Step | Hyp | Ref
| Expression |
1 | | cpmatsrngpmat.s |
. . . 4
β’ π = (π ConstPolyMat π
) |
2 | | cpmatsrngpmat.p |
. . . 4
β’ π = (Poly1βπ
) |
3 | | cpmatsrngpmat.c |
. . . 4
β’ πΆ = (π Mat π) |
4 | | eqid 2732 |
. . . 4
β’
(BaseβπΆ) =
(BaseβπΆ) |
5 | 1, 2, 3, 4 | cpmatelimp 22205 |
. . 3
β’ ((π β Fin β§ π
β Ring) β (π₯ β π β (π₯ β (BaseβπΆ) β§ βπ β π βπ β π βπ β β
((coe1β(ππ₯π))βπ) = (0gβπ
)))) |
6 | 1, 2, 3, 4 | cpmatelimp 22205 |
. . . . . . . 8
β’ ((π β Fin β§ π
β Ring) β (π¦ β π β (π¦ β (BaseβπΆ) β§ βπ β π βπ β π βπ β β
((coe1β(ππ¦π))βπ) = (0gβπ
)))) |
7 | 6 | adantr 481 |
. . . . . . 7
β’ (((π β Fin β§ π
β Ring) β§ π₯ β (BaseβπΆ)) β (π¦ β π β (π¦ β (BaseβπΆ) β§ βπ β π βπ β π βπ β β
((coe1β(ππ¦π))βπ) = (0gβπ
)))) |
8 | | ralcom 3286 |
. . . . . . . . . . . . . . . 16
β’
(βπ β
π βπ β π βπ β β
((coe1β(ππ¦π))βπ) = (0gβπ
) β βπ β π βπ β π βπ β β
((coe1β(ππ¦π))βπ) = (0gβπ
)) |
9 | | r19.26-2 3138 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’
(βπ β
π βπ β β
(((coe1β(ππ₯π))βπ) = (0gβπ
) β§ ((coe1β(ππ¦π))βπ) = (0gβπ
)) β (βπ β π βπ β β
((coe1β(ππ₯π))βπ) = (0gβπ
) β§ βπ β π βπ β β
((coe1β(ππ¦π))βπ) = (0gβπ
))) |
10 | | ralcom 3286 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’
(βπ β
π βπ β β
(((coe1β(ππ₯π))βπ) = (0gβπ
) β§ ((coe1β(ππ¦π))βπ) = (0gβπ
)) β βπ β β βπ β π (((coe1β(ππ₯π))βπ) = (0gβπ
) β§ ((coe1β(ππ¦π))βπ) = (0gβπ
))) |
11 | 9, 10 | bitr3i 276 |
. . . . . . . . . . . . . . . . . . . . . 22
β’
((βπ β
π βπ β β
((coe1β(ππ₯π))βπ) = (0gβπ
) β§ βπ β π βπ β β
((coe1β(ππ¦π))βπ) = (0gβπ
)) β βπ β β βπ β π (((coe1β(ππ₯π))βπ) = (0gβπ
) β§ ((coe1β(ππ¦π))βπ) = (0gβπ
))) |
12 | | nfv 1917 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’
β²π(((π β Fin β§ π
β Ring) β§ (π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ (π β π β§ π β π)) |
13 | | nfra1 3281 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’
β²πβπ β β βπ β π (((coe1β(ππ₯π))βπ) = (0gβπ
) β§ ((coe1β(ππ¦π))βπ) = (0gβπ
)) |
14 | 12, 13 | nfan 1902 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’
β²π((((π β Fin β§ π
β Ring) β§ (π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ (π β π β§ π β π)) β§ βπ β β βπ β π (((coe1β(ππ₯π))βπ) = (0gβπ
) β§ ((coe1β(ππ¦π))βπ) = (0gβπ
))) |
15 | | simp-4r 782 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
β’
(((((π β Fin
β§ π
β Ring) β§
(π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ (π β π β§ π β π)) β§ π β π) β π
β Ring) |
16 | | eqid 2732 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
β’
(Baseβπ) =
(Baseβπ) |
17 | | simplrl 775 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
β’
(((((π β Fin
β§ π
β Ring) β§
(π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ (π β π β§ π β π)) β§ π β π) β π β π) |
18 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
β’
(((((π β Fin
β§ π
β Ring) β§
(π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ (π β π β§ π β π)) β§ π β π) β π β π) |
19 | | simplrl 775 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
β’ ((((π β Fin β§ π
β Ring) β§ (π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ (π β π β§ π β π)) β π₯ β (BaseβπΆ)) |
20 | 19 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
β’
(((((π β Fin
β§ π
β Ring) β§
(π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ (π β π β§ π β π)) β§ π β π) β π₯ β (BaseβπΆ)) |
21 | 3, 16, 4, 17, 18, 20 | matecld 21919 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
β’
(((((π β Fin
β§ π
β Ring) β§
(π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ (π β π β§ π β π)) β§ π β π) β (ππ₯π) β (Baseβπ)) |
22 | | simplrr 776 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
β’
(((((π β Fin
β§ π
β Ring) β§
(π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ (π β π β§ π β π)) β§ π β π) β π β π) |
23 | | simplrr 776 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
β’ ((((π β Fin β§ π
β Ring) β§ (π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ (π β π β§ π β π)) β π¦ β (BaseβπΆ)) |
24 | 23 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
β’
(((((π β Fin
β§ π
β Ring) β§
(π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ (π β π β§ π β π)) β§ π β π) β π¦ β (BaseβπΆ)) |
25 | 3, 16, 4, 18, 22, 24 | matecld 21919 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
β’
(((((π β Fin
β§ π
β Ring) β§
(π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ (π β π β§ π β π)) β§ π β π) β (ππ¦π) β (Baseβπ)) |
26 | 15, 21, 25 | jca32 516 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’
(((((π β Fin
β§ π
β Ring) β§
(π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ (π β π β§ π β π)) β§ π β π) β (π
β Ring β§ ((ππ₯π) β (Baseβπ) β§ (ππ¦π) β (Baseβπ)))) |
27 | 26 | adantlr 713 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’
((((((π β Fin
β§ π
β Ring) β§
(π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ (π β π β§ π β π)) β§ βπ β β βπ β π (((coe1β(ππ₯π))βπ) = (0gβπ
) β§ ((coe1β(ππ¦π))βπ) = (0gβπ
))) β§ π β π) β (π
β Ring β§ ((ππ₯π) β (Baseβπ) β§ (ππ¦π) β (Baseβπ)))) |
28 | | oveq2 7413 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 44
β’ (π = π β (ππ₯π) = (ππ₯π)) |
29 | 28 | fveq2d 6892 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
β’ (π = π β (coe1β(ππ₯π)) = (coe1β(ππ₯π))) |
30 | 29 | fveq1d 6890 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
β’ (π = π β ((coe1β(ππ₯π))βπ) = ((coe1β(ππ₯π))βπ)) |
31 | 30 | eqeq1d 2734 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
β’ (π = π β (((coe1β(ππ₯π))βπ) = (0gβπ
) β ((coe1β(ππ₯π))βπ) = (0gβπ
))) |
32 | | fvoveq1 7428 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 43
β’ (π = π β (coe1β(ππ¦π)) = (coe1β(ππ¦π))) |
33 | 32 | fveq1d 6890 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 42
β’ (π = π β ((coe1β(ππ¦π))βπ) = ((coe1β(ππ¦π))βπ)) |
34 | 33 | eqeq1d 2734 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . 41
β’ (π = π β (((coe1β(ππ¦π))βπ) = (0gβπ
) β ((coe1β(ππ¦π))βπ) = (0gβπ
))) |
35 | 31, 34 | anbi12d 631 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
β’ (π = π β ((((coe1β(ππ₯π))βπ) = (0gβπ
) β§ ((coe1β(ππ¦π))βπ) = (0gβπ
)) β (((coe1β(ππ₯π))βπ) = (0gβπ
) β§ ((coe1β(ππ¦π))βπ) = (0gβπ
)))) |
36 | 35 | rspcva 3610 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
β’ ((π β π β§ βπ β π (((coe1β(ππ₯π))βπ) = (0gβπ
) β§ ((coe1β(ππ¦π))βπ) = (0gβπ
))) β (((coe1β(ππ₯π))βπ) = (0gβπ
) β§ ((coe1β(ππ¦π))βπ) = (0gβπ
))) |
37 | 36 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
β’
(((((π β Fin
β§ π
β Ring) β§
(π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ (π β π β§ π β π)) β§ π β β) β ((π β π β§ βπ β π (((coe1β(ππ₯π))βπ) = (0gβπ
) β§ ((coe1β(ππ¦π))βπ) = (0gβπ
))) β (((coe1β(ππ₯π))βπ) = (0gβπ
) β§ ((coe1β(ππ¦π))βπ) = (0gβπ
)))) |
38 | 37 | exp4b 431 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
β’ ((((π β Fin β§ π
β Ring) β§ (π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ (π β π β§ π β π)) β (π β β β (π β π β (βπ β π (((coe1β(ππ₯π))βπ) = (0gβπ
) β§ ((coe1β(ππ¦π))βπ) = (0gβπ
)) β (((coe1β(ππ₯π))βπ) = (0gβπ
) β§ ((coe1β(ππ¦π))βπ) = (0gβπ
)))))) |
39 | 38 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
β’ ((((π β Fin β§ π
β Ring) β§ (π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ (π β π β§ π β π)) β (π β π β (π β β β (βπ β π (((coe1β(ππ₯π))βπ) = (0gβπ
) β§ ((coe1β(ππ¦π))βπ) = (0gβπ
)) β (((coe1β(ππ₯π))βπ) = (0gβπ
) β§ ((coe1β(ππ¦π))βπ) = (0gβπ
)))))) |
40 | 39 | imp31 418 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
β’
((((((π β Fin
β§ π
β Ring) β§
(π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ (π β π β§ π β π)) β§ π β π) β§ π β β) β (βπ β π (((coe1β(ππ₯π))βπ) = (0gβπ
) β§ ((coe1β(ππ¦π))βπ) = (0gβπ
)) β (((coe1β(ππ₯π))βπ) = (0gβπ
) β§ ((coe1β(ππ¦π))βπ) = (0gβπ
)))) |
41 | 40 | ralimdva 3167 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
β’
(((((π β Fin
β§ π
β Ring) β§
(π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ (π β π β§ π β π)) β§ π β π) β (βπ β β βπ β π (((coe1β(ππ₯π))βπ) = (0gβπ
) β§ ((coe1β(ππ¦π))βπ) = (0gβπ
)) β βπ β β
(((coe1β(ππ₯π))βπ) = (0gβπ
) β§ ((coe1β(ππ¦π))βπ) = (0gβπ
)))) |
42 | 41 | impancom 452 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’
(((((π β Fin
β§ π
β Ring) β§
(π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ (π β π β§ π β π)) β§ βπ β β βπ β π (((coe1β(ππ₯π))βπ) = (0gβπ
) β§ ((coe1β(ππ¦π))βπ) = (0gβπ
))) β (π β π β βπ β β
(((coe1β(ππ₯π))βπ) = (0gβπ
) β§ ((coe1β(ππ¦π))βπ) = (0gβπ
)))) |
43 | 42 | imp 407 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’
((((((π β Fin
β§ π
β Ring) β§
(π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ (π β π β§ π β π)) β§ βπ β β βπ β π (((coe1β(ππ₯π))βπ) = (0gβπ
) β§ ((coe1β(ππ¦π))βπ) = (0gβπ
))) β§ π β π) β βπ β β
(((coe1β(ππ₯π))βπ) = (0gβπ
) β§ ((coe1β(ππ¦π))βπ) = (0gβπ
))) |
44 | | eqid 2732 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’
(0gβπ
) = (0gβπ
) |
45 | | eqid 2732 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
β’
(.rβπ) = (.rβπ) |
46 | 2, 16, 44, 45 | cply1mul 21809 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ ((π
β Ring β§ ((ππ₯π) β (Baseβπ) β§ (ππ¦π) β (Baseβπ))) β (βπ β β
(((coe1β(ππ₯π))βπ) = (0gβπ
) β§ ((coe1β(ππ¦π))βπ) = (0gβπ
)) β βπ β β
((coe1β((ππ₯π)(.rβπ)(ππ¦π)))βπ) = (0gβπ
))) |
47 | 27, 43, 46 | sylc 65 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’
((((((π β Fin
β§ π
β Ring) β§
(π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ (π β π β§ π β π)) β§ βπ β β βπ β π (((coe1β(ππ₯π))βπ) = (0gβπ
) β§ ((coe1β(ππ¦π))βπ) = (0gβπ
))) β§ π β π) β βπ β β
((coe1β((ππ₯π)(.rβπ)(ππ¦π)))βπ) = (0gβπ
)) |
48 | 47 | r19.21bi 3248 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’
(((((((π β Fin
β§ π
β Ring) β§
(π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ (π β π β§ π β π)) β§ βπ β β βπ β π (((coe1β(ππ₯π))βπ) = (0gβπ
) β§ ((coe1β(ππ¦π))βπ) = (0gβπ
))) β§ π β π) β§ π β β) β
((coe1β((ππ₯π)(.rβπ)(ππ¦π)))βπ) = (0gβπ
)) |
49 | 48 | an32s 650 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’
(((((((π β Fin
β§ π
β Ring) β§
(π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ (π β π β§ π β π)) β§ βπ β β βπ β π (((coe1β(ππ₯π))βπ) = (0gβπ
) β§ ((coe1β(ππ¦π))βπ) = (0gβπ
))) β§ π β β) β§ π β π) β ((coe1β((ππ₯π)(.rβπ)(ππ¦π)))βπ) = (0gβπ
)) |
50 | 49 | mpteq2dva 5247 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’
((((((π β Fin
β§ π
β Ring) β§
(π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ (π β π β§ π β π)) β§ βπ β β βπ β π (((coe1β(ππ₯π))βπ) = (0gβπ
) β§ ((coe1β(ππ¦π))βπ) = (0gβπ
))) β§ π β β) β (π β π β¦ ((coe1β((ππ₯π)(.rβπ)(ππ¦π)))βπ)) = (π β π β¦ (0gβπ
))) |
51 | 50 | oveq2d 7421 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’
((((((π β Fin
β§ π
β Ring) β§
(π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ (π β π β§ π β π)) β§ βπ β β βπ β π (((coe1β(ππ₯π))βπ) = (0gβπ
) β§ ((coe1β(ππ¦π))βπ) = (0gβπ
))) β§ π β β) β (π
Ξ£g (π β π β¦ ((coe1β((ππ₯π)(.rβπ)(ππ¦π)))βπ))) = (π
Ξ£g (π β π β¦ (0gβπ
)))) |
52 | | ringmnd 20059 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ (π
β Ring β π
β Mnd) |
53 | 52 | anim2i 617 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’ ((π β Fin β§ π
β Ring) β (π β Fin β§ π
β Mnd)) |
54 | 53 | ancomd 462 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ ((π β Fin β§ π
β Ring) β (π
β Mnd β§ π β Fin)) |
55 | 44 | gsumz 18713 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ ((π
β Mnd β§ π β Fin) β (π
Ξ£g
(π β π β¦ (0gβπ
))) = (0gβπ
)) |
56 | 54, 55 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’ ((π β Fin β§ π
β Ring) β (π
Ξ£g
(π β π β¦ (0gβπ
))) = (0gβπ
)) |
57 | 56 | ad4antr 730 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’
((((((π β Fin
β§ π
β Ring) β§
(π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ (π β π β§ π β π)) β§ βπ β β βπ β π (((coe1β(ππ₯π))βπ) = (0gβπ
) β§ ((coe1β(ππ¦π))βπ) = (0gβπ
))) β§ π β β) β (π
Ξ£g (π β π β¦ (0gβπ
))) = (0gβπ
)) |
58 | 51, 57 | eqtrd 2772 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’
((((((π β Fin
β§ π
β Ring) β§
(π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ (π β π β§ π β π)) β§ βπ β β βπ β π (((coe1β(ππ₯π))βπ) = (0gβπ
) β§ ((coe1β(ππ¦π))βπ) = (0gβπ
))) β§ π β β) β (π
Ξ£g (π β π β¦ ((coe1β((ππ₯π)(.rβπ)(ππ¦π)))βπ))) = (0gβπ
)) |
59 | 58 | ex 413 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’
(((((π β Fin
β§ π
β Ring) β§
(π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ (π β π β§ π β π)) β§ βπ β β βπ β π (((coe1β(ππ₯π))βπ) = (0gβπ
) β§ ((coe1β(ππ¦π))βπ) = (0gβπ
))) β (π β β β (π
Ξ£g (π β π β¦ ((coe1β((ππ₯π)(.rβπ)(ππ¦π)))βπ))) = (0gβπ
))) |
60 | 14, 59 | ralrimi 3254 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’
(((((π β Fin
β§ π
β Ring) β§
(π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ (π β π β§ π β π)) β§ βπ β β βπ β π (((coe1β(ππ₯π))βπ) = (0gβπ
) β§ ((coe1β(ππ¦π))βπ) = (0gβπ
))) β βπ β β (π
Ξ£g (π β π β¦ ((coe1β((ππ₯π)(.rβπ)(ππ¦π)))βπ))) = (0gβπ
)) |
61 | | simp-4r 782 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’
(((((π β Fin
β§ π
β Ring) β§
(π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ (π β π β§ π β π)) β§ π β β) β π
β Ring) |
62 | | nnnn0 12475 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ (π β β β π β
β0) |
63 | 62 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’
(((((π β Fin
β§ π
β Ring) β§
(π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ (π β π β§ π β π)) β§ π β β) β π β β0) |
64 | 2 | ply1ring 21761 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
β’ (π
β Ring β π β Ring) |
65 | 64 | ad4antlr 731 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’
(((((π β Fin
β§ π
β Ring) β§
(π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ (π β π β§ π β π)) β§ π β π) β π β Ring) |
66 | 16, 45 | ringcl 20066 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
β’ ((π β Ring β§ (ππ₯π) β (Baseβπ) β§ (ππ¦π) β (Baseβπ)) β ((ππ₯π)(.rβπ)(ππ¦π)) β (Baseβπ)) |
67 | 65, 21, 25, 66 | syl3anc 1371 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
β’
(((((π β Fin
β§ π
β Ring) β§
(π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ (π β π β§ π β π)) β§ π β π) β ((ππ₯π)(.rβπ)(ππ¦π)) β (Baseβπ)) |
68 | 67 | ralrimiva 3146 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
β’ ((((π β Fin β§ π
β Ring) β§ (π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ (π β π β§ π β π)) β βπ β π ((ππ₯π)(.rβπ)(ππ¦π)) β (Baseβπ)) |
69 | 68 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’
(((((π β Fin
β§ π
β Ring) β§
(π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ (π β π β§ π β π)) β§ π β β) β βπ β π ((ππ₯π)(.rβπ)(ππ¦π)) β (Baseβπ)) |
70 | | simp-4l 781 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
β’
(((((π β Fin
β§ π
β Ring) β§
(π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ (π β π β§ π β π)) β§ π β β) β π β Fin) |
71 | 2, 16, 61, 63, 69, 70 | coe1fzgsumd 21817 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
β’
(((((π β Fin
β§ π
β Ring) β§
(π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ (π β π β§ π β π)) β§ π β β) β
((coe1β(π
Ξ£g (π β π β¦ ((ππ₯π)(.rβπ)(ππ¦π)))))βπ) = (π
Ξ£g (π β π β¦ ((coe1β((ππ₯π)(.rβπ)(ππ¦π)))βπ)))) |
72 | 71 | eqeq1d 2734 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
β’
(((((π β Fin
β§ π
β Ring) β§
(π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ (π β π β§ π β π)) β§ π β β) β
(((coe1β(π
Ξ£g (π β π β¦ ((ππ₯π)(.rβπ)(ππ¦π)))))βπ) = (0gβπ
) β (π
Ξ£g (π β π β¦ ((coe1β((ππ₯π)(.rβπ)(ππ¦π)))βπ))) = (0gβπ
))) |
73 | 72 | ralbidva 3175 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’ ((((π β Fin β§ π
β Ring) β§ (π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ (π β π β§ π β π)) β (βπ β β
((coe1β(π
Ξ£g (π β π β¦ ((ππ₯π)(.rβπ)(ππ¦π)))))βπ) = (0gβπ
) β βπ β β (π
Ξ£g (π β π β¦ ((coe1β((ππ₯π)(.rβπ)(ππ¦π)))βπ))) = (0gβπ
))) |
74 | 73 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’
(((((π β Fin
β§ π
β Ring) β§
(π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ (π β π β§ π β π)) β§ βπ β β βπ β π (((coe1β(ππ₯π))βπ) = (0gβπ
) β§ ((coe1β(ππ¦π))βπ) = (0gβπ
))) β (βπ β β
((coe1β(π
Ξ£g (π β π β¦ ((ππ₯π)(.rβπ)(ππ¦π)))))βπ) = (0gβπ
) β βπ β β (π
Ξ£g (π β π β¦ ((coe1β((ππ₯π)(.rβπ)(ππ¦π)))βπ))) = (0gβπ
))) |
75 | 60, 74 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’
(((((π β Fin
β§ π
β Ring) β§
(π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ (π β π β§ π β π)) β§ βπ β β βπ β π (((coe1β(ππ₯π))βπ) = (0gβπ
) β§ ((coe1β(ππ¦π))βπ) = (0gβπ
))) β βπ β β
((coe1β(π
Ξ£g (π β π β¦ ((ππ₯π)(.rβπ)(ππ¦π)))))βπ) = (0gβπ
)) |
76 | 75 | ex 413 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((((π β Fin β§ π
β Ring) β§ (π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ (π β π β§ π β π)) β (βπ β β βπ β π (((coe1β(ππ₯π))βπ) = (0gβπ
) β§ ((coe1β(ππ¦π))βπ) = (0gβπ
)) β βπ β β
((coe1β(π
Ξ£g (π β π β¦ ((ππ₯π)(.rβπ)(ππ¦π)))))βπ) = (0gβπ
))) |
77 | 11, 76 | biimtrid 241 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((((π β Fin β§ π
β Ring) β§ (π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ (π β π β§ π β π)) β ((βπ β π βπ β β
((coe1β(ππ₯π))βπ) = (0gβπ
) β§ βπ β π βπ β β
((coe1β(ππ¦π))βπ) = (0gβπ
)) β βπ β β
((coe1β(π
Ξ£g (π β π β¦ ((ππ₯π)(.rβπ)(ππ¦π)))))βπ) = (0gβπ
))) |
78 | 77 | expd 416 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((((π β Fin β§ π
β Ring) β§ (π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ (π β π β§ π β π)) β (βπ β π βπ β β
((coe1β(ππ₯π))βπ) = (0gβπ
) β (βπ β π βπ β β
((coe1β(ππ¦π))βπ) = (0gβπ
) β βπ β β
((coe1β(π
Ξ£g (π β π β¦ ((ππ₯π)(.rβπ)(ππ¦π)))))βπ) = (0gβπ
)))) |
79 | 78 | expr 457 |
. . . . . . . . . . . . . . . . . . 19
β’ ((((π β Fin β§ π
β Ring) β§ (π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ π β π) β (π β π β (βπ β π βπ β β
((coe1β(ππ₯π))βπ) = (0gβπ
) β (βπ β π βπ β β
((coe1β(ππ¦π))βπ) = (0gβπ
) β βπ β β
((coe1β(π
Ξ£g (π β π β¦ ((ππ₯π)(.rβπ)(ππ¦π)))))βπ) = (0gβπ
))))) |
80 | 79 | com23 86 |
. . . . . . . . . . . . . . . . . 18
β’ ((((π β Fin β§ π
β Ring) β§ (π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ π β π) β (βπ β π βπ β β
((coe1β(ππ₯π))βπ) = (0gβπ
) β (π β π β (βπ β π βπ β β
((coe1β(ππ¦π))βπ) = (0gβπ
) β βπ β β
((coe1β(π
Ξ£g (π β π β¦ ((ππ₯π)(.rβπ)(ππ¦π)))))βπ) = (0gβπ
))))) |
81 | 80 | imp31 418 |
. . . . . . . . . . . . . . . . 17
β’
((((((π β Fin
β§ π
β Ring) β§
(π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ π β π) β§ βπ β π βπ β β
((coe1β(ππ₯π))βπ) = (0gβπ
)) β§ π β π) β (βπ β π βπ β β
((coe1β(ππ¦π))βπ) = (0gβπ
) β βπ β β
((coe1β(π
Ξ£g (π β π β¦ ((ππ₯π)(.rβπ)(ππ¦π)))))βπ) = (0gβπ
))) |
82 | 81 | ralimdva 3167 |
. . . . . . . . . . . . . . . 16
β’
(((((π β Fin
β§ π
β Ring) β§
(π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ π β π) β§ βπ β π βπ β β
((coe1β(ππ₯π))βπ) = (0gβπ
)) β (βπ β π βπ β π βπ β β
((coe1β(ππ¦π))βπ) = (0gβπ
) β βπ β π βπ β β
((coe1β(π
Ξ£g (π β π β¦ ((ππ₯π)(.rβπ)(ππ¦π)))))βπ) = (0gβπ
))) |
83 | 8, 82 | biimtrid 241 |
. . . . . . . . . . . . . . 15
β’
(((((π β Fin
β§ π
β Ring) β§
(π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ π β π) β§ βπ β π βπ β β
((coe1β(ππ₯π))βπ) = (0gβπ
)) β (βπ β π βπ β π βπ β β
((coe1β(ππ¦π))βπ) = (0gβπ
) β βπ β π βπ β β
((coe1β(π
Ξ£g (π β π β¦ ((ππ₯π)(.rβπ)(ππ¦π)))))βπ) = (0gβπ
))) |
84 | 83 | ex 413 |
. . . . . . . . . . . . . 14
β’ ((((π β Fin β§ π
β Ring) β§ (π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ π β π) β (βπ β π βπ β β
((coe1β(ππ₯π))βπ) = (0gβπ
) β (βπ β π βπ β π βπ β β
((coe1β(ππ¦π))βπ) = (0gβπ
) β βπ β π βπ β β
((coe1β(π
Ξ£g (π β π β¦ ((ππ₯π)(.rβπ)(ππ¦π)))))βπ) = (0gβπ
)))) |
85 | 84 | com23 86 |
. . . . . . . . . . . . 13
β’ ((((π β Fin β§ π
β Ring) β§ (π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ π β π) β (βπ β π βπ β π βπ β β
((coe1β(ππ¦π))βπ) = (0gβπ
) β (βπ β π βπ β β
((coe1β(ππ₯π))βπ) = (0gβπ
) β βπ β π βπ β β
((coe1β(π
Ξ£g (π β π β¦ ((ππ₯π)(.rβπ)(ππ¦π)))))βπ) = (0gβπ
)))) |
86 | 85 | impancom 452 |
. . . . . . . . . . . 12
β’ ((((π β Fin β§ π
β Ring) β§ (π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ βπ β π βπ β π βπ β β
((coe1β(ππ¦π))βπ) = (0gβπ
)) β (π β π β (βπ β π βπ β β
((coe1β(ππ₯π))βπ) = (0gβπ
) β βπ β π βπ β β
((coe1β(π
Ξ£g (π β π β¦ ((ππ₯π)(.rβπ)(ππ¦π)))))βπ) = (0gβπ
)))) |
87 | 86 | imp 407 |
. . . . . . . . . . 11
β’
(((((π β Fin
β§ π
β Ring) β§
(π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ βπ β π βπ β π βπ β β
((coe1β(ππ¦π))βπ) = (0gβπ
)) β§ π β π) β (βπ β π βπ β β
((coe1β(ππ₯π))βπ) = (0gβπ
) β βπ β π βπ β β
((coe1β(π
Ξ£g (π β π β¦ ((ππ₯π)(.rβπ)(ππ¦π)))))βπ) = (0gβπ
))) |
88 | 87 | ralimdva 3167 |
. . . . . . . . . 10
β’ ((((π β Fin β§ π
β Ring) β§ (π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β§ βπ β π βπ β π βπ β β
((coe1β(ππ¦π))βπ) = (0gβπ
)) β (βπ β π βπ β π βπ β β
((coe1β(ππ₯π))βπ) = (0gβπ
) β βπ β π βπ β π βπ β β
((coe1β(π
Ξ£g (π β π β¦ ((ππ₯π)(.rβπ)(ππ¦π)))))βπ) = (0gβπ
))) |
89 | 88 | ex 413 |
. . . . . . . . 9
β’ (((π β Fin β§ π
β Ring) β§ (π₯ β (BaseβπΆ) β§ π¦ β (BaseβπΆ))) β (βπ β π βπ β π βπ β β
((coe1β(ππ¦π))βπ) = (0gβπ
) β (βπ β π βπ β π βπ β β
((coe1β(ππ₯π))βπ) = (0gβπ
) β βπ β π βπ β π βπ β β
((coe1β(π
Ξ£g (π β π β¦ ((ππ₯π)(.rβπ)(ππ¦π)))))βπ) = (0gβπ
)))) |
90 | 89 | expr 457 |
. . . . . . . 8
β’ (((π β Fin β§ π
β Ring) β§ π₯ β (BaseβπΆ)) β (π¦ β (BaseβπΆ) β (βπ β π βπ β π βπ β β
((coe1β(ππ¦π))βπ) = (0gβπ
) β (βπ β π βπ β π βπ β β
((coe1β(ππ₯π))βπ) = (0gβπ
) β βπ β π βπ β π βπ β β
((coe1β(π
Ξ£g (π β π β¦ ((ππ₯π)(.rβπ)(ππ¦π)))))βπ) = (0gβπ
))))) |
91 | 90 | impd 411 |
. . . . . . 7
β’ (((π β Fin β§ π
β Ring) β§ π₯ β (BaseβπΆ)) β ((π¦ β (BaseβπΆ) β§ βπ β π βπ β π βπ β β
((coe1β(ππ¦π))βπ) = (0gβπ
)) β (βπ β π βπ β π βπ β β
((coe1β(ππ₯π))βπ) = (0gβπ
) β βπ β π βπ β π βπ β β
((coe1β(π
Ξ£g (π β π β¦ ((ππ₯π)(.rβπ)(ππ¦π)))))βπ) = (0gβπ
)))) |
92 | 7, 91 | syld 47 |
. . . . . 6
β’ (((π β Fin β§ π
β Ring) β§ π₯ β (BaseβπΆ)) β (π¦ β π β (βπ β π βπ β π βπ β β
((coe1β(ππ₯π))βπ) = (0gβπ
) β βπ β π βπ β π βπ β β
((coe1β(π
Ξ£g (π β π β¦ ((ππ₯π)(.rβπ)(ππ¦π)))))βπ) = (0gβπ
)))) |
93 | 92 | com23 86 |
. . . . 5
β’ (((π β Fin β§ π
β Ring) β§ π₯ β (BaseβπΆ)) β (βπ β π βπ β π βπ β β
((coe1β(ππ₯π))βπ) = (0gβπ
) β (π¦ β π β βπ β π βπ β π βπ β β
((coe1β(π
Ξ£g (π β π β¦ ((ππ₯π)(.rβπ)(ππ¦π)))))βπ) = (0gβπ
)))) |
94 | 93 | ex 413 |
. . . 4
β’ ((π β Fin β§ π
β Ring) β (π₯ β (BaseβπΆ) β (βπ β π βπ β π βπ β β
((coe1β(ππ₯π))βπ) = (0gβπ
) β (π¦ β π β βπ β π βπ β π βπ β β
((coe1β(π
Ξ£g (π β π β¦ ((ππ₯π)(.rβπ)(ππ¦π)))))βπ) = (0gβπ
))))) |
95 | 94 | impd 411 |
. . 3
β’ ((π β Fin β§ π
β Ring) β ((π₯ β (BaseβπΆ) β§ βπ β π βπ β π βπ β β
((coe1β(ππ₯π))βπ) = (0gβπ
)) β (π¦ β π β βπ β π βπ β π βπ β β
((coe1β(π
Ξ£g (π β π β¦ ((ππ₯π)(.rβπ)(ππ¦π)))))βπ) = (0gβπ
)))) |
96 | 5, 95 | syld 47 |
. 2
β’ ((π β Fin β§ π
β Ring) β (π₯ β π β (π¦ β π β βπ β π βπ β π βπ β β
((coe1β(π
Ξ£g (π β π β¦ ((ππ₯π)(.rβπ)(ππ¦π)))))βπ) = (0gβπ
)))) |
97 | 96 | imp32 419 |
1
β’ (((π β Fin β§ π
β Ring) β§ (π₯ β π β§ π¦ β π)) β βπ β π βπ β π βπ β β
((coe1β(π
Ξ£g (π β π β¦ ((ππ₯π)(.rβπ)(ππ¦π)))))βπ) = (0gβπ
)) |