![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > adjmo | Structured version Visualization version GIF version |
Description: Every Hilbert space operator has at most one adjoint. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
adjmo | ⊢ ∃*𝑢(𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.26-2 3247 | . . . . . 6 ⊢ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦) ∧ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑣‘𝑥) ·ih 𝑦)) ↔ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑣‘𝑥) ·ih 𝑦))) | |
2 | eqtr2 2820 | . . . . . . 7 ⊢ (((𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦) ∧ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑣‘𝑥) ·ih 𝑦)) → ((𝑢‘𝑥) ·ih 𝑦) = ((𝑣‘𝑥) ·ih 𝑦)) | |
3 | 2 | 2ralimi 3135 | . . . . . 6 ⊢ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦) ∧ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑣‘𝑥) ·ih 𝑦)) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑢‘𝑥) ·ih 𝑦) = ((𝑣‘𝑥) ·ih 𝑦)) |
4 | 1, 3 | sylbir 227 | . . . . 5 ⊢ ((∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑣‘𝑥) ·ih 𝑦)) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑢‘𝑥) ·ih 𝑦) = ((𝑣‘𝑥) ·ih 𝑦)) |
5 | hoeq1 29213 | . . . . . 6 ⊢ ((𝑢: ℋ⟶ ℋ ∧ 𝑣: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑢‘𝑥) ·ih 𝑦) = ((𝑣‘𝑥) ·ih 𝑦) ↔ 𝑢 = 𝑣)) | |
6 | 5 | biimpa 469 | . . . . 5 ⊢ (((𝑢: ℋ⟶ ℋ ∧ 𝑣: ℋ⟶ ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑢‘𝑥) ·ih 𝑦) = ((𝑣‘𝑥) ·ih 𝑦)) → 𝑢 = 𝑣) |
7 | 4, 6 | sylan2 587 | . . . 4 ⊢ (((𝑢: ℋ⟶ ℋ ∧ 𝑣: ℋ⟶ ℋ) ∧ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑣‘𝑥) ·ih 𝑦))) → 𝑢 = 𝑣) |
8 | 7 | an4s 651 | . . 3 ⊢ (((𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦)) ∧ (𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑣‘𝑥) ·ih 𝑦))) → 𝑢 = 𝑣) |
9 | 8 | gen2 1892 | . 2 ⊢ ∀𝑢∀𝑣(((𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦)) ∧ (𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑣‘𝑥) ·ih 𝑦))) → 𝑢 = 𝑣) |
10 | feq1 6238 | . . . 4 ⊢ (𝑢 = 𝑣 → (𝑢: ℋ⟶ ℋ ↔ 𝑣: ℋ⟶ ℋ)) | |
11 | fveq1 6411 | . . . . . . 7 ⊢ (𝑢 = 𝑣 → (𝑢‘𝑥) = (𝑣‘𝑥)) | |
12 | 11 | oveq1d 6894 | . . . . . 6 ⊢ (𝑢 = 𝑣 → ((𝑢‘𝑥) ·ih 𝑦) = ((𝑣‘𝑥) ·ih 𝑦)) |
13 | 12 | eqeq2d 2810 | . . . . 5 ⊢ (𝑢 = 𝑣 → ((𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦) ↔ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑣‘𝑥) ·ih 𝑦))) |
14 | 13 | 2ralbidv 3171 | . . . 4 ⊢ (𝑢 = 𝑣 → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑣‘𝑥) ·ih 𝑦))) |
15 | 10, 14 | anbi12d 625 | . . 3 ⊢ (𝑢 = 𝑣 → ((𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦)) ↔ (𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑣‘𝑥) ·ih 𝑦)))) |
16 | 15 | mo4 2672 | . 2 ⊢ (∃*𝑢(𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦)) ↔ ∀𝑢∀𝑣(((𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦)) ∧ (𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑣‘𝑥) ·ih 𝑦))) → 𝑢 = 𝑣)) |
17 | 9, 16 | mpbir 223 | 1 ⊢ ∃*𝑢(𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∀wal 1651 = wceq 1653 ∃*wmo 2590 ∀wral 3090 ⟶wf 6098 ‘cfv 6102 (class class class)co 6879 ℋchba 28300 ·ih csp 28303 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 ax-resscn 10282 ax-1cn 10283 ax-icn 10284 ax-addcl 10285 ax-addrcl 10286 ax-mulcl 10287 ax-mulrcl 10288 ax-mulcom 10289 ax-addass 10290 ax-mulass 10291 ax-distr 10292 ax-i2m1 10293 ax-1ne0 10294 ax-1rid 10295 ax-rnegex 10296 ax-rrecex 10297 ax-cnre 10298 ax-pre-lttri 10299 ax-pre-lttrn 10300 ax-pre-ltadd 10301 ax-hfvadd 28381 ax-hvcom 28382 ax-hvass 28383 ax-hv0cl 28384 ax-hvaddid 28385 ax-hfvmul 28386 ax-hvmulid 28387 ax-hvdistr2 28390 ax-hvmul0 28391 ax-hfi 28460 ax-his2 28464 ax-his3 28465 ax-his4 28466 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-iun 4713 df-br 4845 df-opab 4907 df-mpt 4924 df-id 5221 df-po 5234 df-so 5235 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-riota 6840 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-er 7983 df-en 8197 df-dom 8198 df-sdom 8199 df-pnf 10366 df-mnf 10367 df-ltxr 10369 df-sub 10559 df-neg 10560 df-hvsub 28352 |
This theorem is referenced by: funadj 29269 adjeu 29272 cnlnadjeui 29460 |
Copyright terms: Public domain | W3C validator |