Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isrnghm Structured version   Visualization version   GIF version

Theorem isrnghm 45338
Description: A function is a non-unital ring homomorphism iff it is a group homomorphism and preserves multiplication. (Contributed by AV, 22-Feb-2020.)
Hypotheses
Ref Expression
isrnghm.b 𝐵 = (Base‘𝑅)
isrnghm.t · = (.r𝑅)
isrnghm.m = (.r𝑆)
Assertion
Ref Expression
isrnghm (𝐹 ∈ (𝑅 RngHomo 𝑆) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   · (𝑥,𝑦)   (𝑥,𝑦)

Proof of Theorem isrnghm
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 rnghmrcl 45335 . 2 (𝐹 ∈ (𝑅 RngHomo 𝑆) → (𝑅 ∈ Rng ∧ 𝑆 ∈ Rng))
2 isrnghm.b . . . . 5 𝐵 = (Base‘𝑅)
3 isrnghm.t . . . . 5 · = (.r𝑅)
4 isrnghm.m . . . . 5 = (.r𝑆)
5 eqid 2738 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
6 eqid 2738 . . . . 5 (+g𝑅) = (+g𝑅)
7 eqid 2738 . . . . 5 (+g𝑆) = (+g𝑆)
82, 3, 4, 5, 6, 7rnghmval 45337 . . . 4 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (𝑅 RngHomo 𝑆) = {𝑓 ∈ ((Base‘𝑆) ↑m 𝐵) ∣ ∀𝑥𝐵𝑦𝐵 ((𝑓‘(𝑥(+g𝑅)𝑦)) = ((𝑓𝑥)(+g𝑆)(𝑓𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) (𝑓𝑦)))})
98eleq2d 2824 . . 3 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (𝐹 ∈ (𝑅 RngHomo 𝑆) ↔ 𝐹 ∈ {𝑓 ∈ ((Base‘𝑆) ↑m 𝐵) ∣ ∀𝑥𝐵𝑦𝐵 ((𝑓‘(𝑥(+g𝑅)𝑦)) = ((𝑓𝑥)(+g𝑆)(𝑓𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) (𝑓𝑦)))}))
10 fveq1 6755 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓‘(𝑥(+g𝑅)𝑦)) = (𝐹‘(𝑥(+g𝑅)𝑦)))
11 fveq1 6755 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
12 fveq1 6755 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
1311, 12oveq12d 7273 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑓𝑥)(+g𝑆)(𝑓𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))
1410, 13eqeq12d 2754 . . . . . . 7 (𝑓 = 𝐹 → ((𝑓‘(𝑥(+g𝑅)𝑦)) = ((𝑓𝑥)(+g𝑆)(𝑓𝑦)) ↔ (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))))
15 fveq1 6755 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓‘(𝑥 · 𝑦)) = (𝐹‘(𝑥 · 𝑦)))
1611, 12oveq12d 7273 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑓𝑥) (𝑓𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
1715, 16eqeq12d 2754 . . . . . . 7 (𝑓 = 𝐹 → ((𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ↔ (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦))))
1814, 17anbi12d 630 . . . . . 6 (𝑓 = 𝐹 → (((𝑓‘(𝑥(+g𝑅)𝑦)) = ((𝑓𝑥)(+g𝑆)(𝑓𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) (𝑓𝑦))) ↔ ((𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∧ (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
19182ralbidv 3122 . . . . 5 (𝑓 = 𝐹 → (∀𝑥𝐵𝑦𝐵 ((𝑓‘(𝑥(+g𝑅)𝑦)) = ((𝑓𝑥)(+g𝑆)(𝑓𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) (𝑓𝑦))) ↔ ∀𝑥𝐵𝑦𝐵 ((𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∧ (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
2019elrab 3617 . . . 4 (𝐹 ∈ {𝑓 ∈ ((Base‘𝑆) ↑m 𝐵) ∣ ∀𝑥𝐵𝑦𝐵 ((𝑓‘(𝑥(+g𝑅)𝑦)) = ((𝑓𝑥)(+g𝑆)(𝑓𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) (𝑓𝑦)))} ↔ (𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∧ (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
21 r19.26-2 3095 . . . . . . 7 (∀𝑥𝐵𝑦𝐵 ((𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∧ (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦))) ↔ (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦))))
2221anbi2i 622 . . . . . 6 ((𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∧ (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))) ↔ (𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
23 anass 468 . . . . . 6 (((𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦))) ↔ (𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
2422, 23bitr4i 277 . . . . 5 ((𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∧ (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))) ↔ ((𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦))))
252, 5, 6, 7isghm 18749 . . . . . . 7 (𝐹 ∈ (𝑅 GrpHom 𝑆) ↔ ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) ∧ (𝐹:𝐵⟶(Base‘𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))))
26 fvex 6769 . . . . . . . . . . 11 (Base‘𝑆) ∈ V
272fvexi 6770 . . . . . . . . . . 11 𝐵 ∈ V
2826, 27pm3.2i 470 . . . . . . . . . 10 ((Base‘𝑆) ∈ V ∧ 𝐵 ∈ V)
29 elmapg 8586 . . . . . . . . . 10 (((Base‘𝑆) ∈ V ∧ 𝐵 ∈ V) → (𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ↔ 𝐹:𝐵⟶(Base‘𝑆)))
3028, 29mp1i 13 . . . . . . . . 9 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ↔ 𝐹:𝐵⟶(Base‘𝑆)))
3130anbi1d 629 . . . . . . . 8 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → ((𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))) ↔ (𝐹:𝐵⟶(Base‘𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))))
32 rngabl 45323 . . . . . . . . . 10 (𝑅 ∈ Rng → 𝑅 ∈ Abel)
33 ablgrp 19306 . . . . . . . . . 10 (𝑅 ∈ Abel → 𝑅 ∈ Grp)
3432, 33syl 17 . . . . . . . . 9 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
35 rngabl 45323 . . . . . . . . . 10 (𝑆 ∈ Rng → 𝑆 ∈ Abel)
36 ablgrp 19306 . . . . . . . . . 10 (𝑆 ∈ Abel → 𝑆 ∈ Grp)
3735, 36syl 17 . . . . . . . . 9 (𝑆 ∈ Rng → 𝑆 ∈ Grp)
38 ibar 528 . . . . . . . . 9 ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) → ((𝐹:𝐵⟶(Base‘𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))) ↔ ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) ∧ (𝐹:𝐵⟶(Base‘𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))))))
3934, 37, 38syl2an 595 . . . . . . . 8 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → ((𝐹:𝐵⟶(Base‘𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))) ↔ ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) ∧ (𝐹:𝐵⟶(Base‘𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))))))
4031, 39bitr2d 279 . . . . . . 7 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) ∧ (𝐹:𝐵⟶(Base‘𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))) ↔ (𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))))
4125, 40bitr2id 283 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → ((𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))) ↔ 𝐹 ∈ (𝑅 GrpHom 𝑆)))
4241anbi1d 629 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (((𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦))) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
4324, 42syl5bb 282 . . . 4 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → ((𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∧ (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
4420, 43syl5bb 282 . . 3 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (𝐹 ∈ {𝑓 ∈ ((Base‘𝑆) ↑m 𝐵) ∣ ∀𝑥𝐵𝑦𝐵 ((𝑓‘(𝑥(+g𝑅)𝑦)) = ((𝑓𝑥)(+g𝑆)(𝑓𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) (𝑓𝑦)))} ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
459, 44bitrd 278 . 2 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (𝐹 ∈ (𝑅 RngHomo 𝑆) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
461, 45biadanii 818 1 (𝐹 ∈ (𝑅 RngHomo 𝑆) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  {crab 3067  Vcvv 3422  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  Basecbs 16840  +gcplusg 16888  .rcmulr 16889  Grpcgrp 18492   GrpHom cghm 18746  Abelcabl 19302  Rngcrng 45320   RngHomo crngh 45331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-ghm 18747  df-abl 19304  df-rng0 45321  df-rnghomo 45333
This theorem is referenced by:  isrnghmmul  45339  rnghmghm  45344  rnghmmul  45346  isrnghm2d  45347  zrrnghm  45363
  Copyright terms: Public domain W3C validator