| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | rnghmrcl 20438 | . 2
⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) → (𝑅 ∈ Rng ∧ 𝑆 ∈ Rng)) | 
| 2 |  | isrnghm.b | . . . . 5
⊢ 𝐵 = (Base‘𝑅) | 
| 3 |  | isrnghm.t | . . . . 5
⊢  · =
(.r‘𝑅) | 
| 4 |  | isrnghm.m | . . . . 5
⊢  ∗ =
(.r‘𝑆) | 
| 5 |  | eqid 2737 | . . . . 5
⊢
(Base‘𝑆) =
(Base‘𝑆) | 
| 6 |  | eqid 2737 | . . . . 5
⊢
(+g‘𝑅) = (+g‘𝑅) | 
| 7 |  | eqid 2737 | . . . . 5
⊢
(+g‘𝑆) = (+g‘𝑆) | 
| 8 | 2, 3, 4, 5, 6, 7 | rnghmval 20440 | . . . 4
⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (𝑅 RngHom 𝑆) = {𝑓 ∈ ((Base‘𝑆) ↑m 𝐵) ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥(+g‘𝑅)𝑦)) = ((𝑓‘𝑥)(+g‘𝑆)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) ∗ (𝑓‘𝑦)))}) | 
| 9 | 8 | eleq2d 2827 | . . 3
⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (𝐹 ∈ (𝑅 RngHom 𝑆) ↔ 𝐹 ∈ {𝑓 ∈ ((Base‘𝑆) ↑m 𝐵) ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥(+g‘𝑅)𝑦)) = ((𝑓‘𝑥)(+g‘𝑆)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) ∗ (𝑓‘𝑦)))})) | 
| 10 |  | fveq1 6905 | . . . . . . . 8
⊢ (𝑓 = 𝐹 → (𝑓‘(𝑥(+g‘𝑅)𝑦)) = (𝐹‘(𝑥(+g‘𝑅)𝑦))) | 
| 11 |  | fveq1 6905 | . . . . . . . . 9
⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) | 
| 12 |  | fveq1 6905 | . . . . . . . . 9
⊢ (𝑓 = 𝐹 → (𝑓‘𝑦) = (𝐹‘𝑦)) | 
| 13 | 11, 12 | oveq12d 7449 | . . . . . . . 8
⊢ (𝑓 = 𝐹 → ((𝑓‘𝑥)(+g‘𝑆)(𝑓‘𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦))) | 
| 14 | 10, 13 | eqeq12d 2753 | . . . . . . 7
⊢ (𝑓 = 𝐹 → ((𝑓‘(𝑥(+g‘𝑅)𝑦)) = ((𝑓‘𝑥)(+g‘𝑆)(𝑓‘𝑦)) ↔ (𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦)))) | 
| 15 |  | fveq1 6905 | . . . . . . . 8
⊢ (𝑓 = 𝐹 → (𝑓‘(𝑥 · 𝑦)) = (𝐹‘(𝑥 · 𝑦))) | 
| 16 | 11, 12 | oveq12d 7449 | . . . . . . . 8
⊢ (𝑓 = 𝐹 → ((𝑓‘𝑥) ∗ (𝑓‘𝑦)) = ((𝐹‘𝑥) ∗ (𝐹‘𝑦))) | 
| 17 | 15, 16 | eqeq12d 2753 | . . . . . . 7
⊢ (𝑓 = 𝐹 → ((𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) ∗ (𝑓‘𝑦)) ↔ (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) ∗ (𝐹‘𝑦)))) | 
| 18 | 14, 17 | anbi12d 632 | . . . . . 6
⊢ (𝑓 = 𝐹 → (((𝑓‘(𝑥(+g‘𝑅)𝑦)) = ((𝑓‘𝑥)(+g‘𝑆)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) ∗ (𝑓‘𝑦))) ↔ ((𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦)) ∧ (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) ∗ (𝐹‘𝑦))))) | 
| 19 | 18 | 2ralbidv 3221 | . . . . 5
⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥(+g‘𝑅)𝑦)) = ((𝑓‘𝑥)(+g‘𝑆)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) ∗ (𝑓‘𝑦))) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦)) ∧ (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) ∗ (𝐹‘𝑦))))) | 
| 20 | 19 | elrab 3692 | . . . 4
⊢ (𝐹 ∈ {𝑓 ∈ ((Base‘𝑆) ↑m 𝐵) ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥(+g‘𝑅)𝑦)) = ((𝑓‘𝑥)(+g‘𝑆)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) ∗ (𝑓‘𝑦)))} ↔ (𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦)) ∧ (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) ∗ (𝐹‘𝑦))))) | 
| 21 |  | r19.26-2 3138 | . . . . . . 7
⊢
(∀𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦)) ∧ (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) ∗ (𝐹‘𝑦))) ↔ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦)) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) ∗ (𝐹‘𝑦)))) | 
| 22 | 21 | anbi2i 623 | . . . . . 6
⊢ ((𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦)) ∧ (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) ∗ (𝐹‘𝑦)))) ↔ (𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦)) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) ∗ (𝐹‘𝑦))))) | 
| 23 |  | anass 468 | . . . . . 6
⊢ (((𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦))) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) ∗ (𝐹‘𝑦))) ↔ (𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦)) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) ∗ (𝐹‘𝑦))))) | 
| 24 | 22, 23 | bitr4i 278 | . . . . 5
⊢ ((𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦)) ∧ (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) ∗ (𝐹‘𝑦)))) ↔ ((𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦))) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) ∗ (𝐹‘𝑦)))) | 
| 25 | 2, 5, 6, 7 | isghm 19233 | . . . . . . 7
⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) ↔ ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) ∧ (𝐹:𝐵⟶(Base‘𝑆) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦))))) | 
| 26 |  | fvex 6919 | . . . . . . . . . . 11
⊢
(Base‘𝑆)
∈ V | 
| 27 | 2 | fvexi 6920 | . . . . . . . . . . 11
⊢ 𝐵 ∈ V | 
| 28 | 26, 27 | pm3.2i 470 | . . . . . . . . . 10
⊢
((Base‘𝑆)
∈ V ∧ 𝐵 ∈
V) | 
| 29 |  | elmapg 8879 | . . . . . . . . . 10
⊢
(((Base‘𝑆)
∈ V ∧ 𝐵 ∈ V)
→ (𝐹 ∈
((Base‘𝑆)
↑m 𝐵)
↔ 𝐹:𝐵⟶(Base‘𝑆))) | 
| 30 | 28, 29 | mp1i 13 | . . . . . . . . 9
⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ↔ 𝐹:𝐵⟶(Base‘𝑆))) | 
| 31 | 30 | anbi1d 631 | . . . . . . . 8
⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → ((𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦))) ↔ (𝐹:𝐵⟶(Base‘𝑆) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦))))) | 
| 32 |  | rngabl 20152 | . . . . . . . . . 10
⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) | 
| 33 |  | ablgrp 19803 | . . . . . . . . . 10
⊢ (𝑅 ∈ Abel → 𝑅 ∈ Grp) | 
| 34 | 32, 33 | syl 17 | . . . . . . . . 9
⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) | 
| 35 |  | rngabl 20152 | . . . . . . . . . 10
⊢ (𝑆 ∈ Rng → 𝑆 ∈ Abel) | 
| 36 |  | ablgrp 19803 | . . . . . . . . . 10
⊢ (𝑆 ∈ Abel → 𝑆 ∈ Grp) | 
| 37 | 35, 36 | syl 17 | . . . . . . . . 9
⊢ (𝑆 ∈ Rng → 𝑆 ∈ Grp) | 
| 38 |  | ibar 528 | . . . . . . . . 9
⊢ ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) → ((𝐹:𝐵⟶(Base‘𝑆) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦))) ↔ ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) ∧ (𝐹:𝐵⟶(Base‘𝑆) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦)))))) | 
| 39 | 34, 37, 38 | syl2an 596 | . . . . . . . 8
⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → ((𝐹:𝐵⟶(Base‘𝑆) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦))) ↔ ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) ∧ (𝐹:𝐵⟶(Base‘𝑆) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦)))))) | 
| 40 | 31, 39 | bitr2d 280 | . . . . . . 7
⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) ∧ (𝐹:𝐵⟶(Base‘𝑆) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦)))) ↔ (𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦))))) | 
| 41 | 25, 40 | bitr2id 284 | . . . . . 6
⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → ((𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦))) ↔ 𝐹 ∈ (𝑅 GrpHom 𝑆))) | 
| 42 | 41 | anbi1d 631 | . . . . 5
⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (((𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦))) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) ∗ (𝐹‘𝑦))) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) ∗ (𝐹‘𝑦))))) | 
| 43 | 24, 42 | bitrid 283 | . . . 4
⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → ((𝐹 ∈ ((Base‘𝑆) ↑m 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝐹‘(𝑥(+g‘𝑅)𝑦)) = ((𝐹‘𝑥)(+g‘𝑆)(𝐹‘𝑦)) ∧ (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) ∗ (𝐹‘𝑦)))) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) ∗ (𝐹‘𝑦))))) | 
| 44 | 20, 43 | bitrid 283 | . . 3
⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (𝐹 ∈ {𝑓 ∈ ((Base‘𝑆) ↑m 𝐵) ∣ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑓‘(𝑥(+g‘𝑅)𝑦)) = ((𝑓‘𝑥)(+g‘𝑆)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥 · 𝑦)) = ((𝑓‘𝑥) ∗ (𝑓‘𝑦)))} ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) ∗ (𝐹‘𝑦))))) | 
| 45 | 9, 44 | bitrd 279 | . 2
⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) → (𝐹 ∈ (𝑅 RngHom 𝑆) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) ∗ (𝐹‘𝑦))))) | 
| 46 | 1, 45 | biadanii 822 | 1
⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) ∗ (𝐹‘𝑦))))) |