| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > adjmo | Structured version Visualization version GIF version | ||
| Description: Every Hilbert space operator has at most one adjoint. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| adjmo | ⊢ ∃*𝑢(𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.26-2 3118 | . . . . . 6 ⊢ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦) ∧ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑣‘𝑥) ·ih 𝑦)) ↔ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑣‘𝑥) ·ih 𝑦))) | |
| 2 | eqtr2 2754 | . . . . . . 7 ⊢ (((𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦) ∧ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑣‘𝑥) ·ih 𝑦)) → ((𝑢‘𝑥) ·ih 𝑦) = ((𝑣‘𝑥) ·ih 𝑦)) | |
| 3 | 2 | 2ralimi 3103 | . . . . . 6 ⊢ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦) ∧ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑣‘𝑥) ·ih 𝑦)) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑢‘𝑥) ·ih 𝑦) = ((𝑣‘𝑥) ·ih 𝑦)) |
| 4 | 1, 3 | sylbir 235 | . . . . 5 ⊢ ((∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑣‘𝑥) ·ih 𝑦)) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑢‘𝑥) ·ih 𝑦) = ((𝑣‘𝑥) ·ih 𝑦)) |
| 5 | hoeq1 31831 | . . . . . 6 ⊢ ((𝑢: ℋ⟶ ℋ ∧ 𝑣: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑢‘𝑥) ·ih 𝑦) = ((𝑣‘𝑥) ·ih 𝑦) ↔ 𝑢 = 𝑣)) | |
| 6 | 5 | biimpa 476 | . . . . 5 ⊢ (((𝑢: ℋ⟶ ℋ ∧ 𝑣: ℋ⟶ ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑢‘𝑥) ·ih 𝑦) = ((𝑣‘𝑥) ·ih 𝑦)) → 𝑢 = 𝑣) |
| 7 | 4, 6 | sylan2 593 | . . . 4 ⊢ (((𝑢: ℋ⟶ ℋ ∧ 𝑣: ℋ⟶ ℋ) ∧ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑣‘𝑥) ·ih 𝑦))) → 𝑢 = 𝑣) |
| 8 | 7 | an4s 660 | . . 3 ⊢ (((𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦)) ∧ (𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑣‘𝑥) ·ih 𝑦))) → 𝑢 = 𝑣) |
| 9 | 8 | gen2 1797 | . 2 ⊢ ∀𝑢∀𝑣(((𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦)) ∧ (𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑣‘𝑥) ·ih 𝑦))) → 𝑢 = 𝑣) |
| 10 | feq1 6637 | . . . 4 ⊢ (𝑢 = 𝑣 → (𝑢: ℋ⟶ ℋ ↔ 𝑣: ℋ⟶ ℋ)) | |
| 11 | fveq1 6830 | . . . . . . 7 ⊢ (𝑢 = 𝑣 → (𝑢‘𝑥) = (𝑣‘𝑥)) | |
| 12 | 11 | oveq1d 7370 | . . . . . 6 ⊢ (𝑢 = 𝑣 → ((𝑢‘𝑥) ·ih 𝑦) = ((𝑣‘𝑥) ·ih 𝑦)) |
| 13 | 12 | eqeq2d 2744 | . . . . 5 ⊢ (𝑢 = 𝑣 → ((𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦) ↔ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑣‘𝑥) ·ih 𝑦))) |
| 14 | 13 | 2ralbidv 3197 | . . . 4 ⊢ (𝑢 = 𝑣 → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑣‘𝑥) ·ih 𝑦))) |
| 15 | 10, 14 | anbi12d 632 | . . 3 ⊢ (𝑢 = 𝑣 → ((𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦)) ↔ (𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑣‘𝑥) ·ih 𝑦)))) |
| 16 | 15 | mo4 2563 | . 2 ⊢ (∃*𝑢(𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦)) ↔ ∀𝑢∀𝑣(((𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦)) ∧ (𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑣‘𝑥) ·ih 𝑦))) → 𝑢 = 𝑣)) |
| 17 | 9, 16 | mpbir 231 | 1 ⊢ ∃*𝑢(𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1539 = wceq 1541 ∃*wmo 2535 ∀wral 3048 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 ℋchba 30920 ·ih csp 30923 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-hfvadd 31001 ax-hvcom 31002 ax-hvass 31003 ax-hv0cl 31004 ax-hvaddid 31005 ax-hfvmul 31006 ax-hvmulid 31007 ax-hvdistr2 31010 ax-hvmul0 31011 ax-hfi 31080 ax-his2 31084 ax-his3 31085 ax-his4 31086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-ltxr 11162 df-sub 11357 df-neg 11358 df-hvsub 30972 |
| This theorem is referenced by: funadj 31887 adjeu 31890 cnlnadjeui 32078 |
| Copyright terms: Public domain | W3C validator |