HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  adjmo Structured version   Visualization version   GIF version

Theorem adjmo 31813
Description: Every Hilbert space operator has at most one adjoint. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
adjmo ∃*𝑢(𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦))
Distinct variable group:   𝑥,𝑦,𝑢,𝑇

Proof of Theorem adjmo
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 r19.26-2 3125 . . . . . 6 (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦) ∧ (𝑥 ·ih (𝑇𝑦)) = ((𝑣𝑥) ·ih 𝑦)) ↔ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑣𝑥) ·ih 𝑦)))
2 eqtr2 2756 . . . . . . 7 (((𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦) ∧ (𝑥 ·ih (𝑇𝑦)) = ((𝑣𝑥) ·ih 𝑦)) → ((𝑢𝑥) ·ih 𝑦) = ((𝑣𝑥) ·ih 𝑦))
322ralimi 3110 . . . . . 6 (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦) ∧ (𝑥 ·ih (𝑇𝑦)) = ((𝑣𝑥) ·ih 𝑦)) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑢𝑥) ·ih 𝑦) = ((𝑣𝑥) ·ih 𝑦))
41, 3sylbir 235 . . . . 5 ((∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑣𝑥) ·ih 𝑦)) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑢𝑥) ·ih 𝑦) = ((𝑣𝑥) ·ih 𝑦))
5 hoeq1 31811 . . . . . 6 ((𝑢: ℋ⟶ ℋ ∧ 𝑣: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑢𝑥) ·ih 𝑦) = ((𝑣𝑥) ·ih 𝑦) ↔ 𝑢 = 𝑣))
65biimpa 476 . . . . 5 (((𝑢: ℋ⟶ ℋ ∧ 𝑣: ℋ⟶ ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑢𝑥) ·ih 𝑦) = ((𝑣𝑥) ·ih 𝑦)) → 𝑢 = 𝑣)
74, 6sylan2 593 . . . 4 (((𝑢: ℋ⟶ ℋ ∧ 𝑣: ℋ⟶ ℋ) ∧ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑣𝑥) ·ih 𝑦))) → 𝑢 = 𝑣)
87an4s 660 . . 3 (((𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦)) ∧ (𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑣𝑥) ·ih 𝑦))) → 𝑢 = 𝑣)
98gen2 1796 . 2 𝑢𝑣(((𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦)) ∧ (𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑣𝑥) ·ih 𝑦))) → 𝑢 = 𝑣)
10 feq1 6686 . . . 4 (𝑢 = 𝑣 → (𝑢: ℋ⟶ ℋ ↔ 𝑣: ℋ⟶ ℋ))
11 fveq1 6875 . . . . . . 7 (𝑢 = 𝑣 → (𝑢𝑥) = (𝑣𝑥))
1211oveq1d 7420 . . . . . 6 (𝑢 = 𝑣 → ((𝑢𝑥) ·ih 𝑦) = ((𝑣𝑥) ·ih 𝑦))
1312eqeq2d 2746 . . . . 5 (𝑢 = 𝑣 → ((𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦) ↔ (𝑥 ·ih (𝑇𝑦)) = ((𝑣𝑥) ·ih 𝑦)))
14132ralbidv 3205 . . . 4 (𝑢 = 𝑣 → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑣𝑥) ·ih 𝑦)))
1510, 14anbi12d 632 . . 3 (𝑢 = 𝑣 → ((𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦)) ↔ (𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑣𝑥) ·ih 𝑦))))
1615mo4 2565 . 2 (∃*𝑢(𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦)) ↔ ∀𝑢𝑣(((𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦)) ∧ (𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑣𝑥) ·ih 𝑦))) → 𝑢 = 𝑣))
179, 16mpbir 231 1 ∃*𝑢(𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  ∃*wmo 2537  wral 3051  wf 6527  cfv 6531  (class class class)co 7405  chba 30900   ·ih csp 30903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-hfvadd 30981  ax-hvcom 30982  ax-hvass 30983  ax-hv0cl 30984  ax-hvaddid 30985  ax-hfvmul 30986  ax-hvmulid 30987  ax-hvdistr2 30990  ax-hvmul0 30991  ax-hfi 31060  ax-his2 31064  ax-his3 31065  ax-his4 31066
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-ltxr 11274  df-sub 11468  df-neg 11469  df-hvsub 30952
This theorem is referenced by:  funadj  31867  adjeu  31870  cnlnadjeui  32058
  Copyright terms: Public domain W3C validator