MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcnp Structured version   Visualization version   GIF version

Theorem ptcnp 23570
Description: If every projection of a function is continuous at 𝐷, then the function itself is continuous at 𝐷 into the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
ptcnp.2 𝐾 = (∏t𝐹)
ptcnp.3 (𝜑𝐽 ∈ (TopOn‘𝑋))
ptcnp.4 (𝜑𝐼𝑉)
ptcnp.5 (𝜑𝐹:𝐼⟶Top)
ptcnp.6 (𝜑𝐷𝑋)
ptcnp.7 ((𝜑𝑘𝐼) → (𝑥𝑋𝐴) ∈ ((𝐽 CnP (𝐹𝑘))‘𝐷))
Assertion
Ref Expression
ptcnp (𝜑 → (𝑥𝑋 ↦ (𝑘𝐼𝐴)) ∈ ((𝐽 CnP 𝐾)‘𝐷))
Distinct variable groups:   𝑥,𝑘,𝐷   𝑘,𝐼,𝑥   𝑘,𝐽   𝜑,𝑘,𝑥   𝑘,𝐹,𝑥   𝑘,𝑉,𝑥   𝑘,𝑋,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐽(𝑥)   𝐾(𝑥,𝑘)

Proof of Theorem ptcnp
Dummy variables 𝑓 𝑔 𝑤 𝑧 𝑎 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptcnp.3 . . . . . . . . 9 (𝜑𝐽 ∈ (TopOn‘𝑋))
21adantr 479 . . . . . . . 8 ((𝜑𝑘𝐼) → 𝐽 ∈ (TopOn‘𝑋))
3 ptcnp.5 . . . . . . . . . 10 (𝜑𝐹:𝐼⟶Top)
43ffvelcdmda 7093 . . . . . . . . 9 ((𝜑𝑘𝐼) → (𝐹𝑘) ∈ Top)
5 toptopon2 22864 . . . . . . . . 9 ((𝐹𝑘) ∈ Top ↔ (𝐹𝑘) ∈ (TopOn‘ (𝐹𝑘)))
64, 5sylib 217 . . . . . . . 8 ((𝜑𝑘𝐼) → (𝐹𝑘) ∈ (TopOn‘ (𝐹𝑘)))
7 ptcnp.7 . . . . . . . 8 ((𝜑𝑘𝐼) → (𝑥𝑋𝐴) ∈ ((𝐽 CnP (𝐹𝑘))‘𝐷))
8 cnpf2 23198 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐹𝑘) ∈ (TopOn‘ (𝐹𝑘)) ∧ (𝑥𝑋𝐴) ∈ ((𝐽 CnP (𝐹𝑘))‘𝐷)) → (𝑥𝑋𝐴):𝑋 (𝐹𝑘))
92, 6, 7, 8syl3anc 1368 . . . . . . 7 ((𝜑𝑘𝐼) → (𝑥𝑋𝐴):𝑋 (𝐹𝑘))
109fvmptelcdm 7122 . . . . . 6 (((𝜑𝑘𝐼) ∧ 𝑥𝑋) → 𝐴 (𝐹𝑘))
1110an32s 650 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑘𝐼) → 𝐴 (𝐹𝑘))
1211ralrimiva 3135 . . . 4 ((𝜑𝑥𝑋) → ∀𝑘𝐼 𝐴 (𝐹𝑘))
13 ptcnp.4 . . . . . 6 (𝜑𝐼𝑉)
1413adantr 479 . . . . 5 ((𝜑𝑥𝑋) → 𝐼𝑉)
15 mptelixpg 8954 . . . . 5 (𝐼𝑉 → ((𝑘𝐼𝐴) ∈ X𝑘𝐼 (𝐹𝑘) ↔ ∀𝑘𝐼 𝐴 (𝐹𝑘)))
1614, 15syl 17 . . . 4 ((𝜑𝑥𝑋) → ((𝑘𝐼𝐴) ∈ X𝑘𝐼 (𝐹𝑘) ↔ ∀𝑘𝐼 𝐴 (𝐹𝑘)))
1712, 16mpbird 256 . . 3 ((𝜑𝑥𝑋) → (𝑘𝐼𝐴) ∈ X𝑘𝐼 (𝐹𝑘))
1817fmpttd 7124 . 2 (𝜑 → (𝑥𝑋 ↦ (𝑘𝐼𝐴)):𝑋X𝑘𝐼 (𝐹𝑘))
19 df-3an 1086 . . . . . . . 8 ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ↔ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)))
20 ptcnp.2 . . . . . . . . . . . . 13 𝐾 = (∏t𝐹)
21 ptcnp.6 . . . . . . . . . . . . 13 (𝜑𝐷𝑋)
22 nfv 1909 . . . . . . . . . . . . . 14 𝑘(𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛))
23 nfv 1909 . . . . . . . . . . . . . . 15 𝑘(𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛))
24 nfcv 2891 . . . . . . . . . . . . . . . . . 18 𝑘𝑋
25 nfmpt1 5257 . . . . . . . . . . . . . . . . . 18 𝑘(𝑘𝐼𝐴)
2624, 25nfmpt 5256 . . . . . . . . . . . . . . . . 17 𝑘(𝑥𝑋 ↦ (𝑘𝐼𝐴))
27 nfcv 2891 . . . . . . . . . . . . . . . . 17 𝑘𝐷
2826, 27nffv 6906 . . . . . . . . . . . . . . . 16 𝑘((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷)
2928nfel1 2908 . . . . . . . . . . . . . . 15 𝑘((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)
3023, 29nfan 1894 . . . . . . . . . . . . . 14 𝑘((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛))
3122, 30nfan 1894 . . . . . . . . . . . . 13 𝑘((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))
32 simprll 777 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))) → 𝑔 Fn 𝐼)
33 simprlr 778 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))) → ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛))
34 fveq2 6896 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 → (𝑔𝑛) = (𝑔𝑘))
35 fveq2 6896 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
3634, 35eleq12d 2819 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → ((𝑔𝑛) ∈ (𝐹𝑛) ↔ (𝑔𝑘) ∈ (𝐹𝑘)))
3736rspccva 3605 . . . . . . . . . . . . . 14 ((∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ 𝑘𝐼) → (𝑔𝑘) ∈ (𝐹𝑘))
3833, 37sylan 578 . . . . . . . . . . . . 13 (((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))) ∧ 𝑘𝐼) → (𝑔𝑘) ∈ (𝐹𝑘))
39 simprrl 779 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))) → (𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)))
4039simpld 493 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))) → 𝑤 ∈ Fin)
4139simprd 494 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))) → ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛))
4235unieqd 4922 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 (𝐹𝑛) = (𝐹𝑘))
4334, 42eqeq12d 2741 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → ((𝑔𝑛) = (𝐹𝑛) ↔ (𝑔𝑘) = (𝐹𝑘)))
4443rspccva 3605 . . . . . . . . . . . . . 14 ((∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛) ∧ 𝑘 ∈ (𝐼𝑤)) → (𝑔𝑘) = (𝐹𝑘))
4541, 44sylan 578 . . . . . . . . . . . . 13 (((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))) ∧ 𝑘 ∈ (𝐼𝑤)) → (𝑔𝑘) = (𝐹𝑘))
46 simprrr 780 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))) → ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛))
4734cbvixpv 8934 . . . . . . . . . . . . . 14 X𝑛𝐼 (𝑔𝑛) = X𝑘𝐼 (𝑔𝑘)
4846, 47eleqtrdi 2835 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))) → ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑘𝐼 (𝑔𝑘))
4920, 1, 13, 3, 21, 7, 31, 32, 38, 40, 45, 48ptcnplem 23569 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝑔𝑘)))
5049anassrs 466 . . . . . . . . . . 11 (((𝜑 ∧ (𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛))) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛))) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝑔𝑘)))
5150expr 455 . . . . . . . . . 10 (((𝜑 ∧ (𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛))) ∧ (𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛))) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝑔𝑘))))
5251rexlimdvaa 3145 . . . . . . . . 9 ((𝜑 ∧ (𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛))) → (∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝑔𝑘)))))
5352impr 453 . . . . . . . 8 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛))) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝑔𝑘))))
5419, 53sylan2b 592 . . . . . . 7 ((𝜑 ∧ (𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛))) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝑔𝑘))))
55 eleq2 2814 . . . . . . . 8 (𝑓 = X𝑛𝐼 (𝑔𝑛) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ 𝑓 ↔ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))
5647eqeq2i 2738 . . . . . . . . . . . 12 (𝑓 = X𝑛𝐼 (𝑔𝑛) ↔ 𝑓 = X𝑘𝐼 (𝑔𝑘))
5756biimpi 215 . . . . . . . . . . 11 (𝑓 = X𝑛𝐼 (𝑔𝑛) → 𝑓 = X𝑘𝐼 (𝑔𝑘))
5857sseq2d 4009 . . . . . . . . . 10 (𝑓 = X𝑛𝐼 (𝑔𝑛) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓 ↔ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝑔𝑘)))
5958anbi2d 628 . . . . . . . . 9 (𝑓 = X𝑛𝐼 (𝑔𝑛) → ((𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓) ↔ (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝑔𝑘))))
6059rexbidv 3168 . . . . . . . 8 (𝑓 = X𝑛𝐼 (𝑔𝑛) → (∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓) ↔ ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝑔𝑘))))
6155, 60imbi12d 343 . . . . . . 7 (𝑓 = X𝑛𝐼 (𝑔𝑛) → ((((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓)) ↔ (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝑔𝑘)))))
6254, 61syl5ibrcom 246 . . . . . 6 ((𝜑 ∧ (𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛))) → (𝑓 = X𝑛𝐼 (𝑔𝑛) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓))))
6362expimpd 452 . . . . 5 (𝜑 → (((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑓 = X𝑛𝐼 (𝑔𝑛)) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓))))
6463exlimdv 1928 . . . 4 (𝜑 → (∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑓 = X𝑛𝐼 (𝑔𝑛)) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓))))
6564alrimiv 1922 . . 3 (𝜑 → ∀𝑓(∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑓 = X𝑛𝐼 (𝑔𝑛)) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓))))
66 eqeq1 2729 . . . . . 6 (𝑎 = 𝑓 → (𝑎 = X𝑛𝐼 (𝑔𝑛) ↔ 𝑓 = X𝑛𝐼 (𝑔𝑛)))
6766anbi2d 628 . . . . 5 (𝑎 = 𝑓 → (((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑎 = X𝑛𝐼 (𝑔𝑛)) ↔ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑓 = X𝑛𝐼 (𝑔𝑛))))
6867exbidv 1916 . . . 4 (𝑎 = 𝑓 → (∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑎 = X𝑛𝐼 (𝑔𝑛)) ↔ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑓 = X𝑛𝐼 (𝑔𝑛))))
6968ralab 3683 . . 3 (∀𝑓 ∈ {𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑎 = X𝑛𝐼 (𝑔𝑛))} (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓)) ↔ ∀𝑓(∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑓 = X𝑛𝐼 (𝑔𝑛)) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓))))
7065, 69sylibr 233 . 2 (𝜑 → ∀𝑓 ∈ {𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑎 = X𝑛𝐼 (𝑔𝑛))} (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓)))
713ffnd 6724 . . . . 5 (𝜑𝐹 Fn 𝐼)
72 eqid 2725 . . . . . 6 {𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑎 = X𝑛𝐼 (𝑔𝑛))} = {𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑎 = X𝑛𝐼 (𝑔𝑛))}
7372ptval 23518 . . . . 5 ((𝐼𝑉𝐹 Fn 𝐼) → (∏t𝐹) = (topGen‘{𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑎 = X𝑛𝐼 (𝑔𝑛))}))
7413, 71, 73syl2anc 582 . . . 4 (𝜑 → (∏t𝐹) = (topGen‘{𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑎 = X𝑛𝐼 (𝑔𝑛))}))
7520, 74eqtrid 2777 . . 3 (𝜑𝐾 = (topGen‘{𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑎 = X𝑛𝐼 (𝑔𝑛))}))
763feqmptd 6966 . . . . . 6 (𝜑𝐹 = (𝑘𝐼 ↦ (𝐹𝑘)))
7776fveq2d 6900 . . . . 5 (𝜑 → (∏t𝐹) = (∏t‘(𝑘𝐼 ↦ (𝐹𝑘))))
7820, 77eqtrid 2777 . . . 4 (𝜑𝐾 = (∏t‘(𝑘𝐼 ↦ (𝐹𝑘))))
796ralrimiva 3135 . . . . 5 (𝜑 → ∀𝑘𝐼 (𝐹𝑘) ∈ (TopOn‘ (𝐹𝑘)))
80 eqid 2725 . . . . . 6 (∏t‘(𝑘𝐼 ↦ (𝐹𝑘))) = (∏t‘(𝑘𝐼 ↦ (𝐹𝑘)))
8180pttopon 23544 . . . . 5 ((𝐼𝑉 ∧ ∀𝑘𝐼 (𝐹𝑘) ∈ (TopOn‘ (𝐹𝑘))) → (∏t‘(𝑘𝐼 ↦ (𝐹𝑘))) ∈ (TopOn‘X𝑘𝐼 (𝐹𝑘)))
8213, 79, 81syl2anc 582 . . . 4 (𝜑 → (∏t‘(𝑘𝐼 ↦ (𝐹𝑘))) ∈ (TopOn‘X𝑘𝐼 (𝐹𝑘)))
8378, 82eqeltrd 2825 . . 3 (𝜑𝐾 ∈ (TopOn‘X𝑘𝐼 (𝐹𝑘)))
841, 75, 83, 21tgcnp 23201 . 2 (𝜑 → ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) ∈ ((𝐽 CnP 𝐾)‘𝐷) ↔ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)):𝑋X𝑘𝐼 (𝐹𝑘) ∧ ∀𝑓 ∈ {𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑎 = X𝑛𝐼 (𝑔𝑛))} (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓)))))
8518, 70, 84mpbir2and 711 1 (𝜑 → (𝑥𝑋 ↦ (𝑘𝐼𝐴)) ∈ ((𝐽 CnP 𝐾)‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084  wal 1531   = wceq 1533  wex 1773  wcel 2098  {cab 2702  wral 3050  wrex 3059  cdif 3941  wss 3944   cuni 4909  cmpt 5232  cima 5681   Fn wfn 6544  wf 6545  cfv 6549  (class class class)co 7419  Xcixp 8916  Fincfn 8964  topGenctg 17422  tcpt 17423  Topctop 22839  TopOnctopon 22856   CnP ccnp 23173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-1o 8487  df-er 8725  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-fin 8968  df-fi 9436  df-topgen 17428  df-pt 17429  df-top 22840  df-topon 22857  df-bases 22893  df-cnp 23176
This theorem is referenced by:  ptcn  23575
  Copyright terms: Public domain W3C validator