Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rankr1id | Structured version Visualization version GIF version |
Description: The rank of the hierarchy of an ordinal number is itself. (Contributed by NM, 14-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
rankr1id | ⊢ (𝐴 ∈ dom 𝑅1 ↔ (rank‘(𝑅1‘𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3923 | . . . 4 ⊢ (𝑅1‘𝐴) ⊆ (𝑅1‘𝐴) | |
2 | fvex 6730 | . . . . . . . 8 ⊢ (𝑅1‘𝐴) ∈ V | |
3 | 2 | pwid 4537 | . . . . . . 7 ⊢ (𝑅1‘𝐴) ∈ 𝒫 (𝑅1‘𝐴) |
4 | r1sucg 9385 | . . . . . . 7 ⊢ (𝐴 ∈ dom 𝑅1 → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1‘𝐴)) | |
5 | 3, 4 | eleqtrrid 2845 | . . . . . 6 ⊢ (𝐴 ∈ dom 𝑅1 → (𝑅1‘𝐴) ∈ (𝑅1‘suc 𝐴)) |
6 | r1elwf 9412 | . . . . . 6 ⊢ ((𝑅1‘𝐴) ∈ (𝑅1‘suc 𝐴) → (𝑅1‘𝐴) ∈ ∪ (𝑅1 “ On)) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ dom 𝑅1 → (𝑅1‘𝐴) ∈ ∪ (𝑅1 “ On)) |
8 | rankr1bg 9419 | . . . . 5 ⊢ (((𝑅1‘𝐴) ∈ ∪ (𝑅1 “ On) ∧ 𝐴 ∈ dom 𝑅1) → ((𝑅1‘𝐴) ⊆ (𝑅1‘𝐴) ↔ (rank‘(𝑅1‘𝐴)) ⊆ 𝐴)) | |
9 | 7, 8 | mpancom 688 | . . . 4 ⊢ (𝐴 ∈ dom 𝑅1 → ((𝑅1‘𝐴) ⊆ (𝑅1‘𝐴) ↔ (rank‘(𝑅1‘𝐴)) ⊆ 𝐴)) |
10 | 1, 9 | mpbii 236 | . . 3 ⊢ (𝐴 ∈ dom 𝑅1 → (rank‘(𝑅1‘𝐴)) ⊆ 𝐴) |
11 | rankonid 9445 | . . . . 5 ⊢ (𝐴 ∈ dom 𝑅1 ↔ (rank‘𝐴) = 𝐴) | |
12 | 11 | biimpi 219 | . . . 4 ⊢ (𝐴 ∈ dom 𝑅1 → (rank‘𝐴) = 𝐴) |
13 | onssr1 9447 | . . . . 5 ⊢ (𝐴 ∈ dom 𝑅1 → 𝐴 ⊆ (𝑅1‘𝐴)) | |
14 | rankssb 9464 | . . . . 5 ⊢ ((𝑅1‘𝐴) ∈ ∪ (𝑅1 “ On) → (𝐴 ⊆ (𝑅1‘𝐴) → (rank‘𝐴) ⊆ (rank‘(𝑅1‘𝐴)))) | |
15 | 7, 13, 14 | sylc 65 | . . . 4 ⊢ (𝐴 ∈ dom 𝑅1 → (rank‘𝐴) ⊆ (rank‘(𝑅1‘𝐴))) |
16 | 12, 15 | eqsstrrd 3940 | . . 3 ⊢ (𝐴 ∈ dom 𝑅1 → 𝐴 ⊆ (rank‘(𝑅1‘𝐴))) |
17 | 10, 16 | eqssd 3918 | . 2 ⊢ (𝐴 ∈ dom 𝑅1 → (rank‘(𝑅1‘𝐴)) = 𝐴) |
18 | id 22 | . . 3 ⊢ ((rank‘(𝑅1‘𝐴)) = 𝐴 → (rank‘(𝑅1‘𝐴)) = 𝐴) | |
19 | rankdmr1 9417 | . . 3 ⊢ (rank‘(𝑅1‘𝐴)) ∈ dom 𝑅1 | |
20 | 18, 19 | eqeltrrdi 2847 | . 2 ⊢ ((rank‘(𝑅1‘𝐴)) = 𝐴 → 𝐴 ∈ dom 𝑅1) |
21 | 17, 20 | impbii 212 | 1 ⊢ (𝐴 ∈ dom 𝑅1 ↔ (rank‘(𝑅1‘𝐴)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 = wceq 1543 ∈ wcel 2110 ⊆ wss 3866 𝒫 cpw 4513 ∪ cuni 4819 dom cdm 5551 “ cima 5554 Oncon0 6213 suc csuc 6215 ‘cfv 6380 𝑅1cr1 9378 rankcrnk 9379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-om 7645 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-r1 9380 df-rank 9381 |
This theorem is referenced by: rankuni 9479 |
Copyright terms: Public domain | W3C validator |