MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpmatmcllem Structured version   Visualization version   GIF version

Theorem cpmatmcllem 22636
Description: Lemma for cpmatmcl 22637. (Contributed by AV, 18-Nov-2019.)
Hypotheses
Ref Expression
cpmatsrngpmat.s 𝑆 = (𝑁 ConstPolyMat 𝑅)
cpmatsrngpmat.p 𝑃 = (Poly1𝑅)
cpmatsrngpmat.c 𝐶 = (𝑁 Mat 𝑃)
Assertion
Ref Expression
cpmatmcllem (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))
Distinct variable groups:   𝐶,𝑖,𝑗   𝑖,𝑁,𝑗   𝑅,𝑖,𝑗   𝐶,𝑐   𝑁,𝑐,𝑥,𝑦,𝑖,𝑗   𝑃,𝑐   𝑅,𝑐,𝑥,𝑦   𝑦,𝑆   𝐶,𝑘   𝑘,𝑁,𝑐,𝑖,𝑗,𝑥,𝑦   𝑃,𝑘   𝑅,𝑘
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑃(𝑥,𝑦,𝑖,𝑗)   𝑆(𝑥,𝑖,𝑗,𝑘,𝑐)

Proof of Theorem cpmatmcllem
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 cpmatsrngpmat.s . . . 4 𝑆 = (𝑁 ConstPolyMat 𝑅)
2 cpmatsrngpmat.p . . . 4 𝑃 = (Poly1𝑅)
3 cpmatsrngpmat.c . . . 4 𝐶 = (𝑁 Mat 𝑃)
4 eqid 2725 . . . 4 (Base‘𝐶) = (Base‘𝐶)
51, 2, 3, 4cpmatelimp 22630 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥𝑆 → (𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖𝑁𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅))))
61, 2, 3, 4cpmatelimp 22630 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑦𝑆 → (𝑦 ∈ (Base‘𝐶) ∧ ∀𝑙𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))))
76adantr 479 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑦𝑆 → (𝑦 ∈ (Base‘𝐶) ∧ ∀𝑙𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))))
8 ralcom 3277 . . . . . . . . . . . . . . . 16 (∀𝑙𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅) ↔ ∀𝑗𝑁𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))
9 r19.26-2 3128 . . . . . . . . . . . . . . . . . . . . . . 23 (∀𝑙𝑁𝑐 ∈ ℕ (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) ↔ (∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)))
10 ralcom 3277 . . . . . . . . . . . . . . . . . . . . . . 23 (∀𝑙𝑁𝑐 ∈ ℕ (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) ↔ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)))
119, 10bitr3i 276 . . . . . . . . . . . . . . . . . . . . . 22 ((∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) ↔ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)))
12 nfv 1909 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑐(((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁))
13 nfra1 3272 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑐𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))
1412, 13nfan 1894 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑐((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)))
15 simp-4r 782 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑅 ∈ Ring)
16 eqid 2725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (Base‘𝑃) = (Base‘𝑃)
17 simplrl 775 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑖𝑁)
18 simpr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑘𝑁)
19 simplrl 775 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → 𝑥 ∈ (Base‘𝐶))
2019adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑥 ∈ (Base‘𝐶))
213, 16, 4, 17, 18, 20matecld 22344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (𝑖𝑥𝑘) ∈ (Base‘𝑃))
22 simplrr 776 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑗𝑁)
23 simplrr 776 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → 𝑦 ∈ (Base‘𝐶))
2423adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑦 ∈ (Base‘𝐶))
253, 16, 4, 18, 22, 24matecld 22344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (𝑘𝑦𝑗) ∈ (Base‘𝑃))
2615, 21, 25jca32 514 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (𝑅 ∈ Ring ∧ ((𝑖𝑥𝑘) ∈ (Base‘𝑃) ∧ (𝑘𝑦𝑗) ∈ (Base‘𝑃))))
2726adantlr 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) ∧ 𝑘𝑁) → (𝑅 ∈ Ring ∧ ((𝑖𝑥𝑘) ∈ (Base‘𝑃) ∧ (𝑘𝑦𝑗) ∈ (Base‘𝑃))))
28 oveq2 7423 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑙 = 𝑘 → (𝑖𝑥𝑙) = (𝑖𝑥𝑘))
2928fveq2d 6895 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑙 = 𝑘 → (coe1‘(𝑖𝑥𝑙)) = (coe1‘(𝑖𝑥𝑘)))
3029fveq1d 6893 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑙 = 𝑘 → ((coe1‘(𝑖𝑥𝑙))‘𝑐) = ((coe1‘(𝑖𝑥𝑘))‘𝑐))
3130eqeq1d 2727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑙 = 𝑘 → (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ↔ ((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g𝑅)))
32 fvoveq1 7438 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑙 = 𝑘 → (coe1‘(𝑙𝑦𝑗)) = (coe1‘(𝑘𝑦𝑗)))
3332fveq1d 6893 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑙 = 𝑘 → ((coe1‘(𝑙𝑦𝑗))‘𝑐) = ((coe1‘(𝑘𝑦𝑗))‘𝑐))
3433eqeq1d 2727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑙 = 𝑘 → (((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅) ↔ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g𝑅)))
3531, 34anbi12d 630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑙 = 𝑘 → ((((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) ↔ (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g𝑅))))
3635rspcva 3600 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑘𝑁 ∧ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) → (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g𝑅)))
3736a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑐 ∈ ℕ) → ((𝑘𝑁 ∧ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) → (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g𝑅))))
3837exp4b 429 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → (𝑐 ∈ ℕ → (𝑘𝑁 → (∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) → (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g𝑅))))))
3938com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → (𝑘𝑁 → (𝑐 ∈ ℕ → (∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) → (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g𝑅))))))
4039imp31 416 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) ∧ 𝑐 ∈ ℕ) → (∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) → (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g𝑅))))
4140ralimdva 3157 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) → ∀𝑐 ∈ ℕ (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g𝑅))))
4241impancom 450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) → (𝑘𝑁 → ∀𝑐 ∈ ℕ (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g𝑅))))
4342imp 405 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) ∧ 𝑘𝑁) → ∀𝑐 ∈ ℕ (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g𝑅)))
44 eqid 2725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (0g𝑅) = (0g𝑅)
45 eqid 2725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (.r𝑃) = (.r𝑃)
462, 16, 44, 45cply1mul 22222 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑅 ∈ Ring ∧ ((𝑖𝑥𝑘) ∈ (Base‘𝑃) ∧ (𝑘𝑦𝑗) ∈ (Base‘𝑃))) → (∀𝑐 ∈ ℕ (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g𝑅)) → ∀𝑐 ∈ ℕ ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐) = (0g𝑅)))
4727, 43, 46sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) ∧ 𝑘𝑁) → ∀𝑐 ∈ ℕ ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐) = (0g𝑅))
4847r19.21bi 3239 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) ∧ 𝑘𝑁) ∧ 𝑐 ∈ ℕ) → ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐) = (0g𝑅))
4948an32s 650 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) ∧ 𝑐 ∈ ℕ) ∧ 𝑘𝑁) → ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐) = (0g𝑅))
5049mpteq2dva 5243 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) ∧ 𝑐 ∈ ℕ) → (𝑘𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐)) = (𝑘𝑁 ↦ (0g𝑅)))
5150oveq2d 7431 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) ∧ 𝑐 ∈ ℕ) → (𝑅 Σg (𝑘𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐))) = (𝑅 Σg (𝑘𝑁 ↦ (0g𝑅))))
52 ringmnd 20185 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
5352anim2i 615 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Mnd))
5453ancomd 460 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 ∈ Mnd ∧ 𝑁 ∈ Fin))
5544gsumz 18790 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅 ∈ Mnd ∧ 𝑁 ∈ Fin) → (𝑅 Σg (𝑘𝑁 ↦ (0g𝑅))) = (0g𝑅))
5654, 55syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 Σg (𝑘𝑁 ↦ (0g𝑅))) = (0g𝑅))
5756ad4antr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) ∧ 𝑐 ∈ ℕ) → (𝑅 Σg (𝑘𝑁 ↦ (0g𝑅))) = (0g𝑅))
5851, 57eqtrd 2765 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) ∧ 𝑐 ∈ ℕ) → (𝑅 Σg (𝑘𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐))) = (0g𝑅))
5958ex 411 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) → (𝑐 ∈ ℕ → (𝑅 Σg (𝑘𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐))) = (0g𝑅)))
6014, 59ralrimi 3245 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) → ∀𝑐 ∈ ℕ (𝑅 Σg (𝑘𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐))) = (0g𝑅))
61 simp-4r 782 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑐 ∈ ℕ) → 𝑅 ∈ Ring)
62 nnnn0 12507 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑐 ∈ ℕ → 𝑐 ∈ ℕ0)
6362adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑐 ∈ ℕ) → 𝑐 ∈ ℕ0)
642ply1ring 22173 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
6564ad4antlr 731 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑃 ∈ Ring)
6616, 45ringcl 20192 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑃 ∈ Ring ∧ (𝑖𝑥𝑘) ∈ (Base‘𝑃) ∧ (𝑘𝑦𝑗) ∈ (Base‘𝑃)) → ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)) ∈ (Base‘𝑃))
6765, 21, 25, 66syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)) ∈ (Base‘𝑃))
6867ralrimiva 3136 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → ∀𝑘𝑁 ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)) ∈ (Base‘𝑃))
6968adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑐 ∈ ℕ) → ∀𝑘𝑁 ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)) ∈ (Base‘𝑃))
70 simp-4l 781 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑐 ∈ ℕ) → 𝑁 ∈ Fin)
712, 16, 61, 63, 69, 70coe1fzgsumd 22230 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑐 ∈ ℕ) → ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (𝑅 Σg (𝑘𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐))))
7271eqeq1d 2727 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑐 ∈ ℕ) → (((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅) ↔ (𝑅 Σg (𝑘𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐))) = (0g𝑅)))
7372ralbidva 3166 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → (∀𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅) ↔ ∀𝑐 ∈ ℕ (𝑅 Σg (𝑘𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐))) = (0g𝑅)))
7473adantr 479 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) → (∀𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅) ↔ ∀𝑐 ∈ ℕ (𝑅 Σg (𝑘𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐))) = (0g𝑅)))
7560, 74mpbird 256 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) → ∀𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))
7675ex 411 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → (∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) → ∀𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅)))
7711, 76biimtrid 241 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → ((∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) → ∀𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅)))
7877expd 414 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → (∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → (∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅) → ∀𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))))
7978expr 455 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑖𝑁) → (𝑗𝑁 → (∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → (∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅) → ∀𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅)))))
8079com23 86 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑖𝑁) → (∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → (𝑗𝑁 → (∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅) → ∀𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅)))))
8180imp31 416 . . . . . . . . . . . . . . . . 17 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑖𝑁) ∧ ∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅)) ∧ 𝑗𝑁) → (∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅) → ∀𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅)))
8281ralimdva 3157 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑖𝑁) ∧ ∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅)) → (∀𝑗𝑁𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅) → ∀𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅)))
838, 82biimtrid 241 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑖𝑁) ∧ ∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅)) → (∀𝑙𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅) → ∀𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅)))
8483ex 411 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑖𝑁) → (∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → (∀𝑙𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅) → ∀𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))))
8584com23 86 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑖𝑁) → (∀𝑙𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅) → (∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → ∀𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))))
8685impancom 450 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∀𝑙𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) → (𝑖𝑁 → (∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → ∀𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))))
8786imp 405 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∀𝑙𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) ∧ 𝑖𝑁) → (∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → ∀𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅)))
8887ralimdva 3157 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∀𝑙𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) → (∀𝑖𝑁𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅)))
8988ex 411 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (∀𝑙𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅) → (∀𝑖𝑁𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))))
9089expr 455 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐶) → (∀𝑙𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅) → (∀𝑖𝑁𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅)))))
9190impd 409 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝑦 ∈ (Base‘𝐶) ∧ ∀𝑙𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) → (∀𝑖𝑁𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))))
927, 91syld 47 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑦𝑆 → (∀𝑖𝑁𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))))
9392com23 86 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) → (∀𝑖𝑁𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → (𝑦𝑆 → ∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))))
9493ex 411 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥 ∈ (Base‘𝐶) → (∀𝑖𝑁𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → (𝑦𝑆 → ∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅)))))
9594impd 409 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖𝑁𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅)) → (𝑦𝑆 → ∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))))
965, 95syld 47 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥𝑆 → (𝑦𝑆 → ∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))))
9796imp32 417 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wral 3051  cmpt 5226  cfv 6542  (class class class)co 7415  Fincfn 8960  cn 12240  0cn0 12500  Basecbs 17177  .rcmulr 17231  0gc0g 17418   Σg cgsu 17419  Mndcmnd 18691  Ringcrg 20175  Poly1cpl1 22102  coe1cco1 22103   Mat cmat 22323   ConstPolyMat ccpmat 22621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-ot 4633  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-of 7681  df-ofr 7682  df-om 7868  df-1st 7989  df-2nd 7990  df-supp 8162  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-1o 8483  df-er 8721  df-map 8843  df-pm 8844  df-ixp 8913  df-en 8961  df-dom 8962  df-sdom 8963  df-fin 8964  df-fsupp 9384  df-sup 9463  df-oi 9531  df-card 9960  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12501  df-z 12587  df-dec 12706  df-uz 12851  df-fz 13515  df-fzo 13658  df-seq 13997  df-hash 14320  df-struct 17113  df-sets 17130  df-slot 17148  df-ndx 17160  df-base 17178  df-ress 17207  df-plusg 17243  df-mulr 17244  df-sca 17246  df-vsca 17247  df-ip 17248  df-tset 17249  df-ple 17250  df-ds 17252  df-hom 17254  df-cco 17255  df-0g 17420  df-gsum 17421  df-prds 17426  df-pws 17428  df-mre 17563  df-mrc 17564  df-acs 17566  df-mgm 18597  df-sgrp 18676  df-mnd 18692  df-mhm 18737  df-submnd 18738  df-grp 18895  df-minusg 18896  df-mulg 19026  df-subg 19080  df-ghm 19170  df-cntz 19270  df-cmn 19739  df-abl 19740  df-mgp 20077  df-rng 20095  df-ur 20124  df-ring 20177  df-subrng 20485  df-subrg 20510  df-sra 21060  df-rgmod 21061  df-dsmm 21668  df-frlm 21683  df-psr 21844  df-mpl 21846  df-opsr 21848  df-psr1 22105  df-ply1 22107  df-coe1 22108  df-mat 22324  df-cpmat 22624
This theorem is referenced by:  cpmatmcl  22637
  Copyright terms: Public domain W3C validator