MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpmatmcllem Structured version   Visualization version   GIF version

Theorem cpmatmcllem 22621
Description: Lemma for cpmatmcl 22622. (Contributed by AV, 18-Nov-2019.)
Hypotheses
Ref Expression
cpmatsrngpmat.s 𝑆 = (𝑁 ConstPolyMat 𝑅)
cpmatsrngpmat.p 𝑃 = (Poly1𝑅)
cpmatsrngpmat.c 𝐶 = (𝑁 Mat 𝑃)
Assertion
Ref Expression
cpmatmcllem (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))
Distinct variable groups:   𝐶,𝑖,𝑗   𝑖,𝑁,𝑗   𝑅,𝑖,𝑗   𝐶,𝑐   𝑁,𝑐,𝑥,𝑦,𝑖,𝑗   𝑃,𝑐   𝑅,𝑐,𝑥,𝑦   𝑦,𝑆   𝐶,𝑘   𝑘,𝑁,𝑐,𝑖,𝑗,𝑥,𝑦   𝑃,𝑘   𝑅,𝑘
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑃(𝑥,𝑦,𝑖,𝑗)   𝑆(𝑥,𝑖,𝑗,𝑘,𝑐)

Proof of Theorem cpmatmcllem
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 cpmatsrngpmat.s . . . 4 𝑆 = (𝑁 ConstPolyMat 𝑅)
2 cpmatsrngpmat.p . . . 4 𝑃 = (Poly1𝑅)
3 cpmatsrngpmat.c . . . 4 𝐶 = (𝑁 Mat 𝑃)
4 eqid 2729 . . . 4 (Base‘𝐶) = (Base‘𝐶)
51, 2, 3, 4cpmatelimp 22615 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥𝑆 → (𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖𝑁𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅))))
61, 2, 3, 4cpmatelimp 22615 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑦𝑆 → (𝑦 ∈ (Base‘𝐶) ∧ ∀𝑙𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))))
76adantr 480 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑦𝑆 → (𝑦 ∈ (Base‘𝐶) ∧ ∀𝑙𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))))
8 ralcom 3257 . . . . . . . . . . . . . . . 16 (∀𝑙𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅) ↔ ∀𝑗𝑁𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))
9 r19.26-2 3114 . . . . . . . . . . . . . . . . . . . . . . 23 (∀𝑙𝑁𝑐 ∈ ℕ (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) ↔ (∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)))
10 ralcom 3257 . . . . . . . . . . . . . . . . . . . . . . 23 (∀𝑙𝑁𝑐 ∈ ℕ (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) ↔ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)))
119, 10bitr3i 277 . . . . . . . . . . . . . . . . . . . . . 22 ((∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) ↔ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)))
12 nfv 1914 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑐(((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁))
13 nfra1 3253 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑐𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))
1412, 13nfan 1899 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑐((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)))
15 simp-4r 783 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑅 ∈ Ring)
16 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (Base‘𝑃) = (Base‘𝑃)
17 simplrl 776 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑖𝑁)
18 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑘𝑁)
19 simplrl 776 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → 𝑥 ∈ (Base‘𝐶))
2019adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑥 ∈ (Base‘𝐶))
213, 16, 4, 17, 18, 20matecld 22329 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (𝑖𝑥𝑘) ∈ (Base‘𝑃))
22 simplrr 777 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑗𝑁)
23 simplrr 777 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → 𝑦 ∈ (Base‘𝐶))
2423adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑦 ∈ (Base‘𝐶))
253, 16, 4, 18, 22, 24matecld 22329 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (𝑘𝑦𝑗) ∈ (Base‘𝑃))
2615, 21, 25jca32 515 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (𝑅 ∈ Ring ∧ ((𝑖𝑥𝑘) ∈ (Base‘𝑃) ∧ (𝑘𝑦𝑗) ∈ (Base‘𝑃))))
2726adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) ∧ 𝑘𝑁) → (𝑅 ∈ Ring ∧ ((𝑖𝑥𝑘) ∈ (Base‘𝑃) ∧ (𝑘𝑦𝑗) ∈ (Base‘𝑃))))
28 oveq2 7361 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑙 = 𝑘 → (𝑖𝑥𝑙) = (𝑖𝑥𝑘))
2928fveq2d 6830 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑙 = 𝑘 → (coe1‘(𝑖𝑥𝑙)) = (coe1‘(𝑖𝑥𝑘)))
3029fveq1d 6828 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑙 = 𝑘 → ((coe1‘(𝑖𝑥𝑙))‘𝑐) = ((coe1‘(𝑖𝑥𝑘))‘𝑐))
3130eqeq1d 2731 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑙 = 𝑘 → (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ↔ ((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g𝑅)))
32 fvoveq1 7376 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑙 = 𝑘 → (coe1‘(𝑙𝑦𝑗)) = (coe1‘(𝑘𝑦𝑗)))
3332fveq1d 6828 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑙 = 𝑘 → ((coe1‘(𝑙𝑦𝑗))‘𝑐) = ((coe1‘(𝑘𝑦𝑗))‘𝑐))
3433eqeq1d 2731 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑙 = 𝑘 → (((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅) ↔ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g𝑅)))
3531, 34anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑙 = 𝑘 → ((((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) ↔ (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g𝑅))))
3635rspcva 3577 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑘𝑁 ∧ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) → (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g𝑅)))
3736a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑐 ∈ ℕ) → ((𝑘𝑁 ∧ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) → (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g𝑅))))
3837exp4b 430 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → (𝑐 ∈ ℕ → (𝑘𝑁 → (∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) → (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g𝑅))))))
3938com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → (𝑘𝑁 → (𝑐 ∈ ℕ → (∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) → (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g𝑅))))))
4039imp31 417 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) ∧ 𝑐 ∈ ℕ) → (∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) → (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g𝑅))))
4140ralimdva 3141 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) → ∀𝑐 ∈ ℕ (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g𝑅))))
4241impancom 451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) → (𝑘𝑁 → ∀𝑐 ∈ ℕ (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g𝑅))))
4342imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) ∧ 𝑘𝑁) → ∀𝑐 ∈ ℕ (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g𝑅)))
44 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (0g𝑅) = (0g𝑅)
45 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (.r𝑃) = (.r𝑃)
462, 16, 44, 45cply1mul 22199 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑅 ∈ Ring ∧ ((𝑖𝑥𝑘) ∈ (Base‘𝑃) ∧ (𝑘𝑦𝑗) ∈ (Base‘𝑃))) → (∀𝑐 ∈ ℕ (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g𝑅)) → ∀𝑐 ∈ ℕ ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐) = (0g𝑅)))
4727, 43, 46sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) ∧ 𝑘𝑁) → ∀𝑐 ∈ ℕ ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐) = (0g𝑅))
4847r19.21bi 3221 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) ∧ 𝑘𝑁) ∧ 𝑐 ∈ ℕ) → ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐) = (0g𝑅))
4948an32s 652 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) ∧ 𝑐 ∈ ℕ) ∧ 𝑘𝑁) → ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐) = (0g𝑅))
5049mpteq2dva 5188 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) ∧ 𝑐 ∈ ℕ) → (𝑘𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐)) = (𝑘𝑁 ↦ (0g𝑅)))
5150oveq2d 7369 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) ∧ 𝑐 ∈ ℕ) → (𝑅 Σg (𝑘𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐))) = (𝑅 Σg (𝑘𝑁 ↦ (0g𝑅))))
52 ringmnd 20146 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
5352anim2i 617 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Mnd))
5453ancomd 461 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 ∈ Mnd ∧ 𝑁 ∈ Fin))
5544gsumz 18728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅 ∈ Mnd ∧ 𝑁 ∈ Fin) → (𝑅 Σg (𝑘𝑁 ↦ (0g𝑅))) = (0g𝑅))
5654, 55syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 Σg (𝑘𝑁 ↦ (0g𝑅))) = (0g𝑅))
5756ad4antr 732 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) ∧ 𝑐 ∈ ℕ) → (𝑅 Σg (𝑘𝑁 ↦ (0g𝑅))) = (0g𝑅))
5851, 57eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) ∧ 𝑐 ∈ ℕ) → (𝑅 Σg (𝑘𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐))) = (0g𝑅))
5958ex 412 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) → (𝑐 ∈ ℕ → (𝑅 Σg (𝑘𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐))) = (0g𝑅)))
6014, 59ralrimi 3227 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) → ∀𝑐 ∈ ℕ (𝑅 Σg (𝑘𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐))) = (0g𝑅))
61 simp-4r 783 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑐 ∈ ℕ) → 𝑅 ∈ Ring)
62 nnnn0 12409 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑐 ∈ ℕ → 𝑐 ∈ ℕ0)
6362adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑐 ∈ ℕ) → 𝑐 ∈ ℕ0)
642ply1ring 22148 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
6564ad4antlr 733 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑃 ∈ Ring)
6616, 45ringcl 20153 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑃 ∈ Ring ∧ (𝑖𝑥𝑘) ∈ (Base‘𝑃) ∧ (𝑘𝑦𝑗) ∈ (Base‘𝑃)) → ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)) ∈ (Base‘𝑃))
6765, 21, 25, 66syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)) ∈ (Base‘𝑃))
6867ralrimiva 3121 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → ∀𝑘𝑁 ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)) ∈ (Base‘𝑃))
6968adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑐 ∈ ℕ) → ∀𝑘𝑁 ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)) ∈ (Base‘𝑃))
70 simp-4l 782 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑐 ∈ ℕ) → 𝑁 ∈ Fin)
712, 16, 61, 63, 69, 70coe1fzgsumd 22207 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑐 ∈ ℕ) → ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (𝑅 Σg (𝑘𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐))))
7271eqeq1d 2731 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑐 ∈ ℕ) → (((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅) ↔ (𝑅 Σg (𝑘𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐))) = (0g𝑅)))
7372ralbidva 3150 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → (∀𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅) ↔ ∀𝑐 ∈ ℕ (𝑅 Σg (𝑘𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐))) = (0g𝑅)))
7473adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) → (∀𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅) ↔ ∀𝑐 ∈ ℕ (𝑅 Σg (𝑘𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐))) = (0g𝑅)))
7560, 74mpbird 257 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) → ∀𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))
7675ex 412 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → (∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) → ∀𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅)))
7711, 76biimtrid 242 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → ((∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) → ∀𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅)))
7877expd 415 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → (∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → (∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅) → ∀𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))))
7978expr 456 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑖𝑁) → (𝑗𝑁 → (∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → (∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅) → ∀𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅)))))
8079com23 86 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑖𝑁) → (∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → (𝑗𝑁 → (∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅) → ∀𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅)))))
8180imp31 417 . . . . . . . . . . . . . . . . 17 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑖𝑁) ∧ ∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅)) ∧ 𝑗𝑁) → (∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅) → ∀𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅)))
8281ralimdva 3141 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑖𝑁) ∧ ∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅)) → (∀𝑗𝑁𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅) → ∀𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅)))
838, 82biimtrid 242 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑖𝑁) ∧ ∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅)) → (∀𝑙𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅) → ∀𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅)))
8483ex 412 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑖𝑁) → (∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → (∀𝑙𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅) → ∀𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))))
8584com23 86 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑖𝑁) → (∀𝑙𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅) → (∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → ∀𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))))
8685impancom 451 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∀𝑙𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) → (𝑖𝑁 → (∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → ∀𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))))
8786imp 406 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∀𝑙𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) ∧ 𝑖𝑁) → (∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → ∀𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅)))
8887ralimdva 3141 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∀𝑙𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) → (∀𝑖𝑁𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅)))
8988ex 412 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (∀𝑙𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅) → (∀𝑖𝑁𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))))
9089expr 456 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐶) → (∀𝑙𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅) → (∀𝑖𝑁𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅)))))
9190impd 410 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝑦 ∈ (Base‘𝐶) ∧ ∀𝑙𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) → (∀𝑖𝑁𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))))
927, 91syld 47 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑦𝑆 → (∀𝑖𝑁𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))))
9392com23 86 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) → (∀𝑖𝑁𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → (𝑦𝑆 → ∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))))
9493ex 412 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥 ∈ (Base‘𝐶) → (∀𝑖𝑁𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → (𝑦𝑆 → ∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅)))))
9594impd 410 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖𝑁𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅)) → (𝑦𝑆 → ∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))))
965, 95syld 47 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥𝑆 → (𝑦𝑆 → ∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))))
9796imp32 418 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  cmpt 5176  cfv 6486  (class class class)co 7353  Fincfn 8879  cn 12146  0cn0 12402  Basecbs 17138  .rcmulr 17180  0gc0g 17361   Σg cgsu 17362  Mndcmnd 18626  Ringcrg 20136  Poly1cpl1 22077  coe1cco1 22078   Mat cmat 22310   ConstPolyMat ccpmat 22606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-ot 4588  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-ofr 7618  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-hom 17203  df-cco 17204  df-0g 17363  df-gsum 17364  df-prds 17369  df-pws 17371  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-grp 18833  df-minusg 18834  df-mulg 18965  df-subg 19020  df-ghm 19110  df-cntz 19214  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-subrng 20449  df-subrg 20473  df-sra 21095  df-rgmod 21096  df-dsmm 21657  df-frlm 21672  df-psr 21834  df-mpl 21836  df-opsr 21838  df-psr1 22080  df-ply1 22082  df-coe1 22083  df-mat 22311  df-cpmat 22609
This theorem is referenced by:  cpmatmcl  22622
  Copyright terms: Public domain W3C validator