![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rankr1id | Structured version Visualization version GIF version |
Description: The rank of the hierarchy of an ordinal number is itself. (Contributed by NM, 14-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
rankr1id | β’ (π΄ β dom π 1 β (rankβ(π 1βπ΄)) = π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 4004 | . . . 4 β’ (π 1βπ΄) β (π 1βπ΄) | |
2 | fvex 6904 | . . . . . . . 8 β’ (π 1βπ΄) β V | |
3 | 2 | pwid 4624 | . . . . . . 7 β’ (π 1βπ΄) β π« (π 1βπ΄) |
4 | r1sucg 9766 | . . . . . . 7 β’ (π΄ β dom π 1 β (π 1βsuc π΄) = π« (π 1βπ΄)) | |
5 | 3, 4 | eleqtrrid 2840 | . . . . . 6 β’ (π΄ β dom π 1 β (π 1βπ΄) β (π 1βsuc π΄)) |
6 | r1elwf 9793 | . . . . . 6 β’ ((π 1βπ΄) β (π 1βsuc π΄) β (π 1βπ΄) β βͺ (π 1 β On)) | |
7 | 5, 6 | syl 17 | . . . . 5 β’ (π΄ β dom π 1 β (π 1βπ΄) β βͺ (π 1 β On)) |
8 | rankr1bg 9800 | . . . . 5 β’ (((π 1βπ΄) β βͺ (π 1 β On) β§ π΄ β dom π 1) β ((π 1βπ΄) β (π 1βπ΄) β (rankβ(π 1βπ΄)) β π΄)) | |
9 | 7, 8 | mpancom 686 | . . . 4 β’ (π΄ β dom π 1 β ((π 1βπ΄) β (π 1βπ΄) β (rankβ(π 1βπ΄)) β π΄)) |
10 | 1, 9 | mpbii 232 | . . 3 β’ (π΄ β dom π 1 β (rankβ(π 1βπ΄)) β π΄) |
11 | rankonid 9826 | . . . . 5 β’ (π΄ β dom π 1 β (rankβπ΄) = π΄) | |
12 | 11 | biimpi 215 | . . . 4 β’ (π΄ β dom π 1 β (rankβπ΄) = π΄) |
13 | onssr1 9828 | . . . . 5 β’ (π΄ β dom π 1 β π΄ β (π 1βπ΄)) | |
14 | rankssb 9845 | . . . . 5 β’ ((π 1βπ΄) β βͺ (π 1 β On) β (π΄ β (π 1βπ΄) β (rankβπ΄) β (rankβ(π 1βπ΄)))) | |
15 | 7, 13, 14 | sylc 65 | . . . 4 β’ (π΄ β dom π 1 β (rankβπ΄) β (rankβ(π 1βπ΄))) |
16 | 12, 15 | eqsstrrd 4021 | . . 3 β’ (π΄ β dom π 1 β π΄ β (rankβ(π 1βπ΄))) |
17 | 10, 16 | eqssd 3999 | . 2 β’ (π΄ β dom π 1 β (rankβ(π 1βπ΄)) = π΄) |
18 | id 22 | . . 3 β’ ((rankβ(π 1βπ΄)) = π΄ β (rankβ(π 1βπ΄)) = π΄) | |
19 | rankdmr1 9798 | . . 3 β’ (rankβ(π 1βπ΄)) β dom π 1 | |
20 | 18, 19 | eqeltrrdi 2842 | . 2 β’ ((rankβ(π 1βπ΄)) = π΄ β π΄ β dom π 1) |
21 | 17, 20 | impbii 208 | 1 β’ (π΄ β dom π 1 β (rankβ(π 1βπ΄)) = π΄) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 = wceq 1541 β wcel 2106 β wss 3948 π« cpw 4602 βͺ cuni 4908 dom cdm 5676 β cima 5679 Oncon0 6364 suc csuc 6366 βcfv 6543 π 1cr1 9759 rankcrnk 9760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-r1 9761 df-rank 9762 |
This theorem is referenced by: rankuni 9860 |
Copyright terms: Public domain | W3C validator |