MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ajmoi Structured version   Visualization version   GIF version

Theorem ajmoi 30820
Description: Every operator has at most one adjoint. (Contributed by NM, 25-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip2eqi.1 𝑋 = (BaseSet‘𝑈)
ip2eqi.7 𝑃 = (·𝑖OLD𝑈)
ip2eqi.u 𝑈 ∈ CPreHilOLD
Assertion
Ref Expression
ajmoi ∃*𝑠(𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))
Distinct variable groups:   𝑥,𝑠,𝑃   𝑄,𝑠   𝑥,𝑦,𝑠,𝑇   𝑥,𝑈   𝑋,𝑠,𝑥,𝑦   𝑌,𝑠,𝑥,𝑦
Allowed substitution hints:   𝑃(𝑦)   𝑄(𝑥,𝑦)   𝑈(𝑦,𝑠)

Proof of Theorem ajmoi
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 r19.26-2 3114 . . . . . 6 (∀𝑥𝑋𝑦𝑌 (((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)) ∧ ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑡𝑦))) ↔ (∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)) ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑡𝑦))))
2 eqtr2 2750 . . . . . . 7 ((((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)) ∧ ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑡𝑦))) → (𝑥𝑃(𝑠𝑦)) = (𝑥𝑃(𝑡𝑦)))
322ralimi 3099 . . . . . 6 (∀𝑥𝑋𝑦𝑌 (((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)) ∧ ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑡𝑦))) → ∀𝑥𝑋𝑦𝑌 (𝑥𝑃(𝑠𝑦)) = (𝑥𝑃(𝑡𝑦)))
41, 3sylbir 235 . . . . 5 ((∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)) ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑡𝑦))) → ∀𝑥𝑋𝑦𝑌 (𝑥𝑃(𝑠𝑦)) = (𝑥𝑃(𝑡𝑦)))
5 ip2eqi.1 . . . . . . 7 𝑋 = (BaseSet‘𝑈)
6 ip2eqi.7 . . . . . . 7 𝑃 = (·𝑖OLD𝑈)
7 ip2eqi.u . . . . . . 7 𝑈 ∈ CPreHilOLD
85, 6, 7phoeqi 30819 . . . . . 6 ((𝑠:𝑌𝑋𝑡:𝑌𝑋) → (∀𝑥𝑋𝑦𝑌 (𝑥𝑃(𝑠𝑦)) = (𝑥𝑃(𝑡𝑦)) ↔ 𝑠 = 𝑡))
98biimpa 476 . . . . 5 (((𝑠:𝑌𝑋𝑡:𝑌𝑋) ∧ ∀𝑥𝑋𝑦𝑌 (𝑥𝑃(𝑠𝑦)) = (𝑥𝑃(𝑡𝑦))) → 𝑠 = 𝑡)
104, 9sylan2 593 . . . 4 (((𝑠:𝑌𝑋𝑡:𝑌𝑋) ∧ (∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)) ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑡𝑦)))) → 𝑠 = 𝑡)
1110an4s 660 . . 3 (((𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦))) ∧ (𝑡:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑡𝑦)))) → 𝑠 = 𝑡)
1211gen2 1796 . 2 𝑠𝑡(((𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦))) ∧ (𝑡:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑡𝑦)))) → 𝑠 = 𝑡)
13 feq1 6634 . . . 4 (𝑠 = 𝑡 → (𝑠:𝑌𝑋𝑡:𝑌𝑋))
14 fveq1 6825 . . . . . . 7 (𝑠 = 𝑡 → (𝑠𝑦) = (𝑡𝑦))
1514oveq2d 7369 . . . . . 6 (𝑠 = 𝑡 → (𝑥𝑃(𝑠𝑦)) = (𝑥𝑃(𝑡𝑦)))
1615eqeq2d 2740 . . . . 5 (𝑠 = 𝑡 → (((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)) ↔ ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑡𝑦))))
17162ralbidv 3193 . . . 4 (𝑠 = 𝑡 → (∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)) ↔ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑡𝑦))))
1813, 17anbi12d 632 . . 3 (𝑠 = 𝑡 → ((𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦))) ↔ (𝑡:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑡𝑦)))))
1918mo4 2559 . 2 (∃*𝑠(𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦))) ↔ ∀𝑠𝑡(((𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦))) ∧ (𝑡:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑡𝑦)))) → 𝑠 = 𝑡))
2012, 19mpbir 231 1 ∃*𝑠(𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wcel 2109  ∃*wmo 2531  wral 3044  wf 6482  cfv 6486  (class class class)co 7353  BaseSetcba 30548  ·𝑖OLDcdip 30662  CPreHilOLDccphlo 30774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107  ax-mulf 11108
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-icc 13273  df-fz 13429  df-fzo 13576  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-sum 15612  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-cn 23130  df-cnp 23131  df-t1 23217  df-haus 23218  df-tx 23465  df-hmeo 23658  df-xms 24224  df-ms 24225  df-tms 24226  df-grpo 30455  df-gid 30456  df-ginv 30457  df-gdiv 30458  df-ablo 30507  df-vc 30521  df-nv 30554  df-va 30557  df-ba 30558  df-sm 30559  df-0v 30560  df-vs 30561  df-nmcv 30562  df-ims 30563  df-dip 30663  df-ph 30775
This theorem is referenced by:  ajfuni  30821
  Copyright terms: Public domain W3C validator