MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isffth2 Structured version   Visualization version   GIF version

Theorem isffth2 17867
Description: A fully faithful functor is a functor which is bijective on hom-sets. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
isfth.b 𝐵 = (Base‘𝐶)
isfth.h 𝐻 = (Hom ‘𝐶)
isfth.j 𝐽 = (Hom ‘𝐷)
Assertion
Ref Expression
isffth2 (𝐹((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1-onto→((𝐹𝑥)𝐽(𝐹𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝑥,𝐽,𝑦

Proof of Theorem isffth2
StepHypRef Expression
1 isfth.b . . . 4 𝐵 = (Base‘𝐶)
2 isfth.j . . . 4 𝐽 = (Hom ‘𝐷)
3 isfth.h . . . 4 𝐻 = (Hom ‘𝐶)
41, 2, 3isfull2 17862 . . 3 (𝐹(𝐶 Full 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))))
51, 3, 2isfth2 17866 . . 3 (𝐹(𝐶 Faith 𝐷)𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦))))
64, 5anbi12i 628 . 2 ((𝐹(𝐶 Full 𝐷)𝐺𝐹(𝐶 Faith 𝐷)𝐺) ↔ ((𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))) ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦)))))
7 brin 5201 . 2 (𝐹((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))𝐺 ↔ (𝐹(𝐶 Full 𝐷)𝐺𝐹(𝐶 Faith 𝐷)𝐺))
8 df-f1o 6551 . . . . . . 7 ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1-onto→((𝐹𝑥)𝐽(𝐹𝑦)) ↔ ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))))
98biancomi 464 . . . . . 6 ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1-onto→((𝐹𝑥)𝐽(𝐹𝑦)) ↔ ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦))))
1092ralbii 3129 . . . . 5 (∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1-onto→((𝐹𝑥)𝐽(𝐹𝑦)) ↔ ∀𝑥𝐵𝑦𝐵 ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦))))
11 r19.26-2 3139 . . . . 5 (∀𝑥𝐵𝑦𝐵 ((𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦))) ↔ (∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦))))
1210, 11bitri 275 . . . 4 (∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1-onto→((𝐹𝑥)𝐽(𝐹𝑦)) ↔ (∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦))))
1312anbi2i 624 . . 3 ((𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1-onto→((𝐹𝑥)𝐽(𝐹𝑦))) ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ (∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦)))))
14 anandi 675 . . 3 ((𝐹(𝐶 Func 𝐷)𝐺 ∧ (∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦)) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦)))) ↔ ((𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))) ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦)))))
1513, 14bitri 275 . 2 ((𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1-onto→((𝐹𝑥)𝐽(𝐹𝑦))) ↔ ((𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–onto→((𝐹𝑥)𝐽(𝐹𝑦))) ∧ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1→((𝐹𝑥)𝐽(𝐹𝑦)))))
166, 7, 153bitr4i 303 1 (𝐹((𝐶 Full 𝐷) ∩ (𝐶 Faith 𝐷))𝐺 ↔ (𝐹(𝐶 Func 𝐷)𝐺 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐺𝑦):(𝑥𝐻𝑦)–1-1-onto→((𝐹𝑥)𝐽(𝐹𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397   = wceq 1542  wral 3062  cin 3948   class class class wbr 5149  1-1wf1 6541  ontowfo 6542  1-1-ontowf1o 6543  cfv 6544  (class class class)co 7409  Basecbs 17144  Hom chom 17208   Func cfunc 17804   Full cful 17853   Faith cfth 17854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-map 8822  df-ixp 8892  df-func 17808  df-full 17855  df-fth 17856
This theorem is referenced by:  idffth  17884  ressffth  17889  catciso  18061  yonffthlem  18235
  Copyright terms: Public domain W3C validator