Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccllysconn Structured version   Visualization version   GIF version

Theorem iccllysconn 35255
Description: A closed interval is locally simply connected. (Contributed by Mario Carneiro, 10-Mar-2015.)
Assertion
Ref Expression
iccllysconn ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Locally SConn)

Proof of Theorem iccllysconn
Dummy variables 𝑎 𝑏 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 771 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → 𝑥 ∈ (topGen‘ran (,)))
2 inss1 4237 . . . . . 6 (𝑥 ∩ (𝐴[,]𝐵)) ⊆ 𝑥
3 simprr 773 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))
42, 3sselid 3981 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → 𝑦𝑥)
5 tg2 22972 . . . . 5 ((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦𝑥) → ∃𝑧 ∈ ran (,)(𝑦𝑧𝑧𝑥))
61, 4, 5syl2anc 584 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → ∃𝑧 ∈ ran (,)(𝑦𝑧𝑧𝑥))
7 ioof 13487 . . . . . . . 8 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
8 ffn 6736 . . . . . . . 8 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
9 ovelrn 7609 . . . . . . . 8 ((,) Fn (ℝ* × ℝ*) → (𝑧 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏)))
107, 8, 9mp2b 10 . . . . . . 7 (𝑧 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏))
11 inss1 4237 . . . . . . . . . . . 12 (𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑧
12 simprrr 782 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → 𝑧𝑥)
1311, 12sstrid 3995 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → (𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥)
14 simprrl 781 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → 𝑦𝑧)
15 simprl 771 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → 𝑧 = (𝑎(,)𝑏))
1615ineq1d 4219 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → (𝑧 ∩ (𝐴[,]𝐵)) = ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)))
1716oveq2d 7447 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) = ((topGen‘ran (,)) ↾t ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))))
18 ioosconn 35252 . . . . . . . . . . . . . . . 16 ((topGen‘ran (,)) ↾t (𝑎(,)𝑏)) ∈ SConn
19 ioossre 13448 . . . . . . . . . . . . . . . . 17 (𝑎(,)𝑏) ⊆ ℝ
20 eqid 2737 . . . . . . . . . . . . . . . . . . 19 ((topGen‘ran (,)) ↾t (𝑎(,)𝑏)) = ((topGen‘ran (,)) ↾t (𝑎(,)𝑏))
2120resconn 35251 . . . . . . . . . . . . . . . . . 18 ((𝑎(,)𝑏) ⊆ ℝ → (((topGen‘ran (,)) ↾t (𝑎(,)𝑏)) ∈ SConn ↔ ((topGen‘ran (,)) ↾t (𝑎(,)𝑏)) ∈ Conn))
22 reconn 24850 . . . . . . . . . . . . . . . . . 18 ((𝑎(,)𝑏) ⊆ ℝ → (((topGen‘ran (,)) ↾t (𝑎(,)𝑏)) ∈ Conn ↔ ∀𝑢 ∈ (𝑎(,)𝑏)∀𝑣 ∈ (𝑎(,)𝑏)(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏)))
2321, 22bitrd 279 . . . . . . . . . . . . . . . . 17 ((𝑎(,)𝑏) ⊆ ℝ → (((topGen‘ran (,)) ↾t (𝑎(,)𝑏)) ∈ SConn ↔ ∀𝑢 ∈ (𝑎(,)𝑏)∀𝑣 ∈ (𝑎(,)𝑏)(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏)))
2419, 23ax-mp 5 . . . . . . . . . . . . . . . 16 (((topGen‘ran (,)) ↾t (𝑎(,)𝑏)) ∈ SConn ↔ ∀𝑢 ∈ (𝑎(,)𝑏)∀𝑣 ∈ (𝑎(,)𝑏)(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏))
2518, 24mpbi 230 . . . . . . . . . . . . . . 15 𝑢 ∈ (𝑎(,)𝑏)∀𝑣 ∈ (𝑎(,)𝑏)(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏)
26 inss1 4237 . . . . . . . . . . . . . . . 16 ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ (𝑎(,)𝑏)
27 ssralv 4052 . . . . . . . . . . . . . . . . . 18 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ (𝑎(,)𝑏) → (∀𝑣 ∈ (𝑎(,)𝑏)(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏) → ∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏)))
2827ralimdv 3169 . . . . . . . . . . . . . . . . 17 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ (𝑎(,)𝑏) → (∀𝑢 ∈ (𝑎(,)𝑏)∀𝑣 ∈ (𝑎(,)𝑏)(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏) → ∀𝑢 ∈ (𝑎(,)𝑏)∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏)))
29 ssralv 4052 . . . . . . . . . . . . . . . . 17 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ (𝑎(,)𝑏) → (∀𝑢 ∈ (𝑎(,)𝑏)∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏) → ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏)))
3028, 29syld 47 . . . . . . . . . . . . . . . 16 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ (𝑎(,)𝑏) → (∀𝑢 ∈ (𝑎(,)𝑏)∀𝑣 ∈ (𝑎(,)𝑏)(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏) → ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏)))
3126, 30ax-mp 5 . . . . . . . . . . . . . . 15 (∀𝑢 ∈ (𝑎(,)𝑏)∀𝑣 ∈ (𝑎(,)𝑏)(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏) → ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏))
3225, 31mp1i 13 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏))
33 inss2 4238 . . . . . . . . . . . . . . 15 ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ (𝐴[,]𝐵)
34 iccconn 24852 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Conn)
35 iccssre 13469 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
36 reconn 24850 . . . . . . . . . . . . . . . . . 18 ((𝐴[,]𝐵) ⊆ ℝ → (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Conn ↔ ∀𝑢 ∈ (𝐴[,]𝐵)∀𝑣 ∈ (𝐴[,]𝐵)(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)))
3735, 36syl 17 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Conn ↔ ∀𝑢 ∈ (𝐴[,]𝐵)∀𝑣 ∈ (𝐴[,]𝐵)(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)))
3834, 37mpbid 232 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∀𝑢 ∈ (𝐴[,]𝐵)∀𝑣 ∈ (𝐴[,]𝐵)(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵))
3938ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → ∀𝑢 ∈ (𝐴[,]𝐵)∀𝑣 ∈ (𝐴[,]𝐵)(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵))
40 ssralv 4052 . . . . . . . . . . . . . . . . 17 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ (𝐴[,]𝐵) → (∀𝑣 ∈ (𝐴[,]𝐵)(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵) → ∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)))
4140ralimdv 3169 . . . . . . . . . . . . . . . 16 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ (𝐴[,]𝐵) → (∀𝑢 ∈ (𝐴[,]𝐵)∀𝑣 ∈ (𝐴[,]𝐵)(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵) → ∀𝑢 ∈ (𝐴[,]𝐵)∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)))
42 ssralv 4052 . . . . . . . . . . . . . . . 16 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ (𝐴[,]𝐵) → (∀𝑢 ∈ (𝐴[,]𝐵)∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵) → ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)))
4341, 42syld 47 . . . . . . . . . . . . . . 15 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ (𝐴[,]𝐵) → (∀𝑢 ∈ (𝐴[,]𝐵)∀𝑣 ∈ (𝐴[,]𝐵)(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵) → ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)))
4433, 39, 43mpsyl 68 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵))
45 ssin 4239 . . . . . . . . . . . . . . . 16 (((𝑢[,]𝑣) ⊆ (𝑎(,)𝑏) ∧ (𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)) ↔ (𝑢[,]𝑣) ⊆ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)))
46452ralbii 3128 . . . . . . . . . . . . . . 15 (∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))((𝑢[,]𝑣) ⊆ (𝑎(,)𝑏) ∧ (𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)) ↔ ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)))
47 r19.26-2 3138 . . . . . . . . . . . . . . 15 (∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))((𝑢[,]𝑣) ⊆ (𝑎(,)𝑏) ∧ (𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)) ↔ (∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏) ∧ ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)))
4846, 47bitr3i 277 . . . . . . . . . . . . . 14 (∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ↔ (∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏) ∧ ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)))
4932, 44, 48sylanbrc 583 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)))
5026, 19sstri 3993 . . . . . . . . . . . . . 14 ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ ℝ
51 eqid 2737 . . . . . . . . . . . . . . . 16 ((topGen‘ran (,)) ↾t ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))) = ((topGen‘ran (,)) ↾t ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)))
5251resconn 35251 . . . . . . . . . . . . . . 15 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ ℝ → (((topGen‘ran (,)) ↾t ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))) ∈ SConn ↔ ((topGen‘ran (,)) ↾t ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))) ∈ Conn))
53 reconn 24850 . . . . . . . . . . . . . . 15 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ ℝ → (((topGen‘ran (,)) ↾t ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))) ∈ Conn ↔ ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))))
5452, 53bitrd 279 . . . . . . . . . . . . . 14 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ ℝ → (((topGen‘ran (,)) ↾t ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))) ∈ SConn ↔ ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))))
5550, 54ax-mp 5 . . . . . . . . . . . . 13 (((topGen‘ran (,)) ↾t ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))) ∈ SConn ↔ ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)))
5649, 55sylibr 234 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → ((topGen‘ran (,)) ↾t ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))) ∈ SConn)
5717, 56eqeltrd 2841 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn)
5813, 14, 573jca 1129 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → ((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn))
5958exp32 420 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → (𝑧 = (𝑎(,)𝑏) → ((𝑦𝑧𝑧𝑥) → ((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn))))
6059rexlimdvw 3160 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → (∃𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏) → ((𝑦𝑧𝑧𝑥) → ((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn))))
6160rexlimdvw 3160 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → (∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏) → ((𝑦𝑧𝑧𝑥) → ((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn))))
6210, 61biimtrid 242 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → (𝑧 ∈ ran (,) → ((𝑦𝑧𝑧𝑥) → ((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn))))
6362reximdvai 3165 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → (∃𝑧 ∈ ran (,)(𝑦𝑧𝑧𝑥) → ∃𝑧 ∈ ran (,)((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn)))
64 retopbas 24781 . . . . . 6 ran (,) ∈ TopBases
65 bastg 22973 . . . . . 6 (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,)))
66 ssrexv 4053 . . . . . 6 (ran (,) ⊆ (topGen‘ran (,)) → (∃𝑧 ∈ ran (,)((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn) → ∃𝑧 ∈ (topGen‘ran (,))((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn)))
6764, 65, 66mp2b 10 . . . . 5 (∃𝑧 ∈ ran (,)((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn) → ∃𝑧 ∈ (topGen‘ran (,))((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn))
6863, 67syl6 35 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → (∃𝑧 ∈ ran (,)(𝑦𝑧𝑧𝑥) → ∃𝑧 ∈ (topGen‘ran (,))((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn)))
696, 68mpd 15 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → ∃𝑧 ∈ (topGen‘ran (,))((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn))
7069ralrimivva 3202 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∀𝑥 ∈ (topGen‘ran (,))∀𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵))∃𝑧 ∈ (topGen‘ran (,))((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn))
71 retop 24782 . . 3 (topGen‘ran (,)) ∈ Top
72 ovex 7464 . . 3 (𝐴[,]𝐵) ∈ V
73 subislly 23489 . . 3 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ∈ V) → (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Locally SConn ↔ ∀𝑥 ∈ (topGen‘ran (,))∀𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵))∃𝑧 ∈ (topGen‘ran (,))((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn)))
7471, 72, 73mp2an 692 . 2 (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Locally SConn ↔ ∀𝑥 ∈ (topGen‘ran (,))∀𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵))∃𝑧 ∈ (topGen‘ran (,))((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn))
7570, 74sylibr 234 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Locally SConn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  wrex 3070  Vcvv 3480  cin 3950  wss 3951  𝒫 cpw 4600   × cxp 5683  ran crn 5686   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  cr 11154  *cxr 11294  (,)cioo 13387  [,]cicc 13390  t crest 17465  topGenctg 17482  Topctop 22899  TopBasesctb 22952  Conncconn 23419  Locally clly 23472  SConncsconn 35225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-cn 23235  df-cnp 23236  df-conn 23420  df-lly 23474  df-tx 23570  df-hmeo 23763  df-xms 24330  df-ms 24331  df-tms 24332  df-ii 24903  df-cncf 24904  df-htpy 25002  df-phtpy 25003  df-phtpc 25024  df-pconn 35226  df-sconn 35227
This theorem is referenced by:  iillysconn  35258
  Copyright terms: Public domain W3C validator