Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > adjmo | Structured version Visualization version GIF version |
Description: Every Hilbert space operator has at most one adjoint. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
adjmo | ⊢ ∃*𝑢(𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.26-2 3096 | . . . . . 6 ⊢ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦) ∧ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑣‘𝑥) ·ih 𝑦)) ↔ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑣‘𝑥) ·ih 𝑦))) | |
2 | eqtr2 2762 | . . . . . . 7 ⊢ (((𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦) ∧ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑣‘𝑥) ·ih 𝑦)) → ((𝑢‘𝑥) ·ih 𝑦) = ((𝑣‘𝑥) ·ih 𝑦)) | |
3 | 2 | 2ralimi 3088 | . . . . . 6 ⊢ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦) ∧ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑣‘𝑥) ·ih 𝑦)) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑢‘𝑥) ·ih 𝑦) = ((𝑣‘𝑥) ·ih 𝑦)) |
4 | 1, 3 | sylbir 234 | . . . . 5 ⊢ ((∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑣‘𝑥) ·ih 𝑦)) → ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑢‘𝑥) ·ih 𝑦) = ((𝑣‘𝑥) ·ih 𝑦)) |
5 | hoeq1 30200 | . . . . . 6 ⊢ ((𝑢: ℋ⟶ ℋ ∧ 𝑣: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑢‘𝑥) ·ih 𝑦) = ((𝑣‘𝑥) ·ih 𝑦) ↔ 𝑢 = 𝑣)) | |
6 | 5 | biimpa 477 | . . . . 5 ⊢ (((𝑢: ℋ⟶ ℋ ∧ 𝑣: ℋ⟶ ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑢‘𝑥) ·ih 𝑦) = ((𝑣‘𝑥) ·ih 𝑦)) → 𝑢 = 𝑣) |
7 | 4, 6 | sylan2 593 | . . . 4 ⊢ (((𝑢: ℋ⟶ ℋ ∧ 𝑣: ℋ⟶ ℋ) ∧ (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑣‘𝑥) ·ih 𝑦))) → 𝑢 = 𝑣) |
8 | 7 | an4s 657 | . . 3 ⊢ (((𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦)) ∧ (𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑣‘𝑥) ·ih 𝑦))) → 𝑢 = 𝑣) |
9 | 8 | gen2 1799 | . 2 ⊢ ∀𝑢∀𝑣(((𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦)) ∧ (𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑣‘𝑥) ·ih 𝑦))) → 𝑢 = 𝑣) |
10 | feq1 6573 | . . . 4 ⊢ (𝑢 = 𝑣 → (𝑢: ℋ⟶ ℋ ↔ 𝑣: ℋ⟶ ℋ)) | |
11 | fveq1 6765 | . . . . . . 7 ⊢ (𝑢 = 𝑣 → (𝑢‘𝑥) = (𝑣‘𝑥)) | |
12 | 11 | oveq1d 7282 | . . . . . 6 ⊢ (𝑢 = 𝑣 → ((𝑢‘𝑥) ·ih 𝑦) = ((𝑣‘𝑥) ·ih 𝑦)) |
13 | 12 | eqeq2d 2749 | . . . . 5 ⊢ (𝑢 = 𝑣 → ((𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦) ↔ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑣‘𝑥) ·ih 𝑦))) |
14 | 13 | 2ralbidv 3123 | . . . 4 ⊢ (𝑢 = 𝑣 → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑣‘𝑥) ·ih 𝑦))) |
15 | 10, 14 | anbi12d 631 | . . 3 ⊢ (𝑢 = 𝑣 → ((𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦)) ↔ (𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑣‘𝑥) ·ih 𝑦)))) |
16 | 15 | mo4 2566 | . 2 ⊢ (∃*𝑢(𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦)) ↔ ∀𝑢∀𝑣(((𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦)) ∧ (𝑣: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑣‘𝑥) ·ih 𝑦))) → 𝑢 = 𝑣)) |
17 | 9, 16 | mpbir 230 | 1 ⊢ ∃*𝑢(𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑇‘𝑦)) = ((𝑢‘𝑥) ·ih 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wal 1537 = wceq 1539 ∃*wmo 2538 ∀wral 3064 ⟶wf 6422 ‘cfv 6426 (class class class)co 7267 ℋchba 29289 ·ih csp 29292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-hfvadd 29370 ax-hvcom 29371 ax-hvass 29372 ax-hv0cl 29373 ax-hvaddid 29374 ax-hfvmul 29375 ax-hvmulid 29376 ax-hvdistr2 29379 ax-hvmul0 29380 ax-hfi 29449 ax-his2 29453 ax-his3 29454 ax-his4 29455 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-id 5484 df-po 5498 df-so 5499 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-er 8485 df-en 8721 df-dom 8722 df-sdom 8723 df-pnf 11021 df-mnf 11022 df-ltxr 11024 df-sub 11217 df-neg 11218 df-hvsub 29341 |
This theorem is referenced by: funadj 30256 adjeu 30259 cnlnadjeui 30447 |
Copyright terms: Public domain | W3C validator |