MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpmatmcllem Structured version   Visualization version   GIF version

Theorem cpmatmcllem 22711
Description: Lemma for cpmatmcl 22712. (Contributed by AV, 18-Nov-2019.)
Hypotheses
Ref Expression
cpmatsrngpmat.s 𝑆 = (𝑁 ConstPolyMat 𝑅)
cpmatsrngpmat.p 𝑃 = (Poly1𝑅)
cpmatsrngpmat.c 𝐶 = (𝑁 Mat 𝑃)
Assertion
Ref Expression
cpmatmcllem (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))
Distinct variable groups:   𝐶,𝑖,𝑗   𝑖,𝑁,𝑗   𝑅,𝑖,𝑗   𝐶,𝑐   𝑁,𝑐,𝑥,𝑦,𝑖,𝑗   𝑃,𝑐   𝑅,𝑐,𝑥,𝑦   𝑦,𝑆   𝐶,𝑘   𝑘,𝑁,𝑐,𝑖,𝑗,𝑥,𝑦   𝑃,𝑘   𝑅,𝑘
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑃(𝑥,𝑦,𝑖,𝑗)   𝑆(𝑥,𝑖,𝑗,𝑘,𝑐)

Proof of Theorem cpmatmcllem
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 cpmatsrngpmat.s . . . 4 𝑆 = (𝑁 ConstPolyMat 𝑅)
2 cpmatsrngpmat.p . . . 4 𝑃 = (Poly1𝑅)
3 cpmatsrngpmat.c . . . 4 𝐶 = (𝑁 Mat 𝑃)
4 eqid 2726 . . . 4 (Base‘𝐶) = (Base‘𝐶)
51, 2, 3, 4cpmatelimp 22705 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥𝑆 → (𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖𝑁𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅))))
61, 2, 3, 4cpmatelimp 22705 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑦𝑆 → (𝑦 ∈ (Base‘𝐶) ∧ ∀𝑙𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))))
76adantr 479 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑦𝑆 → (𝑦 ∈ (Base‘𝐶) ∧ ∀𝑙𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))))
8 ralcom 3277 . . . . . . . . . . . . . . . 16 (∀𝑙𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅) ↔ ∀𝑗𝑁𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))
9 r19.26-2 3128 . . . . . . . . . . . . . . . . . . . . . . 23 (∀𝑙𝑁𝑐 ∈ ℕ (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) ↔ (∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)))
10 ralcom 3277 . . . . . . . . . . . . . . . . . . . . . . 23 (∀𝑙𝑁𝑐 ∈ ℕ (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) ↔ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)))
119, 10bitr3i 276 . . . . . . . . . . . . . . . . . . . . . 22 ((∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) ↔ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)))
12 nfv 1910 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑐(((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁))
13 nfra1 3272 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑐𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))
1412, 13nfan 1895 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑐((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)))
15 simp-4r 782 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑅 ∈ Ring)
16 eqid 2726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (Base‘𝑃) = (Base‘𝑃)
17 simplrl 775 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑖𝑁)
18 simpr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑘𝑁)
19 simplrl 775 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → 𝑥 ∈ (Base‘𝐶))
2019adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑥 ∈ (Base‘𝐶))
213, 16, 4, 17, 18, 20matecld 22419 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (𝑖𝑥𝑘) ∈ (Base‘𝑃))
22 simplrr 776 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑗𝑁)
23 simplrr 776 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → 𝑦 ∈ (Base‘𝐶))
2423adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑦 ∈ (Base‘𝐶))
253, 16, 4, 18, 22, 24matecld 22419 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (𝑘𝑦𝑗) ∈ (Base‘𝑃))
2615, 21, 25jca32 514 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (𝑅 ∈ Ring ∧ ((𝑖𝑥𝑘) ∈ (Base‘𝑃) ∧ (𝑘𝑦𝑗) ∈ (Base‘𝑃))))
2726adantlr 713 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) ∧ 𝑘𝑁) → (𝑅 ∈ Ring ∧ ((𝑖𝑥𝑘) ∈ (Base‘𝑃) ∧ (𝑘𝑦𝑗) ∈ (Base‘𝑃))))
28 oveq2 7432 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑙 = 𝑘 → (𝑖𝑥𝑙) = (𝑖𝑥𝑘))
2928fveq2d 6905 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑙 = 𝑘 → (coe1‘(𝑖𝑥𝑙)) = (coe1‘(𝑖𝑥𝑘)))
3029fveq1d 6903 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑙 = 𝑘 → ((coe1‘(𝑖𝑥𝑙))‘𝑐) = ((coe1‘(𝑖𝑥𝑘))‘𝑐))
3130eqeq1d 2728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑙 = 𝑘 → (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ↔ ((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g𝑅)))
32 fvoveq1 7447 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑙 = 𝑘 → (coe1‘(𝑙𝑦𝑗)) = (coe1‘(𝑘𝑦𝑗)))
3332fveq1d 6903 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑙 = 𝑘 → ((coe1‘(𝑙𝑦𝑗))‘𝑐) = ((coe1‘(𝑘𝑦𝑗))‘𝑐))
3433eqeq1d 2728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑙 = 𝑘 → (((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅) ↔ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g𝑅)))
3531, 34anbi12d 630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑙 = 𝑘 → ((((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) ↔ (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g𝑅))))
3635rspcva 3606 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑘𝑁 ∧ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) → (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g𝑅)))
3736a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑐 ∈ ℕ) → ((𝑘𝑁 ∧ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) → (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g𝑅))))
3837exp4b 429 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → (𝑐 ∈ ℕ → (𝑘𝑁 → (∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) → (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g𝑅))))))
3938com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → (𝑘𝑁 → (𝑐 ∈ ℕ → (∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) → (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g𝑅))))))
4039imp31 416 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) ∧ 𝑐 ∈ ℕ) → (∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) → (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g𝑅))))
4140ralimdva 3157 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → (∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) → ∀𝑐 ∈ ℕ (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g𝑅))))
4241impancom 450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) → (𝑘𝑁 → ∀𝑐 ∈ ℕ (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g𝑅))))
4342imp 405 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) ∧ 𝑘𝑁) → ∀𝑐 ∈ ℕ (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g𝑅)))
44 eqid 2726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (0g𝑅) = (0g𝑅)
45 eqid 2726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (.r𝑃) = (.r𝑃)
462, 16, 44, 45cply1mul 22287 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑅 ∈ Ring ∧ ((𝑖𝑥𝑘) ∈ (Base‘𝑃) ∧ (𝑘𝑦𝑗) ∈ (Base‘𝑃))) → (∀𝑐 ∈ ℕ (((coe1‘(𝑖𝑥𝑘))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑘𝑦𝑗))‘𝑐) = (0g𝑅)) → ∀𝑐 ∈ ℕ ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐) = (0g𝑅)))
4727, 43, 46sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) ∧ 𝑘𝑁) → ∀𝑐 ∈ ℕ ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐) = (0g𝑅))
4847r19.21bi 3239 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) ∧ 𝑘𝑁) ∧ 𝑐 ∈ ℕ) → ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐) = (0g𝑅))
4948an32s 650 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) ∧ 𝑐 ∈ ℕ) ∧ 𝑘𝑁) → ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐) = (0g𝑅))
5049mpteq2dva 5253 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) ∧ 𝑐 ∈ ℕ) → (𝑘𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐)) = (𝑘𝑁 ↦ (0g𝑅)))
5150oveq2d 7440 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) ∧ 𝑐 ∈ ℕ) → (𝑅 Σg (𝑘𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐))) = (𝑅 Σg (𝑘𝑁 ↦ (0g𝑅))))
52 ringmnd 20226 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
5352anim2i 615 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Mnd))
5453ancomd 460 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 ∈ Mnd ∧ 𝑁 ∈ Fin))
5544gsumz 18826 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅 ∈ Mnd ∧ 𝑁 ∈ Fin) → (𝑅 Σg (𝑘𝑁 ↦ (0g𝑅))) = (0g𝑅))
5654, 55syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 Σg (𝑘𝑁 ↦ (0g𝑅))) = (0g𝑅))
5756ad4antr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) ∧ 𝑐 ∈ ℕ) → (𝑅 Σg (𝑘𝑁 ↦ (0g𝑅))) = (0g𝑅))
5851, 57eqtrd 2766 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) ∧ 𝑐 ∈ ℕ) → (𝑅 Σg (𝑘𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐))) = (0g𝑅))
5958ex 411 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) → (𝑐 ∈ ℕ → (𝑅 Σg (𝑘𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐))) = (0g𝑅)))
6014, 59ralrimi 3245 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) → ∀𝑐 ∈ ℕ (𝑅 Σg (𝑘𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐))) = (0g𝑅))
61 simp-4r 782 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑐 ∈ ℕ) → 𝑅 ∈ Ring)
62 nnnn0 12531 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑐 ∈ ℕ → 𝑐 ∈ ℕ0)
6362adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑐 ∈ ℕ) → 𝑐 ∈ ℕ0)
642ply1ring 22237 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
6564ad4antlr 731 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → 𝑃 ∈ Ring)
6616, 45ringcl 20233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑃 ∈ Ring ∧ (𝑖𝑥𝑘) ∈ (Base‘𝑃) ∧ (𝑘𝑦𝑗) ∈ (Base‘𝑃)) → ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)) ∈ (Base‘𝑃))
6765, 21, 25, 66syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑘𝑁) → ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)) ∈ (Base‘𝑃))
6867ralrimiva 3136 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → ∀𝑘𝑁 ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)) ∈ (Base‘𝑃))
6968adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑐 ∈ ℕ) → ∀𝑘𝑁 ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)) ∈ (Base‘𝑃))
70 simp-4l 781 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑐 ∈ ℕ) → 𝑁 ∈ Fin)
712, 16, 61, 63, 69, 70coe1fzgsumd 22295 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑐 ∈ ℕ) → ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (𝑅 Σg (𝑘𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐))))
7271eqeq1d 2728 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑐 ∈ ℕ) → (((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅) ↔ (𝑅 Σg (𝑘𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐))) = (0g𝑅)))
7372ralbidva 3166 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → (∀𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅) ↔ ∀𝑐 ∈ ℕ (𝑅 Σg (𝑘𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐))) = (0g𝑅)))
7473adantr 479 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) → (∀𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅) ↔ ∀𝑐 ∈ ℕ (𝑅 Σg (𝑘𝑁 ↦ ((coe1‘((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))‘𝑐))) = (0g𝑅)))
7560, 74mpbird 256 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) ∧ ∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅))) → ∀𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))
7675ex 411 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → (∀𝑐 ∈ ℕ ∀𝑙𝑁 (((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) → ∀𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅)))
7711, 76biimtrid 241 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → ((∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) ∧ ∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) → ∀𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅)))
7877expd 414 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ (𝑖𝑁𝑗𝑁)) → (∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → (∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅) → ∀𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))))
7978expr 455 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑖𝑁) → (𝑗𝑁 → (∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → (∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅) → ∀𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅)))))
8079com23 86 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑖𝑁) → (∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → (𝑗𝑁 → (∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅) → ∀𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅)))))
8180imp31 416 . . . . . . . . . . . . . . . . 17 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑖𝑁) ∧ ∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅)) ∧ 𝑗𝑁) → (∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅) → ∀𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅)))
8281ralimdva 3157 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑖𝑁) ∧ ∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅)) → (∀𝑗𝑁𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅) → ∀𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅)))
838, 82biimtrid 241 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑖𝑁) ∧ ∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅)) → (∀𝑙𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅) → ∀𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅)))
8483ex 411 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑖𝑁) → (∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → (∀𝑙𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅) → ∀𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))))
8584com23 86 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑖𝑁) → (∀𝑙𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅) → (∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → ∀𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))))
8685impancom 450 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∀𝑙𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) → (𝑖𝑁 → (∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → ∀𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))))
8786imp 405 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∀𝑙𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) ∧ 𝑖𝑁) → (∀𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → ∀𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅)))
8887ralimdva 3157 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∀𝑙𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) → (∀𝑖𝑁𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅)))
8988ex 411 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (∀𝑙𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅) → (∀𝑖𝑁𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))))
9089expr 455 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐶) → (∀𝑙𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅) → (∀𝑖𝑁𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅)))))
9190impd 409 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝑦 ∈ (Base‘𝐶) ∧ ∀𝑙𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑙𝑦𝑗))‘𝑐) = (0g𝑅)) → (∀𝑖𝑁𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))))
927, 91syld 47 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑦𝑆 → (∀𝑖𝑁𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))))
9392com23 86 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) → (∀𝑖𝑁𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → (𝑦𝑆 → ∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))))
9493ex 411 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥 ∈ (Base‘𝐶) → (∀𝑖𝑁𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅) → (𝑦𝑆 → ∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅)))))
9594impd 409 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖𝑁𝑙𝑁𝑐 ∈ ℕ ((coe1‘(𝑖𝑥𝑙))‘𝑐) = (0g𝑅)) → (𝑦𝑆 → ∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))))
965, 95syld 47 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥𝑆 → (𝑦𝑆 → ∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))))
9796imp32 417 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥𝑆𝑦𝑆)) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ ℕ ((coe1‘(𝑃 Σg (𝑘𝑁 ↦ ((𝑖𝑥𝑘)(.r𝑃)(𝑘𝑦𝑗)))))‘𝑐) = (0g𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wral 3051  cmpt 5236  cfv 6554  (class class class)co 7424  Fincfn 8974  cn 12264  0cn0 12524  Basecbs 17213  .rcmulr 17267  0gc0g 17454   Σg cgsu 17455  Mndcmnd 18727  Ringcrg 20216  Poly1cpl1 22166  coe1cco1 22167   Mat cmat 22398   ConstPolyMat ccpmat 22696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-ot 4642  df-uni 4914  df-int 4955  df-iun 5003  df-iin 5004  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7690  df-ofr 7691  df-om 7877  df-1st 8003  df-2nd 8004  df-supp 8175  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-er 8734  df-map 8857  df-pm 8858  df-ixp 8927  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-fsupp 9406  df-sup 9485  df-oi 9553  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12611  df-dec 12730  df-uz 12875  df-fz 13539  df-fzo 13682  df-seq 14022  df-hash 14348  df-struct 17149  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-mulr 17280  df-sca 17282  df-vsca 17283  df-ip 17284  df-tset 17285  df-ple 17286  df-ds 17288  df-hom 17290  df-cco 17291  df-0g 17456  df-gsum 17457  df-prds 17462  df-pws 17464  df-mre 17599  df-mrc 17600  df-acs 17602  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-mhm 18773  df-submnd 18774  df-grp 18931  df-minusg 18932  df-mulg 19062  df-subg 19117  df-ghm 19207  df-cntz 19311  df-cmn 19780  df-abl 19781  df-mgp 20118  df-rng 20136  df-ur 20165  df-ring 20218  df-subrng 20528  df-subrg 20553  df-sra 21151  df-rgmod 21152  df-dsmm 21730  df-frlm 21745  df-psr 21906  df-mpl 21908  df-opsr 21910  df-psr1 22169  df-ply1 22171  df-coe1 22172  df-mat 22399  df-cpmat 22699
This theorem is referenced by:  cpmatmcl  22712
  Copyright terms: Public domain W3C validator