Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccllysconn Structured version   Visualization version   GIF version

Theorem iccllysconn 33844
Description: A closed interval is locally simply connected. (Contributed by Mario Carneiro, 10-Mar-2015.)
Assertion
Ref Expression
iccllysconn ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Locally SConn)

Proof of Theorem iccllysconn
Dummy variables 𝑎 𝑏 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 769 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → 𝑥 ∈ (topGen‘ran (,)))
2 inss1 4188 . . . . . 6 (𝑥 ∩ (𝐴[,]𝐵)) ⊆ 𝑥
3 simprr 771 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))
42, 3sselid 3942 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → 𝑦𝑥)
5 tg2 22315 . . . . 5 ((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦𝑥) → ∃𝑧 ∈ ran (,)(𝑦𝑧𝑧𝑥))
61, 4, 5syl2anc 584 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → ∃𝑧 ∈ ran (,)(𝑦𝑧𝑧𝑥))
7 ioof 13364 . . . . . . . 8 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
8 ffn 6668 . . . . . . . 8 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
9 ovelrn 7530 . . . . . . . 8 ((,) Fn (ℝ* × ℝ*) → (𝑧 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏)))
107, 8, 9mp2b 10 . . . . . . 7 (𝑧 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏))
11 inss1 4188 . . . . . . . . . . . 12 (𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑧
12 simprrr 780 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → 𝑧𝑥)
1311, 12sstrid 3955 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → (𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥)
14 simprrl 779 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → 𝑦𝑧)
15 simprl 769 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → 𝑧 = (𝑎(,)𝑏))
1615ineq1d 4171 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → (𝑧 ∩ (𝐴[,]𝐵)) = ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)))
1716oveq2d 7373 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) = ((topGen‘ran (,)) ↾t ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))))
18 ioosconn 33841 . . . . . . . . . . . . . . . 16 ((topGen‘ran (,)) ↾t (𝑎(,)𝑏)) ∈ SConn
19 ioossre 13325 . . . . . . . . . . . . . . . . 17 (𝑎(,)𝑏) ⊆ ℝ
20 eqid 2736 . . . . . . . . . . . . . . . . . . 19 ((topGen‘ran (,)) ↾t (𝑎(,)𝑏)) = ((topGen‘ran (,)) ↾t (𝑎(,)𝑏))
2120resconn 33840 . . . . . . . . . . . . . . . . . 18 ((𝑎(,)𝑏) ⊆ ℝ → (((topGen‘ran (,)) ↾t (𝑎(,)𝑏)) ∈ SConn ↔ ((topGen‘ran (,)) ↾t (𝑎(,)𝑏)) ∈ Conn))
22 reconn 24191 . . . . . . . . . . . . . . . . . 18 ((𝑎(,)𝑏) ⊆ ℝ → (((topGen‘ran (,)) ↾t (𝑎(,)𝑏)) ∈ Conn ↔ ∀𝑢 ∈ (𝑎(,)𝑏)∀𝑣 ∈ (𝑎(,)𝑏)(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏)))
2321, 22bitrd 278 . . . . . . . . . . . . . . . . 17 ((𝑎(,)𝑏) ⊆ ℝ → (((topGen‘ran (,)) ↾t (𝑎(,)𝑏)) ∈ SConn ↔ ∀𝑢 ∈ (𝑎(,)𝑏)∀𝑣 ∈ (𝑎(,)𝑏)(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏)))
2419, 23ax-mp 5 . . . . . . . . . . . . . . . 16 (((topGen‘ran (,)) ↾t (𝑎(,)𝑏)) ∈ SConn ↔ ∀𝑢 ∈ (𝑎(,)𝑏)∀𝑣 ∈ (𝑎(,)𝑏)(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏))
2518, 24mpbi 229 . . . . . . . . . . . . . . 15 𝑢 ∈ (𝑎(,)𝑏)∀𝑣 ∈ (𝑎(,)𝑏)(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏)
26 inss1 4188 . . . . . . . . . . . . . . . 16 ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ (𝑎(,)𝑏)
27 ssralv 4010 . . . . . . . . . . . . . . . . . 18 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ (𝑎(,)𝑏) → (∀𝑣 ∈ (𝑎(,)𝑏)(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏) → ∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏)))
2827ralimdv 3166 . . . . . . . . . . . . . . . . 17 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ (𝑎(,)𝑏) → (∀𝑢 ∈ (𝑎(,)𝑏)∀𝑣 ∈ (𝑎(,)𝑏)(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏) → ∀𝑢 ∈ (𝑎(,)𝑏)∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏)))
29 ssralv 4010 . . . . . . . . . . . . . . . . 17 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ (𝑎(,)𝑏) → (∀𝑢 ∈ (𝑎(,)𝑏)∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏) → ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏)))
3028, 29syld 47 . . . . . . . . . . . . . . . 16 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ (𝑎(,)𝑏) → (∀𝑢 ∈ (𝑎(,)𝑏)∀𝑣 ∈ (𝑎(,)𝑏)(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏) → ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏)))
3126, 30ax-mp 5 . . . . . . . . . . . . . . 15 (∀𝑢 ∈ (𝑎(,)𝑏)∀𝑣 ∈ (𝑎(,)𝑏)(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏) → ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏))
3225, 31mp1i 13 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏))
33 inss2 4189 . . . . . . . . . . . . . . 15 ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ (𝐴[,]𝐵)
34 iccconn 24193 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Conn)
35 iccssre 13346 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
36 reconn 24191 . . . . . . . . . . . . . . . . . 18 ((𝐴[,]𝐵) ⊆ ℝ → (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Conn ↔ ∀𝑢 ∈ (𝐴[,]𝐵)∀𝑣 ∈ (𝐴[,]𝐵)(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)))
3735, 36syl 17 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Conn ↔ ∀𝑢 ∈ (𝐴[,]𝐵)∀𝑣 ∈ (𝐴[,]𝐵)(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)))
3834, 37mpbid 231 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∀𝑢 ∈ (𝐴[,]𝐵)∀𝑣 ∈ (𝐴[,]𝐵)(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵))
3938ad2antrr 724 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → ∀𝑢 ∈ (𝐴[,]𝐵)∀𝑣 ∈ (𝐴[,]𝐵)(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵))
40 ssralv 4010 . . . . . . . . . . . . . . . . 17 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ (𝐴[,]𝐵) → (∀𝑣 ∈ (𝐴[,]𝐵)(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵) → ∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)))
4140ralimdv 3166 . . . . . . . . . . . . . . . 16 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ (𝐴[,]𝐵) → (∀𝑢 ∈ (𝐴[,]𝐵)∀𝑣 ∈ (𝐴[,]𝐵)(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵) → ∀𝑢 ∈ (𝐴[,]𝐵)∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)))
42 ssralv 4010 . . . . . . . . . . . . . . . 16 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ (𝐴[,]𝐵) → (∀𝑢 ∈ (𝐴[,]𝐵)∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵) → ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)))
4341, 42syld 47 . . . . . . . . . . . . . . 15 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ (𝐴[,]𝐵) → (∀𝑢 ∈ (𝐴[,]𝐵)∀𝑣 ∈ (𝐴[,]𝐵)(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵) → ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)))
4433, 39, 43mpsyl 68 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵))
45 ssin 4190 . . . . . . . . . . . . . . . 16 (((𝑢[,]𝑣) ⊆ (𝑎(,)𝑏) ∧ (𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)) ↔ (𝑢[,]𝑣) ⊆ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)))
46452ralbii 3127 . . . . . . . . . . . . . . 15 (∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))((𝑢[,]𝑣) ⊆ (𝑎(,)𝑏) ∧ (𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)) ↔ ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)))
47 r19.26-2 3135 . . . . . . . . . . . . . . 15 (∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))((𝑢[,]𝑣) ⊆ (𝑎(,)𝑏) ∧ (𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)) ↔ (∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏) ∧ ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)))
4846, 47bitr3i 276 . . . . . . . . . . . . . 14 (∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ↔ (∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏) ∧ ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)))
4932, 44, 48sylanbrc 583 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)))
5026, 19sstri 3953 . . . . . . . . . . . . . 14 ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ ℝ
51 eqid 2736 . . . . . . . . . . . . . . . 16 ((topGen‘ran (,)) ↾t ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))) = ((topGen‘ran (,)) ↾t ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)))
5251resconn 33840 . . . . . . . . . . . . . . 15 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ ℝ → (((topGen‘ran (,)) ↾t ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))) ∈ SConn ↔ ((topGen‘ran (,)) ↾t ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))) ∈ Conn))
53 reconn 24191 . . . . . . . . . . . . . . 15 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ ℝ → (((topGen‘ran (,)) ↾t ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))) ∈ Conn ↔ ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))))
5452, 53bitrd 278 . . . . . . . . . . . . . 14 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ ℝ → (((topGen‘ran (,)) ↾t ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))) ∈ SConn ↔ ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))))
5550, 54ax-mp 5 . . . . . . . . . . . . 13 (((topGen‘ran (,)) ↾t ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))) ∈ SConn ↔ ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)))
5649, 55sylibr 233 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → ((topGen‘ran (,)) ↾t ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))) ∈ SConn)
5717, 56eqeltrd 2838 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn)
5813, 14, 573jca 1128 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → ((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn))
5958exp32 421 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → (𝑧 = (𝑎(,)𝑏) → ((𝑦𝑧𝑧𝑥) → ((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn))))
6059rexlimdvw 3157 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → (∃𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏) → ((𝑦𝑧𝑧𝑥) → ((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn))))
6160rexlimdvw 3157 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → (∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏) → ((𝑦𝑧𝑧𝑥) → ((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn))))
6210, 61biimtrid 241 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → (𝑧 ∈ ran (,) → ((𝑦𝑧𝑧𝑥) → ((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn))))
6362reximdvai 3162 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → (∃𝑧 ∈ ran (,)(𝑦𝑧𝑧𝑥) → ∃𝑧 ∈ ran (,)((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn)))
64 retopbas 24124 . . . . . 6 ran (,) ∈ TopBases
65 bastg 22316 . . . . . 6 (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,)))
66 ssrexv 4011 . . . . . 6 (ran (,) ⊆ (topGen‘ran (,)) → (∃𝑧 ∈ ran (,)((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn) → ∃𝑧 ∈ (topGen‘ran (,))((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn)))
6764, 65, 66mp2b 10 . . . . 5 (∃𝑧 ∈ ran (,)((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn) → ∃𝑧 ∈ (topGen‘ran (,))((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn))
6863, 67syl6 35 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → (∃𝑧 ∈ ran (,)(𝑦𝑧𝑧𝑥) → ∃𝑧 ∈ (topGen‘ran (,))((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn)))
696, 68mpd 15 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → ∃𝑧 ∈ (topGen‘ran (,))((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn))
7069ralrimivva 3197 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∀𝑥 ∈ (topGen‘ran (,))∀𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵))∃𝑧 ∈ (topGen‘ran (,))((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn))
71 retop 24125 . . 3 (topGen‘ran (,)) ∈ Top
72 ovex 7390 . . 3 (𝐴[,]𝐵) ∈ V
73 subislly 22832 . . 3 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ∈ V) → (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Locally SConn ↔ ∀𝑥 ∈ (topGen‘ran (,))∀𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵))∃𝑧 ∈ (topGen‘ran (,))((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn)))
7471, 72, 73mp2an 690 . 2 (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Locally SConn ↔ ∀𝑥 ∈ (topGen‘ran (,))∀𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵))∃𝑧 ∈ (topGen‘ran (,))((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn))
7570, 74sylibr 233 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Locally SConn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  wrex 3073  Vcvv 3445  cin 3909  wss 3910  𝒫 cpw 4560   × cxp 5631  ran crn 5634   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  cr 11050  *cxr 11188  (,)cioo 13264  [,]cicc 13267  t crest 17302  topGenctg 17319  Topctop 22242  TopBasesctb 22295  Conncconn 22762  Locally clly 22815  SConncsconn 33814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-cn 22578  df-cnp 22579  df-conn 22763  df-lly 22817  df-tx 22913  df-hmeo 23106  df-xms 23673  df-ms 23674  df-tms 23675  df-ii 24240  df-htpy 24333  df-phtpy 24334  df-phtpc 24355  df-pconn 33815  df-sconn 33816
This theorem is referenced by:  iillysconn  33847
  Copyright terms: Public domain W3C validator