| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ptcnp.3 | . . . . . . . . 9
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | 
| 2 | 1 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → 𝐽 ∈ (TopOn‘𝑋)) | 
| 3 |  | ptcnp.5 | . . . . . . . . . 10
⊢ (𝜑 → 𝐹:𝐼⟶Top) | 
| 4 | 3 | ffvelcdmda 7103 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝐹‘𝑘) ∈ Top) | 
| 5 |  | toptopon2 22925 | . . . . . . . . 9
⊢ ((𝐹‘𝑘) ∈ Top ↔ (𝐹‘𝑘) ∈ (TopOn‘∪ (𝐹‘𝑘))) | 
| 6 | 4, 5 | sylib 218 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝐹‘𝑘) ∈ (TopOn‘∪ (𝐹‘𝑘))) | 
| 7 |  | ptcnp.7 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ ((𝐽 CnP (𝐹‘𝑘))‘𝐷)) | 
| 8 |  | cnpf2 23259 | . . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐹‘𝑘) ∈ (TopOn‘∪ (𝐹‘𝑘)) ∧ (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ ((𝐽 CnP (𝐹‘𝑘))‘𝐷)) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶∪ (𝐹‘𝑘)) | 
| 9 | 2, 6, 7, 8 | syl3anc 1372 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶∪ (𝐹‘𝑘)) | 
| 10 | 9 | fvmptelcdm 7132 | . . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ∪ (𝐹‘𝑘)) | 
| 11 | 10 | an32s 652 | . . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) → 𝐴 ∈ ∪ (𝐹‘𝑘)) | 
| 12 | 11 | ralrimiva 3145 | . . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑘 ∈ 𝐼 𝐴 ∈ ∪ (𝐹‘𝑘)) | 
| 13 |  | ptcnp.4 | . . . . . 6
⊢ (𝜑 → 𝐼 ∈ 𝑉) | 
| 14 | 13 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐼 ∈ 𝑉) | 
| 15 |  | mptelixpg 8976 | . . . . 5
⊢ (𝐼 ∈ 𝑉 → ((𝑘 ∈ 𝐼 ↦ 𝐴) ∈ X𝑘 ∈ 𝐼 ∪ (𝐹‘𝑘) ↔ ∀𝑘 ∈ 𝐼 𝐴 ∈ ∪ (𝐹‘𝑘))) | 
| 16 | 14, 15 | syl 17 | . . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑘 ∈ 𝐼 ↦ 𝐴) ∈ X𝑘 ∈ 𝐼 ∪ (𝐹‘𝑘) ↔ ∀𝑘 ∈ 𝐼 𝐴 ∈ ∪ (𝐹‘𝑘))) | 
| 17 | 12, 16 | mpbird 257 | . . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑘 ∈ 𝐼 ↦ 𝐴) ∈ X𝑘 ∈ 𝐼 ∪ (𝐹‘𝑘)) | 
| 18 | 17 | fmpttd 7134 | . 2
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)):𝑋⟶X𝑘 ∈ 𝐼 ∪ (𝐹‘𝑘)) | 
| 19 |  | df-3an 1088 | . . . . . . . 8
⊢ ((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ↔ ((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛)) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛))) | 
| 20 |  | ptcnp.2 | . . . . . . . . . . . . 13
⊢ 𝐾 =
(∏t‘𝐹) | 
| 21 |  | ptcnp.6 | . . . . . . . . . . . . 13
⊢ (𝜑 → 𝐷 ∈ 𝑋) | 
| 22 |  | nfv 1913 | . . . . . . . . . . . . . 14
⊢
Ⅎ𝑘(𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛)) | 
| 23 |  | nfv 1913 | . . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘(𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) | 
| 24 |  | nfcv 2904 | . . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘𝑋 | 
| 25 |  | nfmpt1 5249 | . . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘(𝑘 ∈ 𝐼 ↦ 𝐴) | 
| 26 | 24, 25 | nfmpt 5248 | . . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘(𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) | 
| 27 |  | nfcv 2904 | . . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘𝐷 | 
| 28 | 26, 27 | nffv 6915 | . . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) | 
| 29 | 28 | nfel1 2921 | . . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ X𝑛 ∈ 𝐼 (𝑔‘𝑛) | 
| 30 | 23, 29 | nfan 1898 | . . . . . . . . . . . . . 14
⊢
Ⅎ𝑘((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ X𝑛 ∈ 𝐼 (𝑔‘𝑛)) | 
| 31 | 22, 30 | nfan 1898 | . . . . . . . . . . . . 13
⊢
Ⅎ𝑘((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ X𝑛 ∈ 𝐼 (𝑔‘𝑛))) | 
| 32 |  | simprll 778 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ X𝑛 ∈ 𝐼 (𝑔‘𝑛)))) → 𝑔 Fn 𝐼) | 
| 33 |  | simprlr 779 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ X𝑛 ∈ 𝐼 (𝑔‘𝑛)))) → ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛)) | 
| 34 |  | fveq2 6905 | . . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑘 → (𝑔‘𝑛) = (𝑔‘𝑘)) | 
| 35 |  | fveq2 6905 | . . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑘 → (𝐹‘𝑛) = (𝐹‘𝑘)) | 
| 36 | 34, 35 | eleq12d 2834 | . . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑘 → ((𝑔‘𝑛) ∈ (𝐹‘𝑛) ↔ (𝑔‘𝑘) ∈ (𝐹‘𝑘))) | 
| 37 | 36 | rspccva 3620 | . . . . . . . . . . . . . 14
⊢
((∀𝑛 ∈
𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛) ∧ 𝑘 ∈ 𝐼) → (𝑔‘𝑘) ∈ (𝐹‘𝑘)) | 
| 38 | 33, 37 | sylan 580 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ X𝑛 ∈ 𝐼 (𝑔‘𝑛)))) ∧ 𝑘 ∈ 𝐼) → (𝑔‘𝑘) ∈ (𝐹‘𝑘)) | 
| 39 |  | simprrl 780 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ X𝑛 ∈ 𝐼 (𝑔‘𝑛)))) → (𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛))) | 
| 40 | 39 | simpld 494 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ X𝑛 ∈ 𝐼 (𝑔‘𝑛)))) → 𝑤 ∈ Fin) | 
| 41 | 39 | simprd 495 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ X𝑛 ∈ 𝐼 (𝑔‘𝑛)))) → ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) | 
| 42 | 35 | unieqd 4919 | . . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑘 → ∪ (𝐹‘𝑛) = ∪ (𝐹‘𝑘)) | 
| 43 | 34, 42 | eqeq12d 2752 | . . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑘 → ((𝑔‘𝑛) = ∪ (𝐹‘𝑛) ↔ (𝑔‘𝑘) = ∪ (𝐹‘𝑘))) | 
| 44 | 43 | rspccva 3620 | . . . . . . . . . . . . . 14
⊢
((∀𝑛 ∈
(𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛) ∧ 𝑘 ∈ (𝐼 ∖ 𝑤)) → (𝑔‘𝑘) = ∪ (𝐹‘𝑘)) | 
| 45 | 41, 44 | sylan 580 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ X𝑛 ∈ 𝐼 (𝑔‘𝑛)))) ∧ 𝑘 ∈ (𝐼 ∖ 𝑤)) → (𝑔‘𝑘) = ∪ (𝐹‘𝑘)) | 
| 46 |  | simprrr 781 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ X𝑛 ∈ 𝐼 (𝑔‘𝑛)))) → ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ X𝑛 ∈ 𝐼 (𝑔‘𝑛)) | 
| 47 | 34 | cbvixpv 8956 | . . . . . . . . . . . . . 14
⊢ X𝑛 ∈
𝐼 (𝑔‘𝑛) = X𝑘 ∈ 𝐼 (𝑔‘𝑘) | 
| 48 | 46, 47 | eleqtrdi 2850 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ X𝑛 ∈ 𝐼 (𝑔‘𝑛)))) → ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ X𝑘 ∈ 𝐼 (𝑔‘𝑘)) | 
| 49 | 20, 1, 13, 3, 21, 7, 31, 32, 38, 40, 45, 48 | ptcnplem 23630 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ X𝑛 ∈ 𝐼 (𝑔‘𝑛)))) → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ X𝑘 ∈ 𝐼 (𝑔‘𝑘))) | 
| 50 | 49 | anassrs 467 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛))) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ X𝑛 ∈ 𝐼 (𝑔‘𝑛))) → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ X𝑘 ∈ 𝐼 (𝑔‘𝑘))) | 
| 51 | 50 | expr 456 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛))) ∧ (𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛))) → (((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ X𝑛 ∈ 𝐼 (𝑔‘𝑛) → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ X𝑘 ∈ 𝐼 (𝑔‘𝑘)))) | 
| 52 | 51 | rexlimdvaa 3155 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛))) → (∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛) → (((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ X𝑛 ∈ 𝐼 (𝑔‘𝑛) → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ X𝑘 ∈ 𝐼 (𝑔‘𝑘))))) | 
| 53 | 52 | impr 454 | . . . . . . . 8
⊢ ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛)) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛))) → (((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ X𝑛 ∈ 𝐼 (𝑔‘𝑛) → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ X𝑘 ∈ 𝐼 (𝑔‘𝑘)))) | 
| 54 | 19, 53 | sylan2b 594 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛))) → (((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ X𝑛 ∈ 𝐼 (𝑔‘𝑛) → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ X𝑘 ∈ 𝐼 (𝑔‘𝑘)))) | 
| 55 |  | eleq2 2829 | . . . . . . . 8
⊢ (𝑓 = X𝑛 ∈ 𝐼 (𝑔‘𝑛) → (((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ 𝑓 ↔ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ X𝑛 ∈ 𝐼 (𝑔‘𝑛))) | 
| 56 | 47 | eqeq2i 2749 | . . . . . . . . . . . 12
⊢ (𝑓 = X𝑛 ∈ 𝐼 (𝑔‘𝑛) ↔ 𝑓 = X𝑘 ∈ 𝐼 (𝑔‘𝑘)) | 
| 57 | 56 | biimpi 216 | . . . . . . . . . . 11
⊢ (𝑓 = X𝑛 ∈ 𝐼 (𝑔‘𝑛) → 𝑓 = X𝑘 ∈ 𝐼 (𝑔‘𝑘)) | 
| 58 | 57 | sseq2d 4015 | . . . . . . . . . 10
⊢ (𝑓 = X𝑛 ∈ 𝐼 (𝑔‘𝑛) → (((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ 𝑓 ↔ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ X𝑘 ∈ 𝐼 (𝑔‘𝑘))) | 
| 59 | 58 | anbi2d 630 | . . . . . . . . 9
⊢ (𝑓 = X𝑛 ∈ 𝐼 (𝑔‘𝑛) → ((𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ 𝑓) ↔ (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ X𝑘 ∈ 𝐼 (𝑔‘𝑘)))) | 
| 60 | 59 | rexbidv 3178 | . . . . . . . 8
⊢ (𝑓 = X𝑛 ∈ 𝐼 (𝑔‘𝑛) → (∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ 𝑓) ↔ ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ X𝑘 ∈ 𝐼 (𝑔‘𝑘)))) | 
| 61 | 55, 60 | imbi12d 344 | . . . . . . 7
⊢ (𝑓 = X𝑛 ∈ 𝐼 (𝑔‘𝑛) → ((((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ 𝑓)) ↔ (((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ X𝑛 ∈ 𝐼 (𝑔‘𝑛) → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ X𝑘 ∈ 𝐼 (𝑔‘𝑘))))) | 
| 62 | 54, 61 | syl5ibrcom 247 | . . . . . 6
⊢ ((𝜑 ∧ (𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛))) → (𝑓 = X𝑛 ∈ 𝐼 (𝑔‘𝑛) → (((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ 𝑓)))) | 
| 63 | 62 | expimpd 453 | . . . . 5
⊢ (𝜑 → (((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ 𝑓 = X𝑛 ∈ 𝐼 (𝑔‘𝑛)) → (((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ 𝑓)))) | 
| 64 | 63 | exlimdv 1932 | . . . 4
⊢ (𝜑 → (∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ 𝑓 = X𝑛 ∈ 𝐼 (𝑔‘𝑛)) → (((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ 𝑓)))) | 
| 65 | 64 | alrimiv 1926 | . . 3
⊢ (𝜑 → ∀𝑓(∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ 𝑓 = X𝑛 ∈ 𝐼 (𝑔‘𝑛)) → (((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ 𝑓)))) | 
| 66 |  | eqeq1 2740 | . . . . . 6
⊢ (𝑎 = 𝑓 → (𝑎 = X𝑛 ∈ 𝐼 (𝑔‘𝑛) ↔ 𝑓 = X𝑛 ∈ 𝐼 (𝑔‘𝑛))) | 
| 67 | 66 | anbi2d 630 | . . . . 5
⊢ (𝑎 = 𝑓 → (((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ 𝑎 = X𝑛 ∈ 𝐼 (𝑔‘𝑛)) ↔ ((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ 𝑓 = X𝑛 ∈ 𝐼 (𝑔‘𝑛)))) | 
| 68 | 67 | exbidv 1920 | . . . 4
⊢ (𝑎 = 𝑓 → (∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ 𝑎 = X𝑛 ∈ 𝐼 (𝑔‘𝑛)) ↔ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ 𝑓 = X𝑛 ∈ 𝐼 (𝑔‘𝑛)))) | 
| 69 | 68 | ralab 3696 | . . 3
⊢
(∀𝑓 ∈
{𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ 𝑎 = X𝑛 ∈ 𝐼 (𝑔‘𝑛))} (((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ 𝑓)) ↔ ∀𝑓(∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ 𝑓 = X𝑛 ∈ 𝐼 (𝑔‘𝑛)) → (((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ 𝑓)))) | 
| 70 | 65, 69 | sylibr 234 | . 2
⊢ (𝜑 → ∀𝑓 ∈ {𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ 𝑎 = X𝑛 ∈ 𝐼 (𝑔‘𝑛))} (((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ 𝑓))) | 
| 71 | 3 | ffnd 6736 | . . . . 5
⊢ (𝜑 → 𝐹 Fn 𝐼) | 
| 72 |  | eqid 2736 | . . . . . 6
⊢ {𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ 𝑎 = X𝑛 ∈ 𝐼 (𝑔‘𝑛))} = {𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ 𝑎 = X𝑛 ∈ 𝐼 (𝑔‘𝑛))} | 
| 73 | 72 | ptval 23579 | . . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 Fn 𝐼) → (∏t‘𝐹) = (topGen‘{𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ 𝑎 = X𝑛 ∈ 𝐼 (𝑔‘𝑛))})) | 
| 74 | 13, 71, 73 | syl2anc 584 | . . . 4
⊢ (𝜑 →
(∏t‘𝐹) = (topGen‘{𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ 𝑎 = X𝑛 ∈ 𝐼 (𝑔‘𝑛))})) | 
| 75 | 20, 74 | eqtrid 2788 | . . 3
⊢ (𝜑 → 𝐾 = (topGen‘{𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ 𝑎 = X𝑛 ∈ 𝐼 (𝑔‘𝑛))})) | 
| 76 | 3 | feqmptd 6976 | . . . . . 6
⊢ (𝜑 → 𝐹 = (𝑘 ∈ 𝐼 ↦ (𝐹‘𝑘))) | 
| 77 | 76 | fveq2d 6909 | . . . . 5
⊢ (𝜑 →
(∏t‘𝐹) = (∏t‘(𝑘 ∈ 𝐼 ↦ (𝐹‘𝑘)))) | 
| 78 | 20, 77 | eqtrid 2788 | . . . 4
⊢ (𝜑 → 𝐾 = (∏t‘(𝑘 ∈ 𝐼 ↦ (𝐹‘𝑘)))) | 
| 79 | 6 | ralrimiva 3145 | . . . . 5
⊢ (𝜑 → ∀𝑘 ∈ 𝐼 (𝐹‘𝑘) ∈ (TopOn‘∪ (𝐹‘𝑘))) | 
| 80 |  | eqid 2736 | . . . . . 6
⊢
(∏t‘(𝑘 ∈ 𝐼 ↦ (𝐹‘𝑘))) = (∏t‘(𝑘 ∈ 𝐼 ↦ (𝐹‘𝑘))) | 
| 81 | 80 | pttopon 23605 | . . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐼 (𝐹‘𝑘) ∈ (TopOn‘∪ (𝐹‘𝑘))) → (∏t‘(𝑘 ∈ 𝐼 ↦ (𝐹‘𝑘))) ∈ (TopOn‘X𝑘 ∈
𝐼 ∪ (𝐹‘𝑘))) | 
| 82 | 13, 79, 81 | syl2anc 584 | . . . 4
⊢ (𝜑 →
(∏t‘(𝑘 ∈ 𝐼 ↦ (𝐹‘𝑘))) ∈ (TopOn‘X𝑘 ∈
𝐼 ∪ (𝐹‘𝑘))) | 
| 83 | 78, 82 | eqeltrd 2840 | . . 3
⊢ (𝜑 → 𝐾 ∈ (TopOn‘X𝑘 ∈
𝐼 ∪ (𝐹‘𝑘))) | 
| 84 | 1, 75, 83, 21 | tgcnp 23262 | . 2
⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) ∈ ((𝐽 CnP 𝐾)‘𝐷) ↔ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)):𝑋⟶X𝑘 ∈ 𝐼 ∪ (𝐹‘𝑘) ∧ ∀𝑓 ∈ {𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ 𝑎 = X𝑛 ∈ 𝐼 (𝑔‘𝑛))} (((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ 𝑓))))) | 
| 85 | 18, 70, 84 | mpbir2and 713 | 1
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) ∈ ((𝐽 CnP 𝐾)‘𝐷)) |