MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankr1id Structured version   Visualization version   GIF version

Theorem rankr1id 9900
Description: The rank of the hierarchy of an ordinal number is itself. (Contributed by NM, 14-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankr1id (𝐴 ∈ dom 𝑅1 ↔ (rank‘(𝑅1𝐴)) = 𝐴)

Proof of Theorem rankr1id
StepHypRef Expression
1 ssid 4018 . . . 4 (𝑅1𝐴) ⊆ (𝑅1𝐴)
2 fvex 6920 . . . . . . . 8 (𝑅1𝐴) ∈ V
32pwid 4627 . . . . . . 7 (𝑅1𝐴) ∈ 𝒫 (𝑅1𝐴)
4 r1sucg 9807 . . . . . . 7 (𝐴 ∈ dom 𝑅1 → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1𝐴))
53, 4eleqtrrid 2846 . . . . . 6 (𝐴 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1‘suc 𝐴))
6 r1elwf 9834 . . . . . 6 ((𝑅1𝐴) ∈ (𝑅1‘suc 𝐴) → (𝑅1𝐴) ∈ (𝑅1 “ On))
75, 6syl 17 . . . . 5 (𝐴 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1 “ On))
8 rankr1bg 9841 . . . . 5 (((𝑅1𝐴) ∈ (𝑅1 “ On) ∧ 𝐴 ∈ dom 𝑅1) → ((𝑅1𝐴) ⊆ (𝑅1𝐴) ↔ (rank‘(𝑅1𝐴)) ⊆ 𝐴))
97, 8mpancom 688 . . . 4 (𝐴 ∈ dom 𝑅1 → ((𝑅1𝐴) ⊆ (𝑅1𝐴) ↔ (rank‘(𝑅1𝐴)) ⊆ 𝐴))
101, 9mpbii 233 . . 3 (𝐴 ∈ dom 𝑅1 → (rank‘(𝑅1𝐴)) ⊆ 𝐴)
11 rankonid 9867 . . . . 5 (𝐴 ∈ dom 𝑅1 ↔ (rank‘𝐴) = 𝐴)
1211biimpi 216 . . . 4 (𝐴 ∈ dom 𝑅1 → (rank‘𝐴) = 𝐴)
13 onssr1 9869 . . . . 5 (𝐴 ∈ dom 𝑅1𝐴 ⊆ (𝑅1𝐴))
14 rankssb 9886 . . . . 5 ((𝑅1𝐴) ∈ (𝑅1 “ On) → (𝐴 ⊆ (𝑅1𝐴) → (rank‘𝐴) ⊆ (rank‘(𝑅1𝐴))))
157, 13, 14sylc 65 . . . 4 (𝐴 ∈ dom 𝑅1 → (rank‘𝐴) ⊆ (rank‘(𝑅1𝐴)))
1612, 15eqsstrrd 4035 . . 3 (𝐴 ∈ dom 𝑅1𝐴 ⊆ (rank‘(𝑅1𝐴)))
1710, 16eqssd 4013 . 2 (𝐴 ∈ dom 𝑅1 → (rank‘(𝑅1𝐴)) = 𝐴)
18 id 22 . . 3 ((rank‘(𝑅1𝐴)) = 𝐴 → (rank‘(𝑅1𝐴)) = 𝐴)
19 rankdmr1 9839 . . 3 (rank‘(𝑅1𝐴)) ∈ dom 𝑅1
2018, 19eqeltrrdi 2848 . 2 ((rank‘(𝑅1𝐴)) = 𝐴𝐴 ∈ dom 𝑅1)
2117, 20impbii 209 1 (𝐴 ∈ dom 𝑅1 ↔ (rank‘(𝑅1𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  wcel 2106  wss 3963  𝒫 cpw 4605   cuni 4912  dom cdm 5689  cima 5692  Oncon0 6386  suc csuc 6388  cfv 6563  𝑅1cr1 9800  rankcrnk 9801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-r1 9802  df-rank 9803
This theorem is referenced by:  rankuni  9901
  Copyright terms: Public domain W3C validator