MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankr1id Structured version   Visualization version   GIF version

Theorem rankr1id 9791
Description: The rank of the hierarchy of an ordinal number is itself. (Contributed by NM, 14-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankr1id (𝐴 ∈ dom 𝑅1 ↔ (rank‘(𝑅1𝐴)) = 𝐴)

Proof of Theorem rankr1id
StepHypRef Expression
1 ssid 3966 . . . 4 (𝑅1𝐴) ⊆ (𝑅1𝐴)
2 fvex 6853 . . . . . . . 8 (𝑅1𝐴) ∈ V
32pwid 4581 . . . . . . 7 (𝑅1𝐴) ∈ 𝒫 (𝑅1𝐴)
4 r1sucg 9698 . . . . . . 7 (𝐴 ∈ dom 𝑅1 → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1𝐴))
53, 4eleqtrrid 2835 . . . . . 6 (𝐴 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1‘suc 𝐴))
6 r1elwf 9725 . . . . . 6 ((𝑅1𝐴) ∈ (𝑅1‘suc 𝐴) → (𝑅1𝐴) ∈ (𝑅1 “ On))
75, 6syl 17 . . . . 5 (𝐴 ∈ dom 𝑅1 → (𝑅1𝐴) ∈ (𝑅1 “ On))
8 rankr1bg 9732 . . . . 5 (((𝑅1𝐴) ∈ (𝑅1 “ On) ∧ 𝐴 ∈ dom 𝑅1) → ((𝑅1𝐴) ⊆ (𝑅1𝐴) ↔ (rank‘(𝑅1𝐴)) ⊆ 𝐴))
97, 8mpancom 688 . . . 4 (𝐴 ∈ dom 𝑅1 → ((𝑅1𝐴) ⊆ (𝑅1𝐴) ↔ (rank‘(𝑅1𝐴)) ⊆ 𝐴))
101, 9mpbii 233 . . 3 (𝐴 ∈ dom 𝑅1 → (rank‘(𝑅1𝐴)) ⊆ 𝐴)
11 rankonid 9758 . . . . 5 (𝐴 ∈ dom 𝑅1 ↔ (rank‘𝐴) = 𝐴)
1211biimpi 216 . . . 4 (𝐴 ∈ dom 𝑅1 → (rank‘𝐴) = 𝐴)
13 onssr1 9760 . . . . 5 (𝐴 ∈ dom 𝑅1𝐴 ⊆ (𝑅1𝐴))
14 rankssb 9777 . . . . 5 ((𝑅1𝐴) ∈ (𝑅1 “ On) → (𝐴 ⊆ (𝑅1𝐴) → (rank‘𝐴) ⊆ (rank‘(𝑅1𝐴))))
157, 13, 14sylc 65 . . . 4 (𝐴 ∈ dom 𝑅1 → (rank‘𝐴) ⊆ (rank‘(𝑅1𝐴)))
1612, 15eqsstrrd 3979 . . 3 (𝐴 ∈ dom 𝑅1𝐴 ⊆ (rank‘(𝑅1𝐴)))
1710, 16eqssd 3961 . 2 (𝐴 ∈ dom 𝑅1 → (rank‘(𝑅1𝐴)) = 𝐴)
18 id 22 . . 3 ((rank‘(𝑅1𝐴)) = 𝐴 → (rank‘(𝑅1𝐴)) = 𝐴)
19 rankdmr1 9730 . . 3 (rank‘(𝑅1𝐴)) ∈ dom 𝑅1
2018, 19eqeltrrdi 2837 . 2 ((rank‘(𝑅1𝐴)) = 𝐴𝐴 ∈ dom 𝑅1)
2117, 20impbii 209 1 (𝐴 ∈ dom 𝑅1 ↔ (rank‘(𝑅1𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  wss 3911  𝒫 cpw 4559   cuni 4867  dom cdm 5631  cima 5634  Oncon0 6320  suc csuc 6322  cfv 6499  𝑅1cr1 9691  rankcrnk 9692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-r1 9693  df-rank 9694
This theorem is referenced by:  rankuni  9792
  Copyright terms: Public domain W3C validator