HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  adjmo Structured version   Visualization version   GIF version

Theorem adjmo 30095
Description: Every Hilbert space operator has at most one adjoint. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
adjmo ∃*𝑢(𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦))
Distinct variable group:   𝑥,𝑦,𝑢,𝑇

Proof of Theorem adjmo
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 r19.26-2 3095 . . . . . 6 (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦) ∧ (𝑥 ·ih (𝑇𝑦)) = ((𝑣𝑥) ·ih 𝑦)) ↔ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑣𝑥) ·ih 𝑦)))
2 eqtr2 2762 . . . . . . 7 (((𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦) ∧ (𝑥 ·ih (𝑇𝑦)) = ((𝑣𝑥) ·ih 𝑦)) → ((𝑢𝑥) ·ih 𝑦) = ((𝑣𝑥) ·ih 𝑦))
322ralimi 3087 . . . . . 6 (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦) ∧ (𝑥 ·ih (𝑇𝑦)) = ((𝑣𝑥) ·ih 𝑦)) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑢𝑥) ·ih 𝑦) = ((𝑣𝑥) ·ih 𝑦))
41, 3sylbir 234 . . . . 5 ((∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑣𝑥) ·ih 𝑦)) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑢𝑥) ·ih 𝑦) = ((𝑣𝑥) ·ih 𝑦))
5 hoeq1 30093 . . . . . 6 ((𝑢: ℋ⟶ ℋ ∧ 𝑣: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑢𝑥) ·ih 𝑦) = ((𝑣𝑥) ·ih 𝑦) ↔ 𝑢 = 𝑣))
65biimpa 476 . . . . 5 (((𝑢: ℋ⟶ ℋ ∧ 𝑣: ℋ⟶ ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑢𝑥) ·ih 𝑦) = ((𝑣𝑥) ·ih 𝑦)) → 𝑢 = 𝑣)
74, 6sylan2 592 . . . 4 (((𝑢: ℋ⟶ ℋ ∧ 𝑣: ℋ⟶ ℋ) ∧ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑣𝑥) ·ih 𝑦))) → 𝑢 = 𝑣)
87an4s 656 . . 3 (((𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦)) ∧ (𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑣𝑥) ·ih 𝑦))) → 𝑢 = 𝑣)
98gen2 1800 . 2 𝑢𝑣(((𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦)) ∧ (𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑣𝑥) ·ih 𝑦))) → 𝑢 = 𝑣)
10 feq1 6565 . . . 4 (𝑢 = 𝑣 → (𝑢: ℋ⟶ ℋ ↔ 𝑣: ℋ⟶ ℋ))
11 fveq1 6755 . . . . . . 7 (𝑢 = 𝑣 → (𝑢𝑥) = (𝑣𝑥))
1211oveq1d 7270 . . . . . 6 (𝑢 = 𝑣 → ((𝑢𝑥) ·ih 𝑦) = ((𝑣𝑥) ·ih 𝑦))
1312eqeq2d 2749 . . . . 5 (𝑢 = 𝑣 → ((𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦) ↔ (𝑥 ·ih (𝑇𝑦)) = ((𝑣𝑥) ·ih 𝑦)))
14132ralbidv 3122 . . . 4 (𝑢 = 𝑣 → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑣𝑥) ·ih 𝑦)))
1510, 14anbi12d 630 . . 3 (𝑢 = 𝑣 → ((𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦)) ↔ (𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑣𝑥) ·ih 𝑦))))
1615mo4 2566 . 2 (∃*𝑢(𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦)) ↔ ∀𝑢𝑣(((𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦)) ∧ (𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑣𝑥) ·ih 𝑦))) → 𝑢 = 𝑣))
179, 16mpbir 230 1 ∃*𝑢(𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇𝑦)) = ((𝑢𝑥) ·ih 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537   = wceq 1539  ∃*wmo 2538  wral 3063  wf 6414  cfv 6418  (class class class)co 7255  chba 29182   ·ih csp 29185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-hfvadd 29263  ax-hvcom 29264  ax-hvass 29265  ax-hv0cl 29266  ax-hvaddid 29267  ax-hfvmul 29268  ax-hvmulid 29269  ax-hvdistr2 29272  ax-hvmul0 29273  ax-hfi 29342  ax-his2 29346  ax-his3 29347  ax-his4 29348
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-ltxr 10945  df-sub 11137  df-neg 11138  df-hvsub 29234
This theorem is referenced by:  funadj  30149  adjeu  30152  cnlnadjeui  30340
  Copyright terms: Public domain W3C validator