MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcnp Structured version   Visualization version   GIF version

Theorem ptcnp 23565
Description: If every projection of a function is continuous at 𝐷, then the function itself is continuous at 𝐷 into the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
ptcnp.2 𝐾 = (∏t𝐹)
ptcnp.3 (𝜑𝐽 ∈ (TopOn‘𝑋))
ptcnp.4 (𝜑𝐼𝑉)
ptcnp.5 (𝜑𝐹:𝐼⟶Top)
ptcnp.6 (𝜑𝐷𝑋)
ptcnp.7 ((𝜑𝑘𝐼) → (𝑥𝑋𝐴) ∈ ((𝐽 CnP (𝐹𝑘))‘𝐷))
Assertion
Ref Expression
ptcnp (𝜑 → (𝑥𝑋 ↦ (𝑘𝐼𝐴)) ∈ ((𝐽 CnP 𝐾)‘𝐷))
Distinct variable groups:   𝑥,𝑘,𝐷   𝑘,𝐼,𝑥   𝑘,𝐽   𝜑,𝑘,𝑥   𝑘,𝐹,𝑥   𝑘,𝑉,𝑥   𝑘,𝑋,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐽(𝑥)   𝐾(𝑥,𝑘)

Proof of Theorem ptcnp
Dummy variables 𝑓 𝑔 𝑤 𝑧 𝑎 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptcnp.3 . . . . . . . . 9 (𝜑𝐽 ∈ (TopOn‘𝑋))
21adantr 480 . . . . . . . 8 ((𝜑𝑘𝐼) → 𝐽 ∈ (TopOn‘𝑋))
3 ptcnp.5 . . . . . . . . . 10 (𝜑𝐹:𝐼⟶Top)
43ffvelcdmda 7079 . . . . . . . . 9 ((𝜑𝑘𝐼) → (𝐹𝑘) ∈ Top)
5 toptopon2 22861 . . . . . . . . 9 ((𝐹𝑘) ∈ Top ↔ (𝐹𝑘) ∈ (TopOn‘ (𝐹𝑘)))
64, 5sylib 218 . . . . . . . 8 ((𝜑𝑘𝐼) → (𝐹𝑘) ∈ (TopOn‘ (𝐹𝑘)))
7 ptcnp.7 . . . . . . . 8 ((𝜑𝑘𝐼) → (𝑥𝑋𝐴) ∈ ((𝐽 CnP (𝐹𝑘))‘𝐷))
8 cnpf2 23193 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐹𝑘) ∈ (TopOn‘ (𝐹𝑘)) ∧ (𝑥𝑋𝐴) ∈ ((𝐽 CnP (𝐹𝑘))‘𝐷)) → (𝑥𝑋𝐴):𝑋 (𝐹𝑘))
92, 6, 7, 8syl3anc 1373 . . . . . . 7 ((𝜑𝑘𝐼) → (𝑥𝑋𝐴):𝑋 (𝐹𝑘))
109fvmptelcdm 7108 . . . . . 6 (((𝜑𝑘𝐼) ∧ 𝑥𝑋) → 𝐴 (𝐹𝑘))
1110an32s 652 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑘𝐼) → 𝐴 (𝐹𝑘))
1211ralrimiva 3133 . . . 4 ((𝜑𝑥𝑋) → ∀𝑘𝐼 𝐴 (𝐹𝑘))
13 ptcnp.4 . . . . . 6 (𝜑𝐼𝑉)
1413adantr 480 . . . . 5 ((𝜑𝑥𝑋) → 𝐼𝑉)
15 mptelixpg 8954 . . . . 5 (𝐼𝑉 → ((𝑘𝐼𝐴) ∈ X𝑘𝐼 (𝐹𝑘) ↔ ∀𝑘𝐼 𝐴 (𝐹𝑘)))
1614, 15syl 17 . . . 4 ((𝜑𝑥𝑋) → ((𝑘𝐼𝐴) ∈ X𝑘𝐼 (𝐹𝑘) ↔ ∀𝑘𝐼 𝐴 (𝐹𝑘)))
1712, 16mpbird 257 . . 3 ((𝜑𝑥𝑋) → (𝑘𝐼𝐴) ∈ X𝑘𝐼 (𝐹𝑘))
1817fmpttd 7110 . 2 (𝜑 → (𝑥𝑋 ↦ (𝑘𝐼𝐴)):𝑋X𝑘𝐼 (𝐹𝑘))
19 df-3an 1088 . . . . . . . 8 ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ↔ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)))
20 ptcnp.2 . . . . . . . . . . . . 13 𝐾 = (∏t𝐹)
21 ptcnp.6 . . . . . . . . . . . . 13 (𝜑𝐷𝑋)
22 nfv 1914 . . . . . . . . . . . . . 14 𝑘(𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛))
23 nfv 1914 . . . . . . . . . . . . . . 15 𝑘(𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛))
24 nfcv 2899 . . . . . . . . . . . . . . . . . 18 𝑘𝑋
25 nfmpt1 5225 . . . . . . . . . . . . . . . . . 18 𝑘(𝑘𝐼𝐴)
2624, 25nfmpt 5224 . . . . . . . . . . . . . . . . 17 𝑘(𝑥𝑋 ↦ (𝑘𝐼𝐴))
27 nfcv 2899 . . . . . . . . . . . . . . . . 17 𝑘𝐷
2826, 27nffv 6891 . . . . . . . . . . . . . . . 16 𝑘((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷)
2928nfel1 2916 . . . . . . . . . . . . . . 15 𝑘((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)
3023, 29nfan 1899 . . . . . . . . . . . . . 14 𝑘((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛))
3122, 30nfan 1899 . . . . . . . . . . . . 13 𝑘((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))
32 simprll 778 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))) → 𝑔 Fn 𝐼)
33 simprlr 779 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))) → ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛))
34 fveq2 6881 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 → (𝑔𝑛) = (𝑔𝑘))
35 fveq2 6881 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
3634, 35eleq12d 2829 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → ((𝑔𝑛) ∈ (𝐹𝑛) ↔ (𝑔𝑘) ∈ (𝐹𝑘)))
3736rspccva 3605 . . . . . . . . . . . . . 14 ((∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ 𝑘𝐼) → (𝑔𝑘) ∈ (𝐹𝑘))
3833, 37sylan 580 . . . . . . . . . . . . 13 (((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))) ∧ 𝑘𝐼) → (𝑔𝑘) ∈ (𝐹𝑘))
39 simprrl 780 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))) → (𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)))
4039simpld 494 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))) → 𝑤 ∈ Fin)
4139simprd 495 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))) → ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛))
4235unieqd 4901 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 (𝐹𝑛) = (𝐹𝑘))
4334, 42eqeq12d 2752 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → ((𝑔𝑛) = (𝐹𝑛) ↔ (𝑔𝑘) = (𝐹𝑘)))
4443rspccva 3605 . . . . . . . . . . . . . 14 ((∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛) ∧ 𝑘 ∈ (𝐼𝑤)) → (𝑔𝑘) = (𝐹𝑘))
4541, 44sylan 580 . . . . . . . . . . . . 13 (((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))) ∧ 𝑘 ∈ (𝐼𝑤)) → (𝑔𝑘) = (𝐹𝑘))
46 simprrr 781 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))) → ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛))
4734cbvixpv 8934 . . . . . . . . . . . . . 14 X𝑛𝐼 (𝑔𝑛) = X𝑘𝐼 (𝑔𝑘)
4846, 47eleqtrdi 2845 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))) → ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑘𝐼 (𝑔𝑘))
4920, 1, 13, 3, 21, 7, 31, 32, 38, 40, 45, 48ptcnplem 23564 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝑔𝑘)))
5049anassrs 467 . . . . . . . . . . 11 (((𝜑 ∧ (𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛))) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛))) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝑔𝑘)))
5150expr 456 . . . . . . . . . 10 (((𝜑 ∧ (𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛))) ∧ (𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛))) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝑔𝑘))))
5251rexlimdvaa 3143 . . . . . . . . 9 ((𝜑 ∧ (𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛))) → (∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝑔𝑘)))))
5352impr 454 . . . . . . . 8 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛))) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝑔𝑘))))
5419, 53sylan2b 594 . . . . . . 7 ((𝜑 ∧ (𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛))) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝑔𝑘))))
55 eleq2 2824 . . . . . . . 8 (𝑓 = X𝑛𝐼 (𝑔𝑛) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ 𝑓 ↔ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))
5647eqeq2i 2749 . . . . . . . . . . . 12 (𝑓 = X𝑛𝐼 (𝑔𝑛) ↔ 𝑓 = X𝑘𝐼 (𝑔𝑘))
5756biimpi 216 . . . . . . . . . . 11 (𝑓 = X𝑛𝐼 (𝑔𝑛) → 𝑓 = X𝑘𝐼 (𝑔𝑘))
5857sseq2d 3996 . . . . . . . . . 10 (𝑓 = X𝑛𝐼 (𝑔𝑛) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓 ↔ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝑔𝑘)))
5958anbi2d 630 . . . . . . . . 9 (𝑓 = X𝑛𝐼 (𝑔𝑛) → ((𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓) ↔ (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝑔𝑘))))
6059rexbidv 3165 . . . . . . . 8 (𝑓 = X𝑛𝐼 (𝑔𝑛) → (∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓) ↔ ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝑔𝑘))))
6155, 60imbi12d 344 . . . . . . 7 (𝑓 = X𝑛𝐼 (𝑔𝑛) → ((((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓)) ↔ (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝑔𝑘)))))
6254, 61syl5ibrcom 247 . . . . . 6 ((𝜑 ∧ (𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛))) → (𝑓 = X𝑛𝐼 (𝑔𝑛) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓))))
6362expimpd 453 . . . . 5 (𝜑 → (((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑓 = X𝑛𝐼 (𝑔𝑛)) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓))))
6463exlimdv 1933 . . . 4 (𝜑 → (∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑓 = X𝑛𝐼 (𝑔𝑛)) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓))))
6564alrimiv 1927 . . 3 (𝜑 → ∀𝑓(∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑓 = X𝑛𝐼 (𝑔𝑛)) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓))))
66 eqeq1 2740 . . . . . 6 (𝑎 = 𝑓 → (𝑎 = X𝑛𝐼 (𝑔𝑛) ↔ 𝑓 = X𝑛𝐼 (𝑔𝑛)))
6766anbi2d 630 . . . . 5 (𝑎 = 𝑓 → (((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑎 = X𝑛𝐼 (𝑔𝑛)) ↔ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑓 = X𝑛𝐼 (𝑔𝑛))))
6867exbidv 1921 . . . 4 (𝑎 = 𝑓 → (∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑎 = X𝑛𝐼 (𝑔𝑛)) ↔ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑓 = X𝑛𝐼 (𝑔𝑛))))
6968ralab 3681 . . 3 (∀𝑓 ∈ {𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑎 = X𝑛𝐼 (𝑔𝑛))} (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓)) ↔ ∀𝑓(∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑓 = X𝑛𝐼 (𝑔𝑛)) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓))))
7065, 69sylibr 234 . 2 (𝜑 → ∀𝑓 ∈ {𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑎 = X𝑛𝐼 (𝑔𝑛))} (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓)))
713ffnd 6712 . . . . 5 (𝜑𝐹 Fn 𝐼)
72 eqid 2736 . . . . . 6 {𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑎 = X𝑛𝐼 (𝑔𝑛))} = {𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑎 = X𝑛𝐼 (𝑔𝑛))}
7372ptval 23513 . . . . 5 ((𝐼𝑉𝐹 Fn 𝐼) → (∏t𝐹) = (topGen‘{𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑎 = X𝑛𝐼 (𝑔𝑛))}))
7413, 71, 73syl2anc 584 . . . 4 (𝜑 → (∏t𝐹) = (topGen‘{𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑎 = X𝑛𝐼 (𝑔𝑛))}))
7520, 74eqtrid 2783 . . 3 (𝜑𝐾 = (topGen‘{𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑎 = X𝑛𝐼 (𝑔𝑛))}))
763feqmptd 6952 . . . . . 6 (𝜑𝐹 = (𝑘𝐼 ↦ (𝐹𝑘)))
7776fveq2d 6885 . . . . 5 (𝜑 → (∏t𝐹) = (∏t‘(𝑘𝐼 ↦ (𝐹𝑘))))
7820, 77eqtrid 2783 . . . 4 (𝜑𝐾 = (∏t‘(𝑘𝐼 ↦ (𝐹𝑘))))
796ralrimiva 3133 . . . . 5 (𝜑 → ∀𝑘𝐼 (𝐹𝑘) ∈ (TopOn‘ (𝐹𝑘)))
80 eqid 2736 . . . . . 6 (∏t‘(𝑘𝐼 ↦ (𝐹𝑘))) = (∏t‘(𝑘𝐼 ↦ (𝐹𝑘)))
8180pttopon 23539 . . . . 5 ((𝐼𝑉 ∧ ∀𝑘𝐼 (𝐹𝑘) ∈ (TopOn‘ (𝐹𝑘))) → (∏t‘(𝑘𝐼 ↦ (𝐹𝑘))) ∈ (TopOn‘X𝑘𝐼 (𝐹𝑘)))
8213, 79, 81syl2anc 584 . . . 4 (𝜑 → (∏t‘(𝑘𝐼 ↦ (𝐹𝑘))) ∈ (TopOn‘X𝑘𝐼 (𝐹𝑘)))
8378, 82eqeltrd 2835 . . 3 (𝜑𝐾 ∈ (TopOn‘X𝑘𝐼 (𝐹𝑘)))
841, 75, 83, 21tgcnp 23196 . 2 (𝜑 → ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) ∈ ((𝐽 CnP 𝐾)‘𝐷) ↔ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)):𝑋X𝑘𝐼 (𝐹𝑘) ∧ ∀𝑓 ∈ {𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑎 = X𝑛𝐼 (𝑔𝑛))} (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓)))))
8518, 70, 84mpbir2and 713 1 (𝜑 → (𝑥𝑋 ↦ (𝑘𝐼𝐴)) ∈ ((𝐽 CnP 𝐾)‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wex 1779  wcel 2109  {cab 2714  wral 3052  wrex 3061  cdif 3928  wss 3931   cuni 4888  cmpt 5206  cima 5662   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  Xcixp 8916  Fincfn 8964  topGenctg 17456  tcpt 17457  Topctop 22836  TopOnctopon 22853   CnP ccnp 23168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-1o 8485  df-2o 8486  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-fin 8968  df-fi 9428  df-topgen 17462  df-pt 17463  df-top 22837  df-topon 22854  df-bases 22889  df-cnp 23171
This theorem is referenced by:  ptcn  23570
  Copyright terms: Public domain W3C validator