![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rankr1id | Structured version Visualization version GIF version |
Description: The rank of the hierarchy of an ordinal number is itself. (Contributed by NM, 14-Oct-2003.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
rankr1id | ⊢ (𝐴 ∈ dom 𝑅1 ↔ (rank‘(𝑅1‘𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3879 | . . . 4 ⊢ (𝑅1‘𝐴) ⊆ (𝑅1‘𝐴) | |
2 | fvex 6512 | . . . . . . . 8 ⊢ (𝑅1‘𝐴) ∈ V | |
3 | 2 | pwid 4438 | . . . . . . 7 ⊢ (𝑅1‘𝐴) ∈ 𝒫 (𝑅1‘𝐴) |
4 | r1sucg 8992 | . . . . . . 7 ⊢ (𝐴 ∈ dom 𝑅1 → (𝑅1‘suc 𝐴) = 𝒫 (𝑅1‘𝐴)) | |
5 | 3, 4 | syl5eleqr 2873 | . . . . . 6 ⊢ (𝐴 ∈ dom 𝑅1 → (𝑅1‘𝐴) ∈ (𝑅1‘suc 𝐴)) |
6 | r1elwf 9019 | . . . . . 6 ⊢ ((𝑅1‘𝐴) ∈ (𝑅1‘suc 𝐴) → (𝑅1‘𝐴) ∈ ∪ (𝑅1 “ On)) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ dom 𝑅1 → (𝑅1‘𝐴) ∈ ∪ (𝑅1 “ On)) |
8 | rankr1bg 9026 | . . . . 5 ⊢ (((𝑅1‘𝐴) ∈ ∪ (𝑅1 “ On) ∧ 𝐴 ∈ dom 𝑅1) → ((𝑅1‘𝐴) ⊆ (𝑅1‘𝐴) ↔ (rank‘(𝑅1‘𝐴)) ⊆ 𝐴)) | |
9 | 7, 8 | mpancom 675 | . . . 4 ⊢ (𝐴 ∈ dom 𝑅1 → ((𝑅1‘𝐴) ⊆ (𝑅1‘𝐴) ↔ (rank‘(𝑅1‘𝐴)) ⊆ 𝐴)) |
10 | 1, 9 | mpbii 225 | . . 3 ⊢ (𝐴 ∈ dom 𝑅1 → (rank‘(𝑅1‘𝐴)) ⊆ 𝐴) |
11 | rankonid 9052 | . . . . 5 ⊢ (𝐴 ∈ dom 𝑅1 ↔ (rank‘𝐴) = 𝐴) | |
12 | 11 | biimpi 208 | . . . 4 ⊢ (𝐴 ∈ dom 𝑅1 → (rank‘𝐴) = 𝐴) |
13 | onssr1 9054 | . . . . 5 ⊢ (𝐴 ∈ dom 𝑅1 → 𝐴 ⊆ (𝑅1‘𝐴)) | |
14 | rankssb 9071 | . . . . 5 ⊢ ((𝑅1‘𝐴) ∈ ∪ (𝑅1 “ On) → (𝐴 ⊆ (𝑅1‘𝐴) → (rank‘𝐴) ⊆ (rank‘(𝑅1‘𝐴)))) | |
15 | 7, 13, 14 | sylc 65 | . . . 4 ⊢ (𝐴 ∈ dom 𝑅1 → (rank‘𝐴) ⊆ (rank‘(𝑅1‘𝐴))) |
16 | 12, 15 | eqsstr3d 3896 | . . 3 ⊢ (𝐴 ∈ dom 𝑅1 → 𝐴 ⊆ (rank‘(𝑅1‘𝐴))) |
17 | 10, 16 | eqssd 3875 | . 2 ⊢ (𝐴 ∈ dom 𝑅1 → (rank‘(𝑅1‘𝐴)) = 𝐴) |
18 | id 22 | . . 3 ⊢ ((rank‘(𝑅1‘𝐴)) = 𝐴 → (rank‘(𝑅1‘𝐴)) = 𝐴) | |
19 | rankdmr1 9024 | . . 3 ⊢ (rank‘(𝑅1‘𝐴)) ∈ dom 𝑅1 | |
20 | 18, 19 | syl6eqelr 2875 | . 2 ⊢ ((rank‘(𝑅1‘𝐴)) = 𝐴 → 𝐴 ∈ dom 𝑅1) |
21 | 17, 20 | impbii 201 | 1 ⊢ (𝐴 ∈ dom 𝑅1 ↔ (rank‘(𝑅1‘𝐴)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 = wceq 1507 ∈ wcel 2050 ⊆ wss 3829 𝒫 cpw 4422 ∪ cuni 4712 dom cdm 5407 “ cima 5410 Oncon0 6029 suc csuc 6031 ‘cfv 6188 𝑅1cr1 8985 rankcrnk 8986 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-ral 3093 df-rex 3094 df-reu 3095 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-pss 3845 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-int 4750 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-om 7397 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-r1 8987 df-rank 8988 |
This theorem is referenced by: rankuni 9086 |
Copyright terms: Public domain | W3C validator |