ∈ (𝑅1‘suc 𝐴) → (𝑅1‘𝐴) ∈ ∪ (𝑅1 “ On)) | |
| 7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ dom 𝑅1 → (𝑅1‘𝐴) ∈ ∪ (𝑅1 “ On)) |
| 8 | rankr1bg 9817 | . . . . 5 ⊢ (((𝑅1‘𝐴) ∈ ∪ (𝑅1 “ On) ∧ 𝐴 ∈ dom 𝑅1) → ((𝑅1‘𝐴) ⊆ (𝑅1‘𝐴) ↔ (rank‘(𝑅1‘𝐴)) ⊆ 𝐴)) | |
| 9 | 7, 8 | mpancom 688 | . . . 4 ⊢ (𝐴 ∈ dom 𝑅1 → ((𝑅1‘𝐴) ⊆ (𝑅1‘𝐴) ↔ (rank‘(𝑅1‘𝐴)) ⊆ 𝐴)) |
| 10 | 1, 9 | mpbii 233 | . . 3 ⊢ (𝐴 ∈ dom 𝑅1 → (rank‘(𝑅1‘𝐴)) ⊆ 𝐴) |
| 11 | rankonid 9843 | . . . . 5 ⊢ (𝐴 ∈ dom 𝑅1 ↔ (rank‘𝐴) = 𝐴) | |
| 12 | 11 | biimpi 216 | . . . 4 ⊢ (𝐴 ∈ dom 𝑅1 → (rank‘𝐴) = 𝐴) |
| 13 | onssr1 9845 | . . . . 5 ⊢ (𝐴 ∈ dom 𝑅1 → 𝐴 ⊆ (𝑅1‘𝐴)) | |
| 14 | rankssb 9862 | . . . . 5 ⊢ ((𝑅1‘𝐴) ∈ ∪ (𝑅1 “ On) → (𝐴 ⊆ (𝑅1‘𝐴) → (rank‘𝐴) ⊆ (rank‘(𝑅1‘𝐴)))) | |
| 15 | 7, 13, 14 | sylc 65 | . . . 4 ⊢ (𝐴 ∈ dom 𝑅1 → (rank‘𝐴) ⊆ (rank‘(𝑅1‘𝐴))) |
| 16 | 12, 15 | eqsstrrd 3994 | . . 3 ⊢ (𝐴 ∈ dom 𝑅1 → 𝐴 ⊆ (rank‘(𝑅1‘𝐴))) |
| 17 | 10, 16 | eqssd 3976 | . 2 ⊢ (𝐴 ∈ dom 𝑅1 → (rank‘(𝑅1‘𝐴)) = 𝐴) |
| 18 | id 22 | . . 3 ⊢ ((rank‘(𝑅1‘𝐴)) = 𝐴 → (rank‘(𝑅1‘𝐴)) = 𝐴) | |
| 19 | rankdmr1 9815 | . . 3 ⊢ (rank‘(𝑅1‘𝐴)) ∈ dom 𝑅1 | |
| 20 | 18, 19 | eqeltrrdi 2843 | . 2 ⊢ ((rank‘(𝑅1‘𝐴)) = 𝐴 → 𝐴 ∈ dom 𝑅1) |
| 21 | 17, 20 | impbii 209 | 1 ⊢ (𝐴 ∈ dom 𝑅1 ↔ (rank‘(𝑅1‘𝐴)) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 𝒫 cpw 4575 ∪ cuni 4883 dom cdm 5654 “ cima 5657 Oncon0 6352 suc csuc 6354 ‘cfv 6531 𝑅1cr1 9776 rankcrnk 9777 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-r1 9778 df-rank 9779 |
| This theorem is referenced by: rankuni 9877 |
| Copyright terms: Public domain | W3C validator |