| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > adjmo | Structured version Visualization version GIF version | ||
| Description: Every Hilbert space operator has at most one adjoint. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| adjmo | ⊢ ∃*𝑢(𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.26-2 3119 | . . . . . 6 ⊢ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦) ∧ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑣‘𝑥) ·ih 𝑦)) ↔ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑣‘𝑥) ·ih 𝑦))) | |
| 2 | eqtr2 2751 | . . . . . . 7 ⊢ (((𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦) ∧ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑣‘𝑥) ·ih 𝑦)) → ((𝑢‘𝑥) ·ih 𝑦) = ((𝑣‘𝑥) ·ih 𝑦)) | |
| 3 | 2 | 2ralimi 3104 | . . . . . 6 ⊢ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦) ∧ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑣‘𝑥) ·ih 𝑦)) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑢‘𝑥) ·ih 𝑦) = ((𝑣‘𝑥) ·ih 𝑦)) |
| 4 | 1, 3 | sylbir 235 | . . . . 5 ⊢ ((∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑣‘𝑥) ·ih 𝑦)) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑢‘𝑥) ·ih 𝑦) = ((𝑣‘𝑥) ·ih 𝑦)) |
| 5 | hoeq1 31766 | . . . . . 6 ⊢ ((𝑢: ℋ⟶ ℋ ∧ 𝑣: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑢‘𝑥) ·ih 𝑦) = ((𝑣‘𝑥) ·ih 𝑦) ↔ 𝑢 = 𝑣)) | |
| 6 | 5 | biimpa 476 | . . . . 5 ⊢ (((𝑢: ℋ⟶ ℋ ∧ 𝑣: ℋ⟶ ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑢‘𝑥) ·ih 𝑦) = ((𝑣‘𝑥) ·ih 𝑦)) → 𝑢 = 𝑣) |
| 7 | 4, 6 | sylan2 593 | . . . 4 ⊢ (((𝑢: ℋ⟶ ℋ ∧ 𝑣: ℋ⟶ ℋ) ∧ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑣‘𝑥) ·ih 𝑦))) → 𝑢 = 𝑣) |
| 8 | 7 | an4s 660 | . . 3 ⊢ (((𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦)) ∧ (𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑣‘𝑥) ·ih 𝑦))) → 𝑢 = 𝑣) |
| 9 | 8 | gen2 1796 | . 2 ⊢ ∀𝑢∀𝑣(((𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦)) ∧ (𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑣‘𝑥) ·ih 𝑦))) → 𝑢 = 𝑣) |
| 10 | feq1 6669 | . . . 4 ⊢ (𝑢 = 𝑣 → (𝑢: ℋ⟶ ℋ ↔ 𝑣: ℋ⟶ ℋ)) | |
| 11 | fveq1 6860 | . . . . . . 7 ⊢ (𝑢 = 𝑣 → (𝑢‘𝑥) = (𝑣‘𝑥)) | |
| 12 | 11 | oveq1d 7405 | . . . . . 6 ⊢ (𝑢 = 𝑣 → ((𝑢‘𝑥) ·ih 𝑦) = ((𝑣‘𝑥) ·ih 𝑦)) |
| 13 | 12 | eqeq2d 2741 | . . . . 5 ⊢ (𝑢 = 𝑣 → ((𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦) ↔ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑣‘𝑥) ·ih 𝑦))) |
| 14 | 13 | 2ralbidv 3202 | . . . 4 ⊢ (𝑢 = 𝑣 → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑣‘𝑥) ·ih 𝑦))) |
| 15 | 10, 14 | anbi12d 632 | . . 3 ⊢ (𝑢 = 𝑣 → ((𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦)) ↔ (𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑣‘𝑥) ·ih 𝑦)))) |
| 16 | 15 | mo4 2560 | . 2 ⊢ (∃*𝑢(𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦)) ↔ ∀𝑢∀𝑣(((𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦)) ∧ (𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑣‘𝑥) ·ih 𝑦))) → 𝑢 = 𝑣)) |
| 17 | 9, 16 | mpbir 231 | 1 ⊢ ∃*𝑢(𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃*wmo 2532 ∀wral 3045 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ℋchba 30855 ·ih csp 30858 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-hfvadd 30936 ax-hvcom 30937 ax-hvass 30938 ax-hv0cl 30939 ax-hvaddid 30940 ax-hfvmul 30941 ax-hvmulid 30942 ax-hvdistr2 30945 ax-hvmul0 30946 ax-hfi 31015 ax-his2 31019 ax-his3 31020 ax-his4 31021 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-sub 11414 df-neg 11415 df-hvsub 30907 |
| This theorem is referenced by: funadj 31822 adjeu 31825 cnlnadjeui 32013 |
| Copyright terms: Public domain | W3C validator |