| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ajmoi | Structured version Visualization version GIF version | ||
| Description: Every operator has at most one adjoint. (Contributed by NM, 25-Jan-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ip2eqi.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| ip2eqi.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
| ip2eqi.u | ⊢ 𝑈 ∈ CPreHilOLD |
| Ref | Expression |
|---|---|
| ajmoi | ⊢ ∃*𝑠(𝑠:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.26-2 3114 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 (((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦)) ∧ ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑡‘𝑦))) ↔ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦)) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑡‘𝑦)))) | |
| 2 | eqtr2 2750 | . . . . . . 7 ⊢ ((((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦)) ∧ ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑡‘𝑦))) → (𝑥𝑃(𝑠‘𝑦)) = (𝑥𝑃(𝑡‘𝑦))) | |
| 3 | 2 | 2ralimi 3099 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 (((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦)) ∧ ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑡‘𝑦))) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 (𝑥𝑃(𝑠‘𝑦)) = (𝑥𝑃(𝑡‘𝑦))) |
| 4 | 1, 3 | sylbir 235 | . . . . 5 ⊢ ((∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦)) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑡‘𝑦))) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 (𝑥𝑃(𝑠‘𝑦)) = (𝑥𝑃(𝑡‘𝑦))) |
| 5 | ip2eqi.1 | . . . . . . 7 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 6 | ip2eqi.7 | . . . . . . 7 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
| 7 | ip2eqi.u | . . . . . . 7 ⊢ 𝑈 ∈ CPreHilOLD | |
| 8 | 5, 6, 7 | phoeqi 30819 | . . . . . 6 ⊢ ((𝑠:𝑌⟶𝑋 ∧ 𝑡:𝑌⟶𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 (𝑥𝑃(𝑠‘𝑦)) = (𝑥𝑃(𝑡‘𝑦)) ↔ 𝑠 = 𝑡)) |
| 9 | 8 | biimpa 476 | . . . . 5 ⊢ (((𝑠:𝑌⟶𝑋 ∧ 𝑡:𝑌⟶𝑋) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 (𝑥𝑃(𝑠‘𝑦)) = (𝑥𝑃(𝑡‘𝑦))) → 𝑠 = 𝑡) |
| 10 | 4, 9 | sylan2 593 | . . . 4 ⊢ (((𝑠:𝑌⟶𝑋 ∧ 𝑡:𝑌⟶𝑋) ∧ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦)) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑡‘𝑦)))) → 𝑠 = 𝑡) |
| 11 | 10 | an4s 660 | . . 3 ⊢ (((𝑠:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦))) ∧ (𝑡:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑡‘𝑦)))) → 𝑠 = 𝑡) |
| 12 | 11 | gen2 1796 | . 2 ⊢ ∀𝑠∀𝑡(((𝑠:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦))) ∧ (𝑡:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑡‘𝑦)))) → 𝑠 = 𝑡) |
| 13 | feq1 6634 | . . . 4 ⊢ (𝑠 = 𝑡 → (𝑠:𝑌⟶𝑋 ↔ 𝑡:𝑌⟶𝑋)) | |
| 14 | fveq1 6825 | . . . . . . 7 ⊢ (𝑠 = 𝑡 → (𝑠‘𝑦) = (𝑡‘𝑦)) | |
| 15 | 14 | oveq2d 7369 | . . . . . 6 ⊢ (𝑠 = 𝑡 → (𝑥𝑃(𝑠‘𝑦)) = (𝑥𝑃(𝑡‘𝑦))) |
| 16 | 15 | eqeq2d 2740 | . . . . 5 ⊢ (𝑠 = 𝑡 → (((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦)) ↔ ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑡‘𝑦)))) |
| 17 | 16 | 2ralbidv 3193 | . . . 4 ⊢ (𝑠 = 𝑡 → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦)) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑡‘𝑦)))) |
| 18 | 13, 17 | anbi12d 632 | . . 3 ⊢ (𝑠 = 𝑡 → ((𝑠:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦))) ↔ (𝑡:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑡‘𝑦))))) |
| 19 | 18 | mo4 2559 | . 2 ⊢ (∃*𝑠(𝑠:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦))) ↔ ∀𝑠∀𝑡(((𝑠:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦))) ∧ (𝑡:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑡‘𝑦)))) → 𝑠 = 𝑡)) |
| 20 | 12, 19 | mpbir 231 | 1 ⊢ ∃*𝑠(𝑠:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ∃*wmo 2531 ∀wral 3044 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 BaseSetcba 30548 ·𝑖OLDcdip 30662 CPreHilOLDccphlo 30774 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 ax-mulf 11108 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-fi 9320 df-sup 9351 df-inf 9352 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-ioo 13270 df-icc 13273 df-fz 13429 df-fzo 13576 df-seq 13927 df-exp 13987 df-hash 14256 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-clim 15413 df-sum 15612 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-hom 17203 df-cco 17204 df-rest 17344 df-topn 17345 df-0g 17363 df-gsum 17364 df-topgen 17365 df-pt 17366 df-prds 17369 df-xrs 17424 df-qtop 17429 df-imas 17430 df-xps 17432 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-submnd 18676 df-mulg 18965 df-cntz 19214 df-cmn 19679 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-cnfld 21280 df-top 22797 df-topon 22814 df-topsp 22836 df-bases 22849 df-cld 22922 df-ntr 22923 df-cls 22924 df-cn 23130 df-cnp 23131 df-t1 23217 df-haus 23218 df-tx 23465 df-hmeo 23658 df-xms 24224 df-ms 24225 df-tms 24226 df-grpo 30455 df-gid 30456 df-ginv 30457 df-gdiv 30458 df-ablo 30507 df-vc 30521 df-nv 30554 df-va 30557 df-ba 30558 df-sm 30559 df-0v 30560 df-vs 30561 df-nmcv 30562 df-ims 30563 df-dip 30663 df-ph 30775 |
| This theorem is referenced by: ajfuni 30821 |
| Copyright terms: Public domain | W3C validator |