MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcnp Structured version   Visualization version   GIF version

Theorem ptcnp 22232
Description: If every projection of a function is continuous at 𝐷, then the function itself is continuous at 𝐷 into the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
ptcnp.2 𝐾 = (∏t𝐹)
ptcnp.3 (𝜑𝐽 ∈ (TopOn‘𝑋))
ptcnp.4 (𝜑𝐼𝑉)
ptcnp.5 (𝜑𝐹:𝐼⟶Top)
ptcnp.6 (𝜑𝐷𝑋)
ptcnp.7 ((𝜑𝑘𝐼) → (𝑥𝑋𝐴) ∈ ((𝐽 CnP (𝐹𝑘))‘𝐷))
Assertion
Ref Expression
ptcnp (𝜑 → (𝑥𝑋 ↦ (𝑘𝐼𝐴)) ∈ ((𝐽 CnP 𝐾)‘𝐷))
Distinct variable groups:   𝑥,𝑘,𝐷   𝑘,𝐼,𝑥   𝑘,𝐽   𝜑,𝑘,𝑥   𝑘,𝐹,𝑥   𝑘,𝑉,𝑥   𝑘,𝑋,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐽(𝑥)   𝐾(𝑥,𝑘)

Proof of Theorem ptcnp
Dummy variables 𝑓 𝑔 𝑤 𝑧 𝑎 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptcnp.3 . . . . . . . . 9 (𝜑𝐽 ∈ (TopOn‘𝑋))
21adantr 483 . . . . . . . 8 ((𝜑𝑘𝐼) → 𝐽 ∈ (TopOn‘𝑋))
3 ptcnp.5 . . . . . . . . . 10 (𝜑𝐹:𝐼⟶Top)
43ffvelrnda 6853 . . . . . . . . 9 ((𝜑𝑘𝐼) → (𝐹𝑘) ∈ Top)
5 toptopon2 21528 . . . . . . . . 9 ((𝐹𝑘) ∈ Top ↔ (𝐹𝑘) ∈ (TopOn‘ (𝐹𝑘)))
64, 5sylib 220 . . . . . . . 8 ((𝜑𝑘𝐼) → (𝐹𝑘) ∈ (TopOn‘ (𝐹𝑘)))
7 ptcnp.7 . . . . . . . 8 ((𝜑𝑘𝐼) → (𝑥𝑋𝐴) ∈ ((𝐽 CnP (𝐹𝑘))‘𝐷))
8 cnpf2 21860 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐹𝑘) ∈ (TopOn‘ (𝐹𝑘)) ∧ (𝑥𝑋𝐴) ∈ ((𝐽 CnP (𝐹𝑘))‘𝐷)) → (𝑥𝑋𝐴):𝑋 (𝐹𝑘))
92, 6, 7, 8syl3anc 1367 . . . . . . 7 ((𝜑𝑘𝐼) → (𝑥𝑋𝐴):𝑋 (𝐹𝑘))
109fvmptelrn 6879 . . . . . 6 (((𝜑𝑘𝐼) ∧ 𝑥𝑋) → 𝐴 (𝐹𝑘))
1110an32s 650 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑘𝐼) → 𝐴 (𝐹𝑘))
1211ralrimiva 3184 . . . 4 ((𝜑𝑥𝑋) → ∀𝑘𝐼 𝐴 (𝐹𝑘))
13 ptcnp.4 . . . . . 6 (𝜑𝐼𝑉)
1413adantr 483 . . . . 5 ((𝜑𝑥𝑋) → 𝐼𝑉)
15 mptelixpg 8501 . . . . 5 (𝐼𝑉 → ((𝑘𝐼𝐴) ∈ X𝑘𝐼 (𝐹𝑘) ↔ ∀𝑘𝐼 𝐴 (𝐹𝑘)))
1614, 15syl 17 . . . 4 ((𝜑𝑥𝑋) → ((𝑘𝐼𝐴) ∈ X𝑘𝐼 (𝐹𝑘) ↔ ∀𝑘𝐼 𝐴 (𝐹𝑘)))
1712, 16mpbird 259 . . 3 ((𝜑𝑥𝑋) → (𝑘𝐼𝐴) ∈ X𝑘𝐼 (𝐹𝑘))
1817fmpttd 6881 . 2 (𝜑 → (𝑥𝑋 ↦ (𝑘𝐼𝐴)):𝑋X𝑘𝐼 (𝐹𝑘))
19 df-3an 1085 . . . . . . . 8 ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ↔ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)))
20 ptcnp.2 . . . . . . . . . . . . 13 𝐾 = (∏t𝐹)
21 ptcnp.6 . . . . . . . . . . . . 13 (𝜑𝐷𝑋)
22 nfv 1915 . . . . . . . . . . . . . 14 𝑘(𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛))
23 nfv 1915 . . . . . . . . . . . . . . 15 𝑘(𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛))
24 nfcv 2979 . . . . . . . . . . . . . . . . . 18 𝑘𝑋
25 nfmpt1 5166 . . . . . . . . . . . . . . . . . 18 𝑘(𝑘𝐼𝐴)
2624, 25nfmpt 5165 . . . . . . . . . . . . . . . . 17 𝑘(𝑥𝑋 ↦ (𝑘𝐼𝐴))
27 nfcv 2979 . . . . . . . . . . . . . . . . 17 𝑘𝐷
2826, 27nffv 6682 . . . . . . . . . . . . . . . 16 𝑘((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷)
2928nfel1 2996 . . . . . . . . . . . . . . 15 𝑘((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)
3023, 29nfan 1900 . . . . . . . . . . . . . 14 𝑘((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛))
3122, 30nfan 1900 . . . . . . . . . . . . 13 𝑘((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))
32 simprll 777 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))) → 𝑔 Fn 𝐼)
33 simprlr 778 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))) → ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛))
34 fveq2 6672 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 → (𝑔𝑛) = (𝑔𝑘))
35 fveq2 6672 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
3634, 35eleq12d 2909 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → ((𝑔𝑛) ∈ (𝐹𝑛) ↔ (𝑔𝑘) ∈ (𝐹𝑘)))
3736rspccva 3624 . . . . . . . . . . . . . 14 ((∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ 𝑘𝐼) → (𝑔𝑘) ∈ (𝐹𝑘))
3833, 37sylan 582 . . . . . . . . . . . . 13 (((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))) ∧ 𝑘𝐼) → (𝑔𝑘) ∈ (𝐹𝑘))
39 simprrl 779 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))) → (𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)))
4039simpld 497 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))) → 𝑤 ∈ Fin)
4139simprd 498 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))) → ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛))
4235unieqd 4854 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 (𝐹𝑛) = (𝐹𝑘))
4334, 42eqeq12d 2839 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → ((𝑔𝑛) = (𝐹𝑛) ↔ (𝑔𝑘) = (𝐹𝑘)))
4443rspccva 3624 . . . . . . . . . . . . . 14 ((∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛) ∧ 𝑘 ∈ (𝐼𝑤)) → (𝑔𝑘) = (𝐹𝑘))
4541, 44sylan 582 . . . . . . . . . . . . 13 (((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))) ∧ 𝑘 ∈ (𝐼𝑤)) → (𝑔𝑘) = (𝐹𝑘))
46 simprrr 780 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))) → ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛))
4734cbvixpv 8481 . . . . . . . . . . . . . 14 X𝑛𝐼 (𝑔𝑛) = X𝑘𝐼 (𝑔𝑘)
4846, 47eleqtrdi 2925 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))) → ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑘𝐼 (𝑔𝑘))
4920, 1, 13, 3, 21, 7, 31, 32, 38, 40, 45, 48ptcnplem 22231 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝑔𝑘)))
5049anassrs 470 . . . . . . . . . . 11 (((𝜑 ∧ (𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛))) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛))) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝑔𝑘)))
5150expr 459 . . . . . . . . . 10 (((𝜑 ∧ (𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛))) ∧ (𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛))) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝑔𝑘))))
5251rexlimdvaa 3287 . . . . . . . . 9 ((𝜑 ∧ (𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛))) → (∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝑔𝑘)))))
5352impr 457 . . . . . . . 8 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛))) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝑔𝑘))))
5419, 53sylan2b 595 . . . . . . 7 ((𝜑 ∧ (𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛))) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝑔𝑘))))
55 eleq2 2903 . . . . . . . 8 (𝑓 = X𝑛𝐼 (𝑔𝑛) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ 𝑓 ↔ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))
5647eqeq2i 2836 . . . . . . . . . . . 12 (𝑓 = X𝑛𝐼 (𝑔𝑛) ↔ 𝑓 = X𝑘𝐼 (𝑔𝑘))
5756biimpi 218 . . . . . . . . . . 11 (𝑓 = X𝑛𝐼 (𝑔𝑛) → 𝑓 = X𝑘𝐼 (𝑔𝑘))
5857sseq2d 4001 . . . . . . . . . 10 (𝑓 = X𝑛𝐼 (𝑔𝑛) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓 ↔ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝑔𝑘)))
5958anbi2d 630 . . . . . . . . 9 (𝑓 = X𝑛𝐼 (𝑔𝑛) → ((𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓) ↔ (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝑔𝑘))))
6059rexbidv 3299 . . . . . . . 8 (𝑓 = X𝑛𝐼 (𝑔𝑛) → (∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓) ↔ ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝑔𝑘))))
6155, 60imbi12d 347 . . . . . . 7 (𝑓 = X𝑛𝐼 (𝑔𝑛) → ((((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓)) ↔ (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝑔𝑘)))))
6254, 61syl5ibrcom 249 . . . . . 6 ((𝜑 ∧ (𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛))) → (𝑓 = X𝑛𝐼 (𝑔𝑛) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓))))
6362expimpd 456 . . . . 5 (𝜑 → (((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑓 = X𝑛𝐼 (𝑔𝑛)) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓))))
6463exlimdv 1934 . . . 4 (𝜑 → (∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑓 = X𝑛𝐼 (𝑔𝑛)) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓))))
6564alrimiv 1928 . . 3 (𝜑 → ∀𝑓(∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑓 = X𝑛𝐼 (𝑔𝑛)) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓))))
66 eqeq1 2827 . . . . . 6 (𝑎 = 𝑓 → (𝑎 = X𝑛𝐼 (𝑔𝑛) ↔ 𝑓 = X𝑛𝐼 (𝑔𝑛)))
6766anbi2d 630 . . . . 5 (𝑎 = 𝑓 → (((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑎 = X𝑛𝐼 (𝑔𝑛)) ↔ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑓 = X𝑛𝐼 (𝑔𝑛))))
6867exbidv 1922 . . . 4 (𝑎 = 𝑓 → (∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑎 = X𝑛𝐼 (𝑔𝑛)) ↔ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑓 = X𝑛𝐼 (𝑔𝑛))))
6968ralab 3686 . . 3 (∀𝑓 ∈ {𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑎 = X𝑛𝐼 (𝑔𝑛))} (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓)) ↔ ∀𝑓(∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑓 = X𝑛𝐼 (𝑔𝑛)) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓))))
7065, 69sylibr 236 . 2 (𝜑 → ∀𝑓 ∈ {𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑎 = X𝑛𝐼 (𝑔𝑛))} (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓)))
713ffnd 6517 . . . . 5 (𝜑𝐹 Fn 𝐼)
72 eqid 2823 . . . . . 6 {𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑎 = X𝑛𝐼 (𝑔𝑛))} = {𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑎 = X𝑛𝐼 (𝑔𝑛))}
7372ptval 22180 . . . . 5 ((𝐼𝑉𝐹 Fn 𝐼) → (∏t𝐹) = (topGen‘{𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑎 = X𝑛𝐼 (𝑔𝑛))}))
7413, 71, 73syl2anc 586 . . . 4 (𝜑 → (∏t𝐹) = (topGen‘{𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑎 = X𝑛𝐼 (𝑔𝑛))}))
7520, 74syl5eq 2870 . . 3 (𝜑𝐾 = (topGen‘{𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑎 = X𝑛𝐼 (𝑔𝑛))}))
763feqmptd 6735 . . . . . 6 (𝜑𝐹 = (𝑘𝐼 ↦ (𝐹𝑘)))
7776fveq2d 6676 . . . . 5 (𝜑 → (∏t𝐹) = (∏t‘(𝑘𝐼 ↦ (𝐹𝑘))))
7820, 77syl5eq 2870 . . . 4 (𝜑𝐾 = (∏t‘(𝑘𝐼 ↦ (𝐹𝑘))))
796ralrimiva 3184 . . . . 5 (𝜑 → ∀𝑘𝐼 (𝐹𝑘) ∈ (TopOn‘ (𝐹𝑘)))
80 eqid 2823 . . . . . 6 (∏t‘(𝑘𝐼 ↦ (𝐹𝑘))) = (∏t‘(𝑘𝐼 ↦ (𝐹𝑘)))
8180pttopon 22206 . . . . 5 ((𝐼𝑉 ∧ ∀𝑘𝐼 (𝐹𝑘) ∈ (TopOn‘ (𝐹𝑘))) → (∏t‘(𝑘𝐼 ↦ (𝐹𝑘))) ∈ (TopOn‘X𝑘𝐼 (𝐹𝑘)))
8213, 79, 81syl2anc 586 . . . 4 (𝜑 → (∏t‘(𝑘𝐼 ↦ (𝐹𝑘))) ∈ (TopOn‘X𝑘𝐼 (𝐹𝑘)))
8378, 82eqeltrd 2915 . . 3 (𝜑𝐾 ∈ (TopOn‘X𝑘𝐼 (𝐹𝑘)))
841, 75, 83, 21tgcnp 21863 . 2 (𝜑 → ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) ∈ ((𝐽 CnP 𝐾)‘𝐷) ↔ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)):𝑋X𝑘𝐼 (𝐹𝑘) ∧ ∀𝑓 ∈ {𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑎 = X𝑛𝐼 (𝑔𝑛))} (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓)))))
8518, 70, 84mpbir2and 711 1 (𝜑 → (𝑥𝑋 ↦ (𝑘𝐼𝐴)) ∈ ((𝐽 CnP 𝐾)‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wal 1535   = wceq 1537  wex 1780  wcel 2114  {cab 2801  wral 3140  wrex 3141  cdif 3935  wss 3938   cuni 4840  cmpt 5148  cima 5560   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  Xcixp 8463  Fincfn 8511  topGenctg 16713  tcpt 16714  Topctop 21503  TopOnctopon 21520   CnP ccnp 21835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-ixp 8464  df-en 8512  df-dom 8513  df-fin 8515  df-fi 8877  df-topgen 16719  df-pt 16720  df-top 21504  df-topon 21521  df-bases 21556  df-cnp 21838
This theorem is referenced by:  ptcn  22237
  Copyright terms: Public domain W3C validator