Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isrnghm Structured version   Visualization version   GIF version

Theorem isrnghm 44156
 Description: A function is a non-unital ring homomorphism iff it is a group homomorphism and preserves multiplication. (Contributed by AV, 22-Feb-2020.)
Hypotheses
Ref Expression
isrnghm.b 𝐵 = (Base‘𝑅)
isrnghm.t · = (.r𝑅)
isrnghm.m = (.r𝑆)
Assertion
Ref Expression
isrnghm (𝐹 ∈ (𝑅 RngHomo 𝑆) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   · (𝑥,𝑦)   (𝑥,𝑦)

Proof of Theorem isrnghm
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 rnghmrcl 44153 . 2 (𝐹 ∈ (𝑅 RngHomo 𝑆) → (𝑅 ∈ Rng ∧ 𝑆 ∈ Rng))
2 isrnghm.b . . . . 5 𝐵 = (Base‘𝑅)
3 isrnghm.t . . . . 5 · = (.r𝑅)
4 isrnghm.m . . . . 5 = (.r𝑆)
5 eqid 2821 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
6 eqid 2821 . . . . 5 (+g𝑅) = (+g𝑅)
7 eqid 2821 . . . . 5 (+g𝑆) = (+g𝑆)
82, 3, 4, 5, 6, 7rnghmval 44155 . . . 4 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (𝑅 RngHomo 𝑆) = {𝑓 ∈ ((Base‘𝑆) ↑m 𝐵) ∣ ∀𝑥𝐵𝑦𝐵 ((𝑓‘(𝑥(+g𝑅)𝑦)) = ((𝑓𝑥)(+g𝑆)(𝑓𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) (𝑓𝑦)))})
98eleq2d 2898 . . 3 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (𝐹 ∈ (𝑅 RngHomo 𝑆) ↔ 𝐹 ∈ {𝑓 ∈ ((Base‘𝑆) ↑m 𝐵) ∣ ∀𝑥𝐵𝑦𝐵 ((𝑓‘(𝑥(+g𝑅)𝑦)) = ((𝑓𝑥)(+g𝑆)(𝑓𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) (𝑓𝑦)))}))
10 fveq1 6664 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓‘(𝑥(+g𝑅)𝑦)) = (𝐹‘(𝑥(+g𝑅)𝑦)))
11 fveq1 6664 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
12 fveq1 6664 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
1311, 12oveq12d 7168 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑓𝑥)(+g𝑆)(𝑓𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))
1410, 13eqeq12d 2837 . . . . . . 7 (𝑓 = 𝐹 → ((𝑓‘(𝑥(+g𝑅)𝑦)) = ((𝑓𝑥)(+g𝑆)(𝑓𝑦)) ↔ (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))))
15 fveq1 6664 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓‘(𝑥 · 𝑦)) = (𝐹‘(𝑥 · 𝑦)))
1611, 12oveq12d 7168 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑓𝑥) (𝑓𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
1715, 16eqeq12d 2837 . . . . . . 7 (𝑓 = 𝐹 → ((𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ↔ (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦))))
1814, 17anbi12d 632 . . . . . 6 (𝑓 = 𝐹 → (((𝑓‘(𝑥(+g𝑅)𝑦)) = ((𝑓𝑥)(+g𝑆)(𝑓𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) (𝑓𝑦))) ↔ ((𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∧ (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
19182ralbidv 3199 . . . . 5 (𝑓 = 𝐹 → (∀𝑥𝐵𝑦𝐵 ((𝑓‘(𝑥(+g𝑅)𝑦)) = ((𝑓𝑥)(+g𝑆)(𝑓𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) (𝑓𝑦))) ↔ ∀𝑥𝐵𝑦𝐵 ((𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∧ (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
2019elrab 3680 . . . 4 (𝐹 ∈ {𝑓 ∈ ((Base‘𝑆) ↑m 𝐵) ∣ ∀𝑥𝐵𝑦𝐵 ((𝑓‘(𝑥(+g𝑅)𝑦)) = ((𝑓𝑥)(+g𝑆)(𝑓𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) (𝑓𝑦)))} ↔ (𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∧ (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
21 r19.26-2 3171 . . . . . . 7 (∀𝑥𝐵𝑦𝐵 ((𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∧ (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦))) ↔ (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦))))
2221anbi2i 624 . . . . . 6 ((𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∧ (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))) ↔ (𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
23 anass 471 . . . . . 6 (((𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦))) ↔ (𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
2422, 23bitr4i 280 . . . . 5 ((𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∧ (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))) ↔ ((𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦))))
252, 5, 6, 7isghm 18352 . . . . . . 7 (𝐹 ∈ (𝑅 GrpHom 𝑆) ↔ ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) ∧ (𝐹:𝐵⟶(Base‘𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))))
26 fvex 6678 . . . . . . . . . . 11 (Base‘𝑆) ∈ V
272fvexi 6679 . . . . . . . . . . 11 𝐵 ∈ V
2826, 27pm3.2i 473 . . . . . . . . . 10 ((Base‘𝑆) ∈ V ∧ 𝐵 ∈ V)
29 elmapg 8413 . . . . . . . . . 10 (((Base‘𝑆) ∈ V ∧ 𝐵 ∈ V) → (𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ↔ 𝐹:𝐵⟶(Base‘𝑆)))
3028, 29mp1i 13 . . . . . . . . 9 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ↔ 𝐹:𝐵⟶(Base‘𝑆)))
3130anbi1d 631 . . . . . . . 8 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → ((𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))) ↔ (𝐹:𝐵⟶(Base‘𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))))
32 rngabl 44141 . . . . . . . . . 10 (𝑅 ∈ Rng → 𝑅 ∈ Abel)
33 ablgrp 18905 . . . . . . . . . 10 (𝑅 ∈ Abel → 𝑅 ∈ Grp)
3432, 33syl 17 . . . . . . . . 9 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
35 rngabl 44141 . . . . . . . . . 10 (𝑆 ∈ Rng → 𝑆 ∈ Abel)
36 ablgrp 18905 . . . . . . . . . 10 (𝑆 ∈ Abel → 𝑆 ∈ Grp)
3735, 36syl 17 . . . . . . . . 9 (𝑆 ∈ Rng → 𝑆 ∈ Grp)
38 ibar 531 . . . . . . . . 9 ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) → ((𝐹:𝐵⟶(Base‘𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))) ↔ ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) ∧ (𝐹:𝐵⟶(Base‘𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))))))
3934, 37, 38syl2an 597 . . . . . . . 8 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → ((𝐹:𝐵⟶(Base‘𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))) ↔ ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) ∧ (𝐹:𝐵⟶(Base‘𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))))))
4031, 39bitr2d 282 . . . . . . 7 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) ∧ (𝐹:𝐵⟶(Base‘𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))) ↔ (𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))))
4125, 40syl5rbb 286 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → ((𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))) ↔ 𝐹 ∈ (𝑅 GrpHom 𝑆)))
4241anbi1d 631 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (((𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦))) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
4324, 42syl5bb 285 . . . 4 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → ((𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∧ (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
4420, 43syl5bb 285 . . 3 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (𝐹 ∈ {𝑓 ∈ ((Base‘𝑆) ↑m 𝐵) ∣ ∀𝑥𝐵𝑦𝐵 ((𝑓‘(𝑥(+g𝑅)𝑦)) = ((𝑓𝑥)(+g𝑆)(𝑓𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) (𝑓𝑦)))} ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
459, 44bitrd 281 . 2 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (𝐹 ∈ (𝑅 RngHomo 𝑆) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
461, 45biadanii 820 1 (𝐹 ∈ (𝑅 RngHomo 𝑆) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 208   ∧ wa 398   = wceq 1533   ∈ wcel 2110  ∀wral 3138  {crab 3142  Vcvv 3495  ⟶wf 6346  ‘cfv 6350  (class class class)co 7150   ↑m cmap 8400  Basecbs 16477  +gcplusg 16559  .rcmulr 16560  Grpcgrp 18097   GrpHom cghm 18349  Abelcabl 18901  Rngcrng 44138   RngHomo crngh 44149 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-ov 7153  df-oprab 7154  df-mpo 7155  df-map 8402  df-ghm 18350  df-abl 18903  df-rng0 44139  df-rnghomo 44151 This theorem is referenced by:  isrnghmmul  44157  rnghmghm  44162  rnghmmul  44164  isrnghm2d  44165  zrrnghm  44181
 Copyright terms: Public domain W3C validator