Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccllysconn Structured version   Visualization version   GIF version

Theorem iccllysconn 32394
Description: A closed interval is locally simply connected. (Contributed by Mario Carneiro, 10-Mar-2015.)
Assertion
Ref Expression
iccllysconn ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Locally SConn)

Proof of Theorem iccllysconn
Dummy variables 𝑎 𝑏 𝑢 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 767 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → 𝑥 ∈ (topGen‘ran (,)))
2 inss1 4202 . . . . . 6 (𝑥 ∩ (𝐴[,]𝐵)) ⊆ 𝑥
3 simprr 769 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))
42, 3sseldi 3962 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → 𝑦𝑥)
5 tg2 21501 . . . . 5 ((𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦𝑥) → ∃𝑧 ∈ ran (,)(𝑦𝑧𝑧𝑥))
61, 4, 5syl2anc 584 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → ∃𝑧 ∈ ran (,)(𝑦𝑧𝑧𝑥))
7 ioof 12823 . . . . . . . 8 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
8 ffn 6507 . . . . . . . 8 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
9 ovelrn 7313 . . . . . . . 8 ((,) Fn (ℝ* × ℝ*) → (𝑧 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏)))
107, 8, 9mp2b 10 . . . . . . 7 (𝑧 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏))
11 inss1 4202 . . . . . . . . . . . 12 (𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑧
12 simprrr 778 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → 𝑧𝑥)
1311, 12sstrid 3975 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → (𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥)
14 simprrl 777 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → 𝑦𝑧)
15 simprl 767 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → 𝑧 = (𝑎(,)𝑏))
1615ineq1d 4185 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → (𝑧 ∩ (𝐴[,]𝐵)) = ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)))
1716oveq2d 7161 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) = ((topGen‘ran (,)) ↾t ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))))
18 ioosconn 32391 . . . . . . . . . . . . . . . 16 ((topGen‘ran (,)) ↾t (𝑎(,)𝑏)) ∈ SConn
19 ioossre 12786 . . . . . . . . . . . . . . . . 17 (𝑎(,)𝑏) ⊆ ℝ
20 eqid 2818 . . . . . . . . . . . . . . . . . . 19 ((topGen‘ran (,)) ↾t (𝑎(,)𝑏)) = ((topGen‘ran (,)) ↾t (𝑎(,)𝑏))
2120resconn 32390 . . . . . . . . . . . . . . . . . 18 ((𝑎(,)𝑏) ⊆ ℝ → (((topGen‘ran (,)) ↾t (𝑎(,)𝑏)) ∈ SConn ↔ ((topGen‘ran (,)) ↾t (𝑎(,)𝑏)) ∈ Conn))
22 reconn 23363 . . . . . . . . . . . . . . . . . 18 ((𝑎(,)𝑏) ⊆ ℝ → (((topGen‘ran (,)) ↾t (𝑎(,)𝑏)) ∈ Conn ↔ ∀𝑢 ∈ (𝑎(,)𝑏)∀𝑣 ∈ (𝑎(,)𝑏)(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏)))
2321, 22bitrd 280 . . . . . . . . . . . . . . . . 17 ((𝑎(,)𝑏) ⊆ ℝ → (((topGen‘ran (,)) ↾t (𝑎(,)𝑏)) ∈ SConn ↔ ∀𝑢 ∈ (𝑎(,)𝑏)∀𝑣 ∈ (𝑎(,)𝑏)(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏)))
2419, 23ax-mp 5 . . . . . . . . . . . . . . . 16 (((topGen‘ran (,)) ↾t (𝑎(,)𝑏)) ∈ SConn ↔ ∀𝑢 ∈ (𝑎(,)𝑏)∀𝑣 ∈ (𝑎(,)𝑏)(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏))
2518, 24mpbi 231 . . . . . . . . . . . . . . 15 𝑢 ∈ (𝑎(,)𝑏)∀𝑣 ∈ (𝑎(,)𝑏)(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏)
26 inss1 4202 . . . . . . . . . . . . . . . 16 ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ (𝑎(,)𝑏)
27 ssralv 4030 . . . . . . . . . . . . . . . . . 18 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ (𝑎(,)𝑏) → (∀𝑣 ∈ (𝑎(,)𝑏)(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏) → ∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏)))
2827ralimdv 3175 . . . . . . . . . . . . . . . . 17 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ (𝑎(,)𝑏) → (∀𝑢 ∈ (𝑎(,)𝑏)∀𝑣 ∈ (𝑎(,)𝑏)(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏) → ∀𝑢 ∈ (𝑎(,)𝑏)∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏)))
29 ssralv 4030 . . . . . . . . . . . . . . . . 17 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ (𝑎(,)𝑏) → (∀𝑢 ∈ (𝑎(,)𝑏)∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏) → ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏)))
3028, 29syld 47 . . . . . . . . . . . . . . . 16 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ (𝑎(,)𝑏) → (∀𝑢 ∈ (𝑎(,)𝑏)∀𝑣 ∈ (𝑎(,)𝑏)(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏) → ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏)))
3126, 30ax-mp 5 . . . . . . . . . . . . . . 15 (∀𝑢 ∈ (𝑎(,)𝑏)∀𝑣 ∈ (𝑎(,)𝑏)(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏) → ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏))
3225, 31mp1i 13 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏))
33 inss2 4203 . . . . . . . . . . . . . . 15 ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ (𝐴[,]𝐵)
34 iccconn 23365 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Conn)
35 iccssre 12806 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
36 reconn 23363 . . . . . . . . . . . . . . . . . 18 ((𝐴[,]𝐵) ⊆ ℝ → (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Conn ↔ ∀𝑢 ∈ (𝐴[,]𝐵)∀𝑣 ∈ (𝐴[,]𝐵)(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)))
3735, 36syl 17 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Conn ↔ ∀𝑢 ∈ (𝐴[,]𝐵)∀𝑣 ∈ (𝐴[,]𝐵)(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)))
3834, 37mpbid 233 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∀𝑢 ∈ (𝐴[,]𝐵)∀𝑣 ∈ (𝐴[,]𝐵)(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵))
3938ad2antrr 722 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → ∀𝑢 ∈ (𝐴[,]𝐵)∀𝑣 ∈ (𝐴[,]𝐵)(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵))
40 ssralv 4030 . . . . . . . . . . . . . . . . 17 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ (𝐴[,]𝐵) → (∀𝑣 ∈ (𝐴[,]𝐵)(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵) → ∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)))
4140ralimdv 3175 . . . . . . . . . . . . . . . 16 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ (𝐴[,]𝐵) → (∀𝑢 ∈ (𝐴[,]𝐵)∀𝑣 ∈ (𝐴[,]𝐵)(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵) → ∀𝑢 ∈ (𝐴[,]𝐵)∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)))
42 ssralv 4030 . . . . . . . . . . . . . . . 16 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ (𝐴[,]𝐵) → (∀𝑢 ∈ (𝐴[,]𝐵)∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵) → ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)))
4341, 42syld 47 . . . . . . . . . . . . . . 15 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ (𝐴[,]𝐵) → (∀𝑢 ∈ (𝐴[,]𝐵)∀𝑣 ∈ (𝐴[,]𝐵)(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵) → ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)))
4433, 39, 43mpsyl 68 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵))
45 ssin 4204 . . . . . . . . . . . . . . . 16 (((𝑢[,]𝑣) ⊆ (𝑎(,)𝑏) ∧ (𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)) ↔ (𝑢[,]𝑣) ⊆ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)))
46452ralbii 3163 . . . . . . . . . . . . . . 15 (∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))((𝑢[,]𝑣) ⊆ (𝑎(,)𝑏) ∧ (𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)) ↔ ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)))
47 r19.26-2 3168 . . . . . . . . . . . . . . 15 (∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))((𝑢[,]𝑣) ⊆ (𝑎(,)𝑏) ∧ (𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)) ↔ (∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏) ∧ ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)))
4846, 47bitr3i 278 . . . . . . . . . . . . . 14 (∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ↔ (∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝑎(,)𝑏) ∧ ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ (𝐴[,]𝐵)))
4932, 44, 48sylanbrc 583 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)))
5026, 19sstri 3973 . . . . . . . . . . . . . 14 ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ ℝ
51 eqid 2818 . . . . . . . . . . . . . . . 16 ((topGen‘ran (,)) ↾t ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))) = ((topGen‘ran (,)) ↾t ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)))
5251resconn 32390 . . . . . . . . . . . . . . 15 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ ℝ → (((topGen‘ran (,)) ↾t ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))) ∈ SConn ↔ ((topGen‘ran (,)) ↾t ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))) ∈ Conn))
53 reconn 23363 . . . . . . . . . . . . . . 15 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ ℝ → (((topGen‘ran (,)) ↾t ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))) ∈ Conn ↔ ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))))
5452, 53bitrd 280 . . . . . . . . . . . . . 14 (((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)) ⊆ ℝ → (((topGen‘ran (,)) ↾t ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))) ∈ SConn ↔ ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))))
5550, 54ax-mp 5 . . . . . . . . . . . . 13 (((topGen‘ran (,)) ↾t ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))) ∈ SConn ↔ ∀𝑢 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))∀𝑣 ∈ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))(𝑢[,]𝑣) ⊆ ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵)))
5649, 55sylibr 235 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → ((topGen‘ran (,)) ↾t ((𝑎(,)𝑏) ∩ (𝐴[,]𝐵))) ∈ SConn)
5717, 56eqeltrd 2910 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn)
5813, 14, 573jca 1120 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) ∧ (𝑧 = (𝑎(,)𝑏) ∧ (𝑦𝑧𝑧𝑥))) → ((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn))
5958exp32 421 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → (𝑧 = (𝑎(,)𝑏) → ((𝑦𝑧𝑧𝑥) → ((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn))))
6059rexlimdvw 3287 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → (∃𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏) → ((𝑦𝑧𝑧𝑥) → ((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn))))
6160rexlimdvw 3287 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → (∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏) → ((𝑦𝑧𝑧𝑥) → ((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn))))
6210, 61syl5bi 243 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → (𝑧 ∈ ran (,) → ((𝑦𝑧𝑧𝑥) → ((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn))))
6362reximdvai 3269 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → (∃𝑧 ∈ ran (,)(𝑦𝑧𝑧𝑥) → ∃𝑧 ∈ ran (,)((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn)))
64 retopbas 23296 . . . . . 6 ran (,) ∈ TopBases
65 bastg 21502 . . . . . 6 (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,)))
66 ssrexv 4031 . . . . . 6 (ran (,) ⊆ (topGen‘ran (,)) → (∃𝑧 ∈ ran (,)((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn) → ∃𝑧 ∈ (topGen‘ran (,))((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn)))
6764, 65, 66mp2b 10 . . . . 5 (∃𝑧 ∈ ran (,)((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn) → ∃𝑧 ∈ (topGen‘ran (,))((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn))
6863, 67syl6 35 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → (∃𝑧 ∈ ran (,)(𝑦𝑧𝑧𝑥) → ∃𝑧 ∈ (topGen‘ran (,))((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn)))
696, 68mpd 15 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥 ∈ (topGen‘ran (,)) ∧ 𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵)))) → ∃𝑧 ∈ (topGen‘ran (,))((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn))
7069ralrimivva 3188 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∀𝑥 ∈ (topGen‘ran (,))∀𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵))∃𝑧 ∈ (topGen‘ran (,))((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn))
71 retop 23297 . . 3 (topGen‘ran (,)) ∈ Top
72 ovex 7178 . . 3 (𝐴[,]𝐵) ∈ V
73 subislly 22017 . . 3 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ∈ V) → (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Locally SConn ↔ ∀𝑥 ∈ (topGen‘ran (,))∀𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵))∃𝑧 ∈ (topGen‘ran (,))((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn)))
7471, 72, 73mp2an 688 . 2 (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Locally SConn ↔ ∀𝑥 ∈ (topGen‘ran (,))∀𝑦 ∈ (𝑥 ∩ (𝐴[,]𝐵))∃𝑧 ∈ (topGen‘ran (,))((𝑧 ∩ (𝐴[,]𝐵)) ⊆ 𝑥𝑦𝑧 ∧ ((topGen‘ran (,)) ↾t (𝑧 ∩ (𝐴[,]𝐵))) ∈ SConn))
7570, 74sylibr 235 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Locally SConn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wral 3135  wrex 3136  Vcvv 3492  cin 3932  wss 3933  𝒫 cpw 4535   × cxp 5546  ran crn 5549   Fn wfn 6343  wf 6344  cfv 6348  (class class class)co 7145  cr 10524  *cxr 10662  (,)cioo 12726  [,]cicc 12729  t crest 16682  topGenctg 16699  Topctop 21429  TopBasesctb 21481  Conncconn 21947  Locally clly 22000  SConncsconn 32364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12881  df-fzo 13022  df-seq 13358  df-exp 13418  df-hash 13679  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-hom 16577  df-cco 16578  df-rest 16684  df-topn 16685  df-0g 16703  df-gsum 16704  df-topgen 16705  df-pt 16706  df-prds 16709  df-xrs 16763  df-qtop 16768  df-imas 16769  df-xps 16771  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-submnd 17945  df-mulg 18163  df-cntz 18385  df-cmn 18837  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-cnfld 20474  df-top 21430  df-topon 21447  df-topsp 21469  df-bases 21482  df-cld 21555  df-cn 21763  df-cnp 21764  df-conn 21948  df-lly 22002  df-tx 22098  df-hmeo 22291  df-xms 22857  df-ms 22858  df-tms 22859  df-ii 23412  df-htpy 23501  df-phtpy 23502  df-phtpc 23523  df-pconn 32365  df-sconn 32366
This theorem is referenced by:  iillysconn  32397
  Copyright terms: Public domain W3C validator