Step | Hyp | Ref
| Expression |
1 | | cpmatsrngpmat.s |
. . . 4
⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) |
2 | | cpmatsrngpmat.p |
. . . 4
⊢ 𝑃 = (Poly1‘𝑅) |
3 | | cpmatsrngpmat.c |
. . . 4
⊢ 𝐶 = (𝑁 Mat 𝑃) |
4 | | eqid 2738 |
. . . 4
⊢
(Base‘𝐶) =
(Base‘𝐶) |
5 | 1, 2, 3, 4 | cpmatelimp 21769 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥 ∈ 𝑆 → (𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖 ∈ 𝑁 ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅)))) |
6 | 1, 2, 3, 4 | cpmatelimp 21769 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑦 ∈ 𝑆 → (𝑦 ∈ (Base‘𝐶) ∧ ∀𝑙 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)))) |
7 | 6 | adantr 480 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ 𝑆 → (𝑦 ∈ (Base‘𝐶) ∧ ∀𝑙 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)))) |
8 | | ralcom 3280 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑙 ∈
𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅) ↔ ∀𝑗 ∈ 𝑁 ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)) |
9 | | r19.26-2 3095 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(∀𝑙 ∈
𝑁 ∀𝑐 ∈ ℕ
(((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)) ↔ (∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) |
10 | | ralcom 3280 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(∀𝑙 ∈
𝑁 ∀𝑐 ∈ ℕ
(((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)) ↔ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) |
11 | 9, 10 | bitr3i 276 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((∀𝑙 ∈
𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)) ↔ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) |
12 | | nfv 1918 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑐(((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) |
13 | | nfra1 3142 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑐∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)) |
14 | 12, 13 | nfan 1903 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑐((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) |
15 | | simp-4r 780 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → 𝑅 ∈ Ring) |
16 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(Base‘𝑃) =
(Base‘𝑃) |
17 | | simplrl 773 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → 𝑖 ∈ 𝑁) |
18 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → 𝑘 ∈ 𝑁) |
19 | | simplrl 773 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑥 ∈ (Base‘𝐶)) |
20 | 19 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → 𝑥 ∈ (Base‘𝐶)) |
21 | 3, 16, 4, 17, 18, 20 | matecld 21483 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → (𝑖𝑥𝑘) ∈ (Base‘𝑃)) |
22 | | simplrr 774 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → 𝑗 ∈ 𝑁) |
23 | | simplrr 774 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑦 ∈ (Base‘𝐶)) |
24 | 23 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → 𝑦 ∈ (Base‘𝐶)) |
25 | 3, 16, 4, 18, 22, 24 | matecld 21483 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → (𝑘𝑦𝑗) ∈ (Base‘𝑃)) |
26 | 15, 21, 25 | jca32 515 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → (𝑅 ∈ Ring ∧ ((𝑖𝑥𝑘) ∈ (Base‘𝑃) ∧ (𝑘𝑦𝑗) ∈ (Base‘𝑃)))) |
27 | 26 | adantlr 711 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) ∧ 𝑘 ∈ 𝑁) → (𝑅 ∈ Ring ∧ ((𝑖𝑥𝑘) ∈ (Base‘𝑃) ∧ (𝑘𝑦𝑗) ∈ (Base‘𝑃)))) |
28 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
⊢ (𝑙 = 𝑘 → (𝑖𝑥𝑙) = (𝑖𝑥𝑘)) |
29 | 28 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ (𝑙 = 𝑘 → (coe1‘(𝑖𝑥𝑙)) = (coe1‘(𝑖𝑥𝑘))) |
30 | 29 | fveq1d 6758 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ (𝑙 = 𝑘 → ((coe1‘(𝑖𝑥𝑙))‘𝑐) = ((coe1‘(𝑖𝑥𝑘))‘𝑐)) |
31 | 30 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (𝑙 = 𝑘 → (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ↔ ((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g‘𝑅))) |
32 | | fvoveq1 7278 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
⊢ (𝑙 = 𝑘 → (coe1‘(𝑙𝑦𝑗)) = (coe1‘(𝑘𝑦𝑗))) |
33 | 32 | fveq1d 6758 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
⊢ (𝑙 = 𝑘 → ((coe1‘(𝑙𝑦𝑗))‘𝑐) = ((coe1‘(𝑘𝑦𝑗))‘𝑐)) |
34 | 33 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
⊢ (𝑙 = 𝑘 → (((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅) ↔ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g‘𝑅))) |
35 | 31, 34 | anbi12d 630 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑙 = 𝑘 → ((((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)) ↔ (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g‘𝑅)))) |
36 | 35 | rspcva 3550 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝑘 ∈ 𝑁 ∧ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) → (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g‘𝑅))) |
37 | 36 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑐 ∈ ℕ) → ((𝑘 ∈ 𝑁 ∧ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) → (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g‘𝑅)))) |
38 | 37 | exp4b 430 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑐 ∈ ℕ → (𝑘 ∈ 𝑁 → (∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)) → (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g‘𝑅)))))) |
39 | 38 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑘 ∈ 𝑁 → (𝑐 ∈ ℕ → (∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)) → (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g‘𝑅)))))) |
40 | 39 | imp31 417 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) ∧ 𝑐 ∈ ℕ) → (∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)) → (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g‘𝑅)))) |
41 | 40 | ralimdva 3102 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → (∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)) → ∀𝑐 ∈ ℕ
(((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g‘𝑅)))) |
42 | 41 | impancom 451 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) → (𝑘 ∈ 𝑁 → ∀𝑐 ∈ ℕ
(((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g‘𝑅)))) |
43 | 42 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) ∧ 𝑘 ∈ 𝑁) → ∀𝑐 ∈ ℕ
(((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g‘𝑅))) |
44 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(0g‘𝑅) = (0g‘𝑅) |
45 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
(.r‘𝑃) = (.r‘𝑃) |
46 | 2, 16, 44, 45 | cply1mul 21375 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑅 ∈ Ring ∧ ((𝑖𝑥𝑘) ∈ (Base‘𝑃) ∧ (𝑘𝑦𝑗) ∈ (Base‘𝑃))) → (∀𝑐 ∈ ℕ
(((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g‘𝑅)) → ∀𝑐 ∈ ℕ
((coe1‘((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))‘𝑐) = (0g‘𝑅))) |
47 | 27, 43, 46 | sylc 65 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) ∧ 𝑘 ∈ 𝑁) → ∀𝑐 ∈ ℕ
((coe1‘((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))‘𝑐) = (0g‘𝑅)) |
48 | 47 | r19.21bi 3132 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) ∧ 𝑘 ∈ 𝑁) ∧ 𝑐 ∈ ℕ) →
((coe1‘((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))‘𝑐) = (0g‘𝑅)) |
49 | 48 | an32s 648 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) ∧ 𝑐 ∈ ℕ) ∧ 𝑘 ∈ 𝑁) → ((coe1‘((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))‘𝑐) = (0g‘𝑅)) |
50 | 49 | mpteq2dva 5170 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) ∧ 𝑐 ∈ ℕ) → (𝑘 ∈ 𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))‘𝑐)) = (𝑘 ∈ 𝑁 ↦ (0g‘𝑅))) |
51 | 50 | oveq2d 7271 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) ∧ 𝑐 ∈ ℕ) → (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))‘𝑐))) = (𝑅 Σg (𝑘 ∈ 𝑁 ↦ (0g‘𝑅)))) |
52 | | ringmnd 19708 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
53 | 52 | anim2i 616 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Mnd)) |
54 | 53 | ancomd 461 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 ∈ Mnd ∧ 𝑁 ∈ Fin)) |
55 | 44 | gsumz 18389 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑅 ∈ Mnd ∧ 𝑁 ∈ Fin) → (𝑅 Σg
(𝑘 ∈ 𝑁 ↦ (0g‘𝑅))) = (0g‘𝑅)) |
56 | 54, 55 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 Σg
(𝑘 ∈ 𝑁 ↦ (0g‘𝑅))) = (0g‘𝑅)) |
57 | 56 | ad4antr 728 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) ∧ 𝑐 ∈ ℕ) → (𝑅 Σg (𝑘 ∈ 𝑁 ↦ (0g‘𝑅))) = (0g‘𝑅)) |
58 | 51, 57 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) ∧ 𝑐 ∈ ℕ) → (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))‘𝑐))) = (0g‘𝑅)) |
59 | 58 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) → (𝑐 ∈ ℕ → (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))‘𝑐))) = (0g‘𝑅))) |
60 | 14, 59 | ralrimi 3139 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) → ∀𝑐 ∈ ℕ (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))‘𝑐))) = (0g‘𝑅)) |
61 | | simp-4r 780 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑐 ∈ ℕ) → 𝑅 ∈ Ring) |
62 | | nnnn0 12170 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑐 ∈ ℕ → 𝑐 ∈
ℕ0) |
63 | 62 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑐 ∈ ℕ) → 𝑐 ∈ ℕ0) |
64 | 2 | ply1ring 21329 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
65 | 64 | ad4antlr 729 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → 𝑃 ∈ Ring) |
66 | 16, 45 | ringcl 19715 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑃 ∈ Ring ∧ (𝑖𝑥𝑘) ∈ (Base‘𝑃) ∧ (𝑘𝑦𝑗) ∈ (Base‘𝑃)) → ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)) ∈ (Base‘𝑃)) |
67 | 65, 21, 25, 66 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑘 ∈ 𝑁) → ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)) ∈ (Base‘𝑃)) |
68 | 67 | ralrimiva 3107 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → ∀𝑘 ∈ 𝑁 ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)) ∈ (Base‘𝑃)) |
69 | 68 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑐 ∈ ℕ) → ∀𝑘 ∈ 𝑁 ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)) ∈ (Base‘𝑃)) |
70 | | simp-4l 779 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑐 ∈ ℕ) → 𝑁 ∈ Fin) |
71 | 2, 16, 61, 63, 69, 70 | coe1fzgsumd 21383 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑐 ∈ ℕ) →
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))‘𝑐)))) |
72 | 71 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑐 ∈ ℕ) →
(((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅) ↔ (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))‘𝑐))) = (0g‘𝑅))) |
73 | 72 | ralbidva 3119 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅) ↔ ∀𝑐 ∈ ℕ (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))‘𝑐))) = (0g‘𝑅))) |
74 | 73 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) → (∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅) ↔ ∀𝑐 ∈ ℕ (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))‘𝑐))) = (0g‘𝑅))) |
75 | 60, 74 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅))) → ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅)) |
76 | 75 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (∀𝑐 ∈ ℕ ∀𝑙 ∈ 𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)) → ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅))) |
77 | 11, 76 | syl5bi 241 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → ((∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) ∧ ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)) → ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅))) |
78 | 77 | expd 415 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) → (∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅) → ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅)))) |
79 | 78 | expr 456 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑖 ∈ 𝑁) → (𝑗 ∈ 𝑁 → (∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) → (∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅) → ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅))))) |
80 | 79 | com23 86 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑖 ∈ 𝑁) → (∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) → (𝑗 ∈ 𝑁 → (∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅) → ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅))))) |
81 | 80 | imp31 417 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑖 ∈ 𝑁) ∧ ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅)) ∧ 𝑗 ∈ 𝑁) → (∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅) → ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅))) |
82 | 81 | ralimdva 3102 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑖 ∈ 𝑁) ∧ ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅)) → (∀𝑗 ∈ 𝑁 ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅) → ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅))) |
83 | 8, 82 | syl5bi 241 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑖 ∈ 𝑁) ∧ ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅)) → (∀𝑙 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅) → ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅))) |
84 | 83 | ex 412 |
. . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑖 ∈ 𝑁) → (∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) → (∀𝑙 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅) → ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅)))) |
85 | 84 | com23 86 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑖 ∈ 𝑁) → (∀𝑙 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅) → (∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) → ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅)))) |
86 | 85 | impancom 451 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∀𝑙 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)) → (𝑖 ∈ 𝑁 → (∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) → ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅)))) |
87 | 86 | imp 406 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∀𝑙 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)) ∧ 𝑖 ∈ 𝑁) → (∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) → ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅))) |
88 | 87 | ralimdva 3102 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∀𝑙 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)) → (∀𝑖 ∈ 𝑁 ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅))) |
89 | 88 | ex 412 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (∀𝑙 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅) → (∀𝑖 ∈ 𝑁 ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅)))) |
90 | 89 | expr 456 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐶) → (∀𝑙 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅) → (∀𝑖 ∈ 𝑁 ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅))))) |
91 | 90 | impd 410 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝑦 ∈ (Base‘𝐶) ∧ ∀𝑙 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g‘𝑅)) → (∀𝑖 ∈ 𝑁 ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅)))) |
92 | 7, 91 | syld 47 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ 𝑆 → (∀𝑖 ∈ 𝑁 ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅)))) |
93 | 92 | com23 86 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) → (∀𝑖 ∈ 𝑁 ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) → (𝑦 ∈ 𝑆 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅)))) |
94 | 93 | ex 412 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥 ∈ (Base‘𝐶) → (∀𝑖 ∈ 𝑁 ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅) → (𝑦 ∈ 𝑆 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅))))) |
95 | 94 | impd 410 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖 ∈ 𝑁 ∀𝑙 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g‘𝑅)) → (𝑦 ∈ 𝑆 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅)))) |
96 | 5, 95 | syld 47 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥 ∈ 𝑆 → (𝑦 ∈ 𝑆 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅)))) |
97 | 96 | imp32 418 |
1
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑐 ∈ ℕ
((coe1‘(𝑃
Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑥𝑘)(.r‘𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g‘𝑅)) |