MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isrnghm Structured version   Visualization version   GIF version

Theorem isrnghm 20359
Description: A function is a non-unital ring homomorphism iff it is a group homomorphism and preserves multiplication. (Contributed by AV, 22-Feb-2020.)
Hypotheses
Ref Expression
isrnghm.b 𝐵 = (Base‘𝑅)
isrnghm.t · = (.r𝑅)
isrnghm.m = (.r𝑆)
Assertion
Ref Expression
isrnghm (𝐹 ∈ (𝑅 RngHom 𝑆) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   · (𝑥,𝑦)   (𝑥,𝑦)

Proof of Theorem isrnghm
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 rnghmrcl 20356 . 2 (𝐹 ∈ (𝑅 RngHom 𝑆) → (𝑅 ∈ Rng ∧ 𝑆 ∈ Rng))
2 isrnghm.b . . . . 5 𝐵 = (Base‘𝑅)
3 isrnghm.t . . . . 5 · = (.r𝑅)
4 isrnghm.m . . . . 5 = (.r𝑆)
5 eqid 2731 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
6 eqid 2731 . . . . 5 (+g𝑅) = (+g𝑅)
7 eqid 2731 . . . . 5 (+g𝑆) = (+g𝑆)
82, 3, 4, 5, 6, 7rnghmval 20358 . . . 4 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (𝑅 RngHom 𝑆) = {𝑓 ∈ ((Base‘𝑆) ↑m 𝐵) ∣ ∀𝑥𝐵𝑦𝐵 ((𝑓‘(𝑥(+g𝑅)𝑦)) = ((𝑓𝑥)(+g𝑆)(𝑓𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) (𝑓𝑦)))})
98eleq2d 2817 . . 3 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (𝐹 ∈ (𝑅 RngHom 𝑆) ↔ 𝐹 ∈ {𝑓 ∈ ((Base‘𝑆) ↑m 𝐵) ∣ ∀𝑥𝐵𝑦𝐵 ((𝑓‘(𝑥(+g𝑅)𝑦)) = ((𝑓𝑥)(+g𝑆)(𝑓𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) (𝑓𝑦)))}))
10 fveq1 6821 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓‘(𝑥(+g𝑅)𝑦)) = (𝐹‘(𝑥(+g𝑅)𝑦)))
11 fveq1 6821 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
12 fveq1 6821 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
1311, 12oveq12d 7364 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑓𝑥)(+g𝑆)(𝑓𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))
1410, 13eqeq12d 2747 . . . . . . 7 (𝑓 = 𝐹 → ((𝑓‘(𝑥(+g𝑅)𝑦)) = ((𝑓𝑥)(+g𝑆)(𝑓𝑦)) ↔ (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))))
15 fveq1 6821 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓‘(𝑥 · 𝑦)) = (𝐹‘(𝑥 · 𝑦)))
1611, 12oveq12d 7364 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑓𝑥) (𝑓𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
1715, 16eqeq12d 2747 . . . . . . 7 (𝑓 = 𝐹 → ((𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) (𝑓𝑦)) ↔ (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦))))
1814, 17anbi12d 632 . . . . . 6 (𝑓 = 𝐹 → (((𝑓‘(𝑥(+g𝑅)𝑦)) = ((𝑓𝑥)(+g𝑆)(𝑓𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) (𝑓𝑦))) ↔ ((𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∧ (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
19182ralbidv 3196 . . . . 5 (𝑓 = 𝐹 → (∀𝑥𝐵𝑦𝐵 ((𝑓‘(𝑥(+g𝑅)𝑦)) = ((𝑓𝑥)(+g𝑆)(𝑓𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) (𝑓𝑦))) ↔ ∀𝑥𝐵𝑦𝐵 ((𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∧ (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
2019elrab 3642 . . . 4 (𝐹 ∈ {𝑓 ∈ ((Base‘𝑆) ↑m 𝐵) ∣ ∀𝑥𝐵𝑦𝐵 ((𝑓‘(𝑥(+g𝑅)𝑦)) = ((𝑓𝑥)(+g𝑆)(𝑓𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) (𝑓𝑦)))} ↔ (𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∧ (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
21 r19.26-2 3117 . . . . . . 7 (∀𝑥𝐵𝑦𝐵 ((𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∧ (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦))) ↔ (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦))))
2221anbi2i 623 . . . . . 6 ((𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∧ (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))) ↔ (𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
23 anass 468 . . . . . 6 (((𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦))) ↔ (𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
2422, 23bitr4i 278 . . . . 5 ((𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∧ (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))) ↔ ((𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦))))
252, 5, 6, 7isghm 19127 . . . . . . 7 (𝐹 ∈ (𝑅 GrpHom 𝑆) ↔ ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) ∧ (𝐹:𝐵⟶(Base‘𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))))
26 fvex 6835 . . . . . . . . . . 11 (Base‘𝑆) ∈ V
272fvexi 6836 . . . . . . . . . . 11 𝐵 ∈ V
2826, 27pm3.2i 470 . . . . . . . . . 10 ((Base‘𝑆) ∈ V ∧ 𝐵 ∈ V)
29 elmapg 8763 . . . . . . . . . 10 (((Base‘𝑆) ∈ V ∧ 𝐵 ∈ V) → (𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ↔ 𝐹:𝐵⟶(Base‘𝑆)))
3028, 29mp1i 13 . . . . . . . . 9 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ↔ 𝐹:𝐵⟶(Base‘𝑆)))
3130anbi1d 631 . . . . . . . 8 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → ((𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))) ↔ (𝐹:𝐵⟶(Base‘𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))))
32 rngabl 20073 . . . . . . . . . 10 (𝑅 ∈ Rng → 𝑅 ∈ Abel)
33 ablgrp 19697 . . . . . . . . . 10 (𝑅 ∈ Abel → 𝑅 ∈ Grp)
3432, 33syl 17 . . . . . . . . 9 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
35 rngabl 20073 . . . . . . . . . 10 (𝑆 ∈ Rng → 𝑆 ∈ Abel)
36 ablgrp 19697 . . . . . . . . . 10 (𝑆 ∈ Abel → 𝑆 ∈ Grp)
3735, 36syl 17 . . . . . . . . 9 (𝑆 ∈ Rng → 𝑆 ∈ Grp)
38 ibar 528 . . . . . . . . 9 ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) → ((𝐹:𝐵⟶(Base‘𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))) ↔ ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) ∧ (𝐹:𝐵⟶(Base‘𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))))))
3934, 37, 38syl2an 596 . . . . . . . 8 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → ((𝐹:𝐵⟶(Base‘𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))) ↔ ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) ∧ (𝐹:𝐵⟶(Base‘𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))))))
4031, 39bitr2d 280 . . . . . . 7 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) ∧ (𝐹:𝐵⟶(Base‘𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))) ↔ (𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)))))
4125, 40bitr2id 284 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → ((𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))) ↔ 𝐹 ∈ (𝑅 GrpHom 𝑆)))
4241anbi1d 631 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (((𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦))) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦))) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
4324, 42bitrid 283 . . . 4 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → ((𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 ((𝐹‘(𝑥(+g𝑅)𝑦)) = ((𝐹𝑥)(+g𝑆)(𝐹𝑦)) ∧ (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
4420, 43bitrid 283 . . 3 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (𝐹 ∈ {𝑓 ∈ ((Base‘𝑆) ↑m 𝐵) ∣ ∀𝑥𝐵𝑦𝐵 ((𝑓‘(𝑥(+g𝑅)𝑦)) = ((𝑓𝑥)(+g𝑆)(𝑓𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓𝑥) (𝑓𝑦)))} ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
459, 44bitrd 279 . 2 ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (𝐹 ∈ (𝑅 RngHom 𝑆) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
461, 45biadanii 821 1 (𝐹 ∈ (𝑅 RngHom 𝑆) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  {crab 3395  Vcvv 3436  wf 6477  cfv 6481  (class class class)co 7346  m cmap 8750  Basecbs 17120  +gcplusg 17161  .rcmulr 17162  Grpcgrp 18846   GrpHom cghm 19124  Abelcabl 19693  Rngcrng 20070   RngHom crnghm 20352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752  df-ghm 19125  df-abl 19695  df-rng 20071  df-rnghm 20354
This theorem is referenced by:  isrnghmmul  20360  rnghmghm  20365  rnghmmul  20367  isrnghm2d  20368  zrrnghm  20451  rngqiprngho  21240
  Copyright terms: Public domain W3C validator