Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isrnghm Structured version   Visualization version   GIF version

Theorem isrnghm 45031
Description: A function is a non-unital ring homomorphism iff it is a group homomorphism and preserves multiplication. (Contributed by AV, 22-Feb-2020.)
Hypotheses
Ref Expression
isrnghm.b 𝐵 = (Base‘𝑅)
isrnghm.t · = (.r𝑅)
isrnghm.m = (.r𝑆)
Assertion
Ref Expression
isrnghm (𝐹 ∈ (𝑅 RngHomo 𝑆) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   · (𝑥,𝑦)   (𝑥,𝑦)

Proof of Theorem isrnghm
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 rnghmrcl 45028 . 2 (𝐹 ∈ (𝑅 RngHomo 𝑆) → (𝑅 ∈ Rng ∧ 𝑆 ∈ Rng))
2 isrnghm.b . . . . 5 𝐵 = (Base‘𝑅)
3 isrnghm.t . . . . 5 · = (.r𝑅)
4 isrnghm.m . . . . 5 = (.r𝑆)
5 eqid 2739 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
6 eqid 2739 . . . . 5 (+g𝑅) = (+g𝑅)
7 eqid 2739 . . . . 5 (+g𝑆) = (+g𝑆)
82, 3, 4, 5, 6, 7rnghmval 45030 . . . 4 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (𝑅 RngHomo 𝑆) = {𝑓 ∈ ((Base‘𝑆) ↑m 𝐵) ∣ ∀𝑥𝐵𝑦𝐵 ((𝑓‘(𝑥(+g𝑅)𝑦)) = ((𝑓𝑥)(+g𝑆)(𝑓𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) (𝑓𝑦)))})
98eleq2d 2819 . . 3 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (𝐹 ∈ (𝑅 RngHomo 𝑆) ↔ 𝐹 ∈ {𝑓 ∈ ((Base‘𝑆) ↑m 𝐵) ∣ ∀𝑥𝐵𝑦𝐵 ((𝑓‘(𝑥(+g𝑅)𝑦)) = ((𝑓𝑥)(+g𝑆)(𝑓𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) (𝑓𝑦)))}))
10 fveq1 6685 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓‘(𝑥(+g𝑅)𝑦)) = (𝐹‘(𝑥(+g𝑅)𝑦)))
11 fveq1 6685 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
12 fveq1 6685 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
1311, 12oveq12d 7200 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑓𝑥)(+g𝑆)(𝑓𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))
1410, 13eqeq12d 2755 . . . . . . 7 (𝑓 = 𝐹 → ((𝑓‘(𝑥(+g𝑅)𝑦)) = ((𝑓𝑥)(+g𝑆)(𝑓𝑦)) ↔ (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))))
15 fveq1 6685 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓‘(𝑥 · 𝑦)) = (𝐹‘(𝑥 · 𝑦)))
1611, 12oveq12d 7200 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑓𝑥) (𝑓𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
1715, 16eqeq12d 2755 . . . . . . 7 (𝑓 = 𝐹 → ((𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ↔ (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦))))
1814, 17anbi12d 634 . . . . . 6 (𝑓 = 𝐹 → (((𝑓‘(𝑥(+g𝑅)𝑦)) = ((𝑓𝑥)(+g𝑆)(𝑓𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) (𝑓𝑦))) ↔ ((𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∧ (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
19182ralbidv 3112 . . . . 5 (𝑓 = 𝐹 → (∀𝑥𝐵𝑦𝐵 ((𝑓‘(𝑥(+g𝑅)𝑦)) = ((𝑓𝑥)(+g𝑆)(𝑓𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) (𝑓𝑦))) ↔ ∀𝑥𝐵𝑦𝐵 ((𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∧ (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
2019elrab 3593 . . . 4 (𝐹 ∈ {𝑓 ∈ ((Base‘𝑆) ↑m 𝐵) ∣ ∀𝑥𝐵𝑦𝐵 ((𝑓‘(𝑥(+g𝑅)𝑦)) = ((𝑓𝑥)(+g𝑆)(𝑓𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) (𝑓𝑦)))} ↔ (𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∧ (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
21 r19.26-2 3086 . . . . . . 7 (∀𝑥𝐵𝑦𝐵 ((𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∧ (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦))) ↔ (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦))))
2221anbi2i 626 . . . . . 6 ((𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∧ (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))) ↔ (𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
23 anass 472 . . . . . 6 (((𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦))) ↔ (𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
2422, 23bitr4i 281 . . . . 5 ((𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∧ (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))) ↔ ((𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦))))
252, 5, 6, 7isghm 18488 . . . . . . 7 (𝐹 ∈ (𝑅 GrpHom 𝑆) ↔ ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) ∧ (𝐹:𝐵⟶(Base‘𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))))
26 fvex 6699 . . . . . . . . . . 11 (Base‘𝑆) ∈ V
272fvexi 6700 . . . . . . . . . . 11 𝐵 ∈ V
2826, 27pm3.2i 474 . . . . . . . . . 10 ((Base‘𝑆) ∈ V ∧ 𝐵 ∈ V)
29 elmapg 8462 . . . . . . . . . 10 (((Base‘𝑆) ∈ V ∧ 𝐵 ∈ V) → (𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ↔ 𝐹:𝐵⟶(Base‘𝑆)))
3028, 29mp1i 13 . . . . . . . . 9 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ↔ 𝐹:𝐵⟶(Base‘𝑆)))
3130anbi1d 633 . . . . . . . 8 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → ((𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))) ↔ (𝐹:𝐵⟶(Base‘𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))))
32 rngabl 45016 . . . . . . . . . 10 (𝑅 ∈ Rng → 𝑅 ∈ Abel)
33 ablgrp 19041 . . . . . . . . . 10 (𝑅 ∈ Abel → 𝑅 ∈ Grp)
3432, 33syl 17 . . . . . . . . 9 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
35 rngabl 45016 . . . . . . . . . 10 (𝑆 ∈ Rng → 𝑆 ∈ Abel)
36 ablgrp 19041 . . . . . . . . . 10 (𝑆 ∈ Abel → 𝑆 ∈ Grp)
3735, 36syl 17 . . . . . . . . 9 (𝑆 ∈ Rng → 𝑆 ∈ Grp)
38 ibar 532 . . . . . . . . 9 ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) → ((𝐹:𝐵⟶(Base‘𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))) ↔ ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) ∧ (𝐹:𝐵⟶(Base‘𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))))))
3934, 37, 38syl2an 599 . . . . . . . 8 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → ((𝐹:𝐵⟶(Base‘𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))) ↔ ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) ∧ (𝐹:𝐵⟶(Base‘𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))))))
4031, 39bitr2d 283 . . . . . . 7 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) ∧ (𝐹:𝐵⟶(Base‘𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))) ↔ (𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))))
4125, 40bitr2id 287 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → ((𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))) ↔ 𝐹 ∈ (𝑅 GrpHom 𝑆)))
4241anbi1d 633 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (((𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦))) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
4324, 42syl5bb 286 . . . 4 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → ((𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∧ (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
4420, 43syl5bb 286 . . 3 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (𝐹 ∈ {𝑓 ∈ ((Base‘𝑆) ↑m 𝐵) ∣ ∀𝑥𝐵𝑦𝐵 ((𝑓‘(𝑥(+g𝑅)𝑦)) = ((𝑓𝑥)(+g𝑆)(𝑓𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) (𝑓𝑦)))} ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
459, 44bitrd 282 . 2 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (𝐹 ∈ (𝑅 RngHomo 𝑆) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
461, 45biadanii 822 1 (𝐹 ∈ (𝑅 RngHomo 𝑆) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1542  wcel 2114  wral 3054  {crab 3058  Vcvv 3400  wf 6345  cfv 6349  (class class class)co 7182  m cmap 8449  Basecbs 16598  +gcplusg 16680  .rcmulr 16681  Grpcgrp 18231   GrpHom cghm 18485  Abelcabl 19037  Rngcrng 45013   RngHomo crngh 45024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7491
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4807  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-id 5439  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-iota 6307  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7185  df-oprab 7186  df-mpo 7187  df-map 8451  df-ghm 18486  df-abl 19039  df-rng0 45014  df-rnghomo 45026
This theorem is referenced by:  isrnghmmul  45032  rnghmghm  45037  rnghmmul  45039  isrnghm2d  45040  zrrnghm  45056
  Copyright terms: Public domain W3C validator