MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankr1id Structured version   Visualization version   GIF version

Theorem rankr1id 9290
Description: The rank of the hierarchy of an ordinal number is itself. (Contributed by NM, 14-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankr1id (𝐴 ∈ dom 𝑅1 ↔ (rank‘(𝑅1𝐴)) = 𝐴)

Proof of Theorem rankr1id
StepHypRef Expression
1 ssid 3988 . . . 4 (𝑅1𝐴) ⊆ (𝑅1𝐴)
2 fvex 6682 . . . . . . . 8 (𝑅1𝐴) ∈ V
32pwid 4562 . . . . . . 7 (𝑅1𝐴) ∈ 𝒫 (𝑅1𝐴)
4 r1sucg 9197 . . . . . . 7 (𝐴 ∈ dom 𝑅1 → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1𝐴))
53, 4eleqtrrid 2920 . . . . . 6 (𝐴 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1‘suc 𝐴))
6 r1elwf 9224 . . . . . 6 ((𝑅1𝐴) ∈ (𝑅1‘suc 𝐴) → (𝑅1𝐴) ∈ (𝑅1 “ On))
75, 6syl 17 . . . . 5 (𝐴 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1 “ On))
8 rankr1bg 9231 . . . . 5 (((𝑅1𝐴) ∈ (𝑅1 “ On) ∧ 𝐴 ∈ dom 𝑅1) → ((𝑅1𝐴) ⊆ (𝑅1𝐴) ↔ (rank‘(𝑅1𝐴)) ⊆ 𝐴))
97, 8mpancom 686 . . . 4 (𝐴 ∈ dom 𝑅1 → ((𝑅1𝐴) ⊆ (𝑅1𝐴) ↔ (rank‘(𝑅1𝐴)) ⊆ 𝐴))
101, 9mpbii 235 . . 3 (𝐴 ∈ dom 𝑅1 → (rank‘(𝑅1𝐴)) ⊆ 𝐴)
11 rankonid 9257 . . . . 5 (𝐴 ∈ dom 𝑅1 ↔ (rank‘𝐴) = 𝐴)
1211biimpi 218 . . . 4 (𝐴 ∈ dom 𝑅1 → (rank‘𝐴) = 𝐴)
13 onssr1 9259 . . . . 5 (𝐴 ∈ dom 𝑅1𝐴 ⊆ (𝑅1𝐴))
14 rankssb 9276 . . . . 5 ((𝑅1𝐴) ∈ (𝑅1 “ On) → (𝐴 ⊆ (𝑅1𝐴) → (rank‘𝐴) ⊆ (rank‘(𝑅1𝐴))))
157, 13, 14sylc 65 . . . 4 (𝐴 ∈ dom 𝑅1 → (rank‘𝐴) ⊆ (rank‘(𝑅1𝐴)))
1612, 15eqsstrrd 4005 . . 3 (𝐴 ∈ dom 𝑅1𝐴 ⊆ (rank‘(𝑅1𝐴)))
1710, 16eqssd 3983 . 2 (𝐴 ∈ dom 𝑅1 → (rank‘(𝑅1𝐴)) = 𝐴)
18 id 22 . . 3 ((rank‘(𝑅1𝐴)) = 𝐴 → (rank‘(𝑅1𝐴)) = 𝐴)
19 rankdmr1 9229 . . 3 (rank‘(𝑅1𝐴)) ∈ dom 𝑅1
2018, 19eqeltrrdi 2922 . 2 ((rank‘(𝑅1𝐴)) = 𝐴𝐴 ∈ dom 𝑅1)
2117, 20impbii 211 1 (𝐴 ∈ dom 𝑅1 ↔ (rank‘(𝑅1𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 208   = wceq 1533  wcel 2110  wss 3935  𝒫 cpw 4538   cuni 4837  dom cdm 5554  cima 5557  Oncon0 6190  suc csuc 6192  cfv 6354  𝑅1cr1 9190  rankcrnk 9191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-om 7580  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-r1 9192  df-rank 9193
This theorem is referenced by:  rankuni  9291
  Copyright terms: Public domain W3C validator