Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ajmoi | Structured version Visualization version GIF version |
Description: Every operator has at most one adjoint. (Contributed by NM, 25-Jan-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ip2eqi.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
ip2eqi.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
ip2eqi.u | ⊢ 𝑈 ∈ CPreHilOLD |
Ref | Expression |
---|---|
ajmoi | ⊢ ∃*𝑠(𝑠:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.26-2 3095 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 (((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦)) ∧ ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑡‘𝑦))) ↔ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦)) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑡‘𝑦)))) | |
2 | eqtr2 2762 | . . . . . . 7 ⊢ ((((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦)) ∧ ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑡‘𝑦))) → (𝑥𝑃(𝑠‘𝑦)) = (𝑥𝑃(𝑡‘𝑦))) | |
3 | 2 | 2ralimi 3087 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 (((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦)) ∧ ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑡‘𝑦))) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 (𝑥𝑃(𝑠‘𝑦)) = (𝑥𝑃(𝑡‘𝑦))) |
4 | 1, 3 | sylbir 234 | . . . . 5 ⊢ ((∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦)) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑡‘𝑦))) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 (𝑥𝑃(𝑠‘𝑦)) = (𝑥𝑃(𝑡‘𝑦))) |
5 | ip2eqi.1 | . . . . . . 7 ⊢ 𝑋 = (BaseSet‘𝑈) | |
6 | ip2eqi.7 | . . . . . . 7 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
7 | ip2eqi.u | . . . . . . 7 ⊢ 𝑈 ∈ CPreHilOLD | |
8 | 5, 6, 7 | phoeqi 29120 | . . . . . 6 ⊢ ((𝑠:𝑌⟶𝑋 ∧ 𝑡:𝑌⟶𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 (𝑥𝑃(𝑠‘𝑦)) = (𝑥𝑃(𝑡‘𝑦)) ↔ 𝑠 = 𝑡)) |
9 | 8 | biimpa 476 | . . . . 5 ⊢ (((𝑠:𝑌⟶𝑋 ∧ 𝑡:𝑌⟶𝑋) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 (𝑥𝑃(𝑠‘𝑦)) = (𝑥𝑃(𝑡‘𝑦))) → 𝑠 = 𝑡) |
10 | 4, 9 | sylan2 592 | . . . 4 ⊢ (((𝑠:𝑌⟶𝑋 ∧ 𝑡:𝑌⟶𝑋) ∧ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦)) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑡‘𝑦)))) → 𝑠 = 𝑡) |
11 | 10 | an4s 656 | . . 3 ⊢ (((𝑠:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦))) ∧ (𝑡:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑡‘𝑦)))) → 𝑠 = 𝑡) |
12 | 11 | gen2 1800 | . 2 ⊢ ∀𝑠∀𝑡(((𝑠:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦))) ∧ (𝑡:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑡‘𝑦)))) → 𝑠 = 𝑡) |
13 | feq1 6565 | . . . 4 ⊢ (𝑠 = 𝑡 → (𝑠:𝑌⟶𝑋 ↔ 𝑡:𝑌⟶𝑋)) | |
14 | fveq1 6755 | . . . . . . 7 ⊢ (𝑠 = 𝑡 → (𝑠‘𝑦) = (𝑡‘𝑦)) | |
15 | 14 | oveq2d 7271 | . . . . . 6 ⊢ (𝑠 = 𝑡 → (𝑥𝑃(𝑠‘𝑦)) = (𝑥𝑃(𝑡‘𝑦))) |
16 | 15 | eqeq2d 2749 | . . . . 5 ⊢ (𝑠 = 𝑡 → (((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦)) ↔ ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑡‘𝑦)))) |
17 | 16 | 2ralbidv 3122 | . . . 4 ⊢ (𝑠 = 𝑡 → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦)) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑡‘𝑦)))) |
18 | 13, 17 | anbi12d 630 | . . 3 ⊢ (𝑠 = 𝑡 → ((𝑠:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦))) ↔ (𝑡:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑡‘𝑦))))) |
19 | 18 | mo4 2566 | . 2 ⊢ (∃*𝑠(𝑠:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦))) ↔ ∀𝑠∀𝑡(((𝑠:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦))) ∧ (𝑡:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑡‘𝑦)))) → 𝑠 = 𝑡)) |
20 | 12, 19 | mpbir 230 | 1 ⊢ ∃*𝑠(𝑠:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 = wceq 1539 ∈ wcel 2108 ∃*wmo 2538 ∀wral 3063 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 BaseSetcba 28849 ·𝑖OLDcdip 28963 CPreHilOLDccphlo 29075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-icc 13015 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-cn 22286 df-cnp 22287 df-t1 22373 df-haus 22374 df-tx 22621 df-hmeo 22814 df-xms 23381 df-ms 23382 df-tms 23383 df-grpo 28756 df-gid 28757 df-ginv 28758 df-gdiv 28759 df-ablo 28808 df-vc 28822 df-nv 28855 df-va 28858 df-ba 28859 df-sm 28860 df-0v 28861 df-vs 28862 df-nmcv 28863 df-ims 28864 df-dip 28964 df-ph 29076 |
This theorem is referenced by: ajfuni 29122 |
Copyright terms: Public domain | W3C validator |