Step | Hyp | Ref
| Expression |
1 | | ptcnp.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
2 | 1 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → 𝐽 ∈ (TopOn‘𝑋)) |
3 | | ptcnp.5 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:𝐼⟶Top) |
4 | 3 | ffvelrnda 6943 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝐹‘𝑘) ∈ Top) |
5 | | toptopon2 21975 |
. . . . . . . . 9
⊢ ((𝐹‘𝑘) ∈ Top ↔ (𝐹‘𝑘) ∈ (TopOn‘∪ (𝐹‘𝑘))) |
6 | 4, 5 | sylib 217 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝐹‘𝑘) ∈ (TopOn‘∪ (𝐹‘𝑘))) |
7 | | ptcnp.7 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ ((𝐽 CnP (𝐹‘𝑘))‘𝐷)) |
8 | | cnpf2 22309 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐹‘𝑘) ∈ (TopOn‘∪ (𝐹‘𝑘)) ∧ (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ ((𝐽 CnP (𝐹‘𝑘))‘𝐷)) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶∪ (𝐹‘𝑘)) |
9 | 2, 6, 7, 8 | syl3anc 1369 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶∪ (𝐹‘𝑘)) |
10 | 9 | fvmptelrn 6969 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ∪ (𝐹‘𝑘)) |
11 | 10 | an32s 648 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) → 𝐴 ∈ ∪ (𝐹‘𝑘)) |
12 | 11 | ralrimiva 3107 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑘 ∈ 𝐼 𝐴 ∈ ∪ (𝐹‘𝑘)) |
13 | | ptcnp.4 |
. . . . . 6
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
14 | 13 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐼 ∈ 𝑉) |
15 | | mptelixpg 8681 |
. . . . 5
⊢ (𝐼 ∈ 𝑉 → ((𝑘 ∈ 𝐼 ↦ 𝐴) ∈ X𝑘 ∈ 𝐼 ∪ (𝐹‘𝑘) ↔ ∀𝑘 ∈ 𝐼 𝐴 ∈ ∪ (𝐹‘𝑘))) |
16 | 14, 15 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑘 ∈ 𝐼 ↦ 𝐴) ∈ X𝑘 ∈ 𝐼 ∪ (𝐹‘𝑘) ↔ ∀𝑘 ∈ 𝐼 𝐴 ∈ ∪ (𝐹‘𝑘))) |
17 | 12, 16 | mpbird 256 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑘 ∈ 𝐼 ↦ 𝐴) ∈ X𝑘 ∈ 𝐼 ∪ (𝐹‘𝑘)) |
18 | 17 | fmpttd 6971 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)):𝑋⟶X𝑘 ∈ 𝐼 ∪ (𝐹‘𝑘)) |
19 | | df-3an 1087 |
. . . . . . . 8
⊢ ((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ↔ ((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛)) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛))) |
20 | | ptcnp.2 |
. . . . . . . . . . . . 13
⊢ 𝐾 =
(∏t‘𝐹) |
21 | | ptcnp.6 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐷 ∈ 𝑋) |
22 | | nfv 1918 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘(𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛)) |
23 | | nfv 1918 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘(𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) |
24 | | nfcv 2906 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘𝑋 |
25 | | nfmpt1 5178 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘(𝑘 ∈ 𝐼 ↦ 𝐴) |
26 | 24, 25 | nfmpt 5177 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘(𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) |
27 | | nfcv 2906 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘𝐷 |
28 | 26, 27 | nffv 6766 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) |
29 | 28 | nfel1 2922 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ X𝑛 ∈ 𝐼 (𝑔‘𝑛) |
30 | 23, 29 | nfan 1903 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ X𝑛 ∈ 𝐼 (𝑔‘𝑛)) |
31 | 22, 30 | nfan 1903 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ X𝑛 ∈ 𝐼 (𝑔‘𝑛))) |
32 | | simprll 775 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ X𝑛 ∈ 𝐼 (𝑔‘𝑛)))) → 𝑔 Fn 𝐼) |
33 | | simprlr 776 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ X𝑛 ∈ 𝐼 (𝑔‘𝑛)))) → ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛)) |
34 | | fveq2 6756 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑘 → (𝑔‘𝑛) = (𝑔‘𝑘)) |
35 | | fveq2 6756 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑘 → (𝐹‘𝑛) = (𝐹‘𝑘)) |
36 | 34, 35 | eleq12d 2833 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑘 → ((𝑔‘𝑛) ∈ (𝐹‘𝑛) ↔ (𝑔‘𝑘) ∈ (𝐹‘𝑘))) |
37 | 36 | rspccva 3551 |
. . . . . . . . . . . . . 14
⊢
((∀𝑛 ∈
𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛) ∧ 𝑘 ∈ 𝐼) → (𝑔‘𝑘) ∈ (𝐹‘𝑘)) |
38 | 33, 37 | sylan 579 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ X𝑛 ∈ 𝐼 (𝑔‘𝑛)))) ∧ 𝑘 ∈ 𝐼) → (𝑔‘𝑘) ∈ (𝐹‘𝑘)) |
39 | | simprrl 777 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ X𝑛 ∈ 𝐼 (𝑔‘𝑛)))) → (𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛))) |
40 | 39 | simpld 494 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ X𝑛 ∈ 𝐼 (𝑔‘𝑛)))) → 𝑤 ∈ Fin) |
41 | 39 | simprd 495 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ X𝑛 ∈ 𝐼 (𝑔‘𝑛)))) → ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) |
42 | 35 | unieqd 4850 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑘 → ∪ (𝐹‘𝑛) = ∪ (𝐹‘𝑘)) |
43 | 34, 42 | eqeq12d 2754 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑘 → ((𝑔‘𝑛) = ∪ (𝐹‘𝑛) ↔ (𝑔‘𝑘) = ∪ (𝐹‘𝑘))) |
44 | 43 | rspccva 3551 |
. . . . . . . . . . . . . 14
⊢
((∀𝑛 ∈
(𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛) ∧ 𝑘 ∈ (𝐼 ∖ 𝑤)) → (𝑔‘𝑘) = ∪ (𝐹‘𝑘)) |
45 | 41, 44 | sylan 579 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ X𝑛 ∈ 𝐼 (𝑔‘𝑛)))) ∧ 𝑘 ∈ (𝐼 ∖ 𝑤)) → (𝑔‘𝑘) = ∪ (𝐹‘𝑘)) |
46 | | simprrr 778 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ X𝑛 ∈ 𝐼 (𝑔‘𝑛)))) → ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ X𝑛 ∈ 𝐼 (𝑔‘𝑛)) |
47 | 34 | cbvixpv 8661 |
. . . . . . . . . . . . . 14
⊢ X𝑛 ∈
𝐼 (𝑔‘𝑛) = X𝑘 ∈ 𝐼 (𝑔‘𝑘) |
48 | 46, 47 | eleqtrdi 2849 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ X𝑛 ∈ 𝐼 (𝑔‘𝑛)))) → ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ X𝑘 ∈ 𝐼 (𝑔‘𝑘)) |
49 | 20, 1, 13, 3, 21, 7, 31, 32, 38, 40, 45, 48 | ptcnplem 22680 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ X𝑛 ∈ 𝐼 (𝑔‘𝑛)))) → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ X𝑘 ∈ 𝐼 (𝑔‘𝑘))) |
50 | 49 | anassrs 467 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛))) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ X𝑛 ∈ 𝐼 (𝑔‘𝑛))) → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ X𝑘 ∈ 𝐼 (𝑔‘𝑘))) |
51 | 50 | expr 456 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛))) ∧ (𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛))) → (((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ X𝑛 ∈ 𝐼 (𝑔‘𝑛) → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ X𝑘 ∈ 𝐼 (𝑔‘𝑘)))) |
52 | 51 | rexlimdvaa 3213 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛))) → (∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛) → (((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ X𝑛 ∈ 𝐼 (𝑔‘𝑛) → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ X𝑘 ∈ 𝐼 (𝑔‘𝑘))))) |
53 | 52 | impr 454 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛)) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛))) → (((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ X𝑛 ∈ 𝐼 (𝑔‘𝑛) → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ X𝑘 ∈ 𝐼 (𝑔‘𝑘)))) |
54 | 19, 53 | sylan2b 593 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛))) → (((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ X𝑛 ∈ 𝐼 (𝑔‘𝑛) → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ X𝑘 ∈ 𝐼 (𝑔‘𝑘)))) |
55 | | eleq2 2827 |
. . . . . . . 8
⊢ (𝑓 = X𝑛 ∈ 𝐼 (𝑔‘𝑛) → (((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ 𝑓 ↔ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ X𝑛 ∈ 𝐼 (𝑔‘𝑛))) |
56 | 47 | eqeq2i 2751 |
. . . . . . . . . . . 12
⊢ (𝑓 = X𝑛 ∈ 𝐼 (𝑔‘𝑛) ↔ 𝑓 = X𝑘 ∈ 𝐼 (𝑔‘𝑘)) |
57 | 56 | biimpi 215 |
. . . . . . . . . . 11
⊢ (𝑓 = X𝑛 ∈ 𝐼 (𝑔‘𝑛) → 𝑓 = X𝑘 ∈ 𝐼 (𝑔‘𝑘)) |
58 | 57 | sseq2d 3949 |
. . . . . . . . . 10
⊢ (𝑓 = X𝑛 ∈ 𝐼 (𝑔‘𝑛) → (((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ 𝑓 ↔ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ X𝑘 ∈ 𝐼 (𝑔‘𝑘))) |
59 | 58 | anbi2d 628 |
. . . . . . . . 9
⊢ (𝑓 = X𝑛 ∈ 𝐼 (𝑔‘𝑛) → ((𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ 𝑓) ↔ (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ X𝑘 ∈ 𝐼 (𝑔‘𝑘)))) |
60 | 59 | rexbidv 3225 |
. . . . . . . 8
⊢ (𝑓 = X𝑛 ∈ 𝐼 (𝑔‘𝑛) → (∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ 𝑓) ↔ ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ X𝑘 ∈ 𝐼 (𝑔‘𝑘)))) |
61 | 55, 60 | imbi12d 344 |
. . . . . . 7
⊢ (𝑓 = X𝑛 ∈ 𝐼 (𝑔‘𝑛) → ((((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ 𝑓)) ↔ (((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ X𝑛 ∈ 𝐼 (𝑔‘𝑛) → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ X𝑘 ∈ 𝐼 (𝑔‘𝑘))))) |
62 | 54, 61 | syl5ibrcom 246 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛))) → (𝑓 = X𝑛 ∈ 𝐼 (𝑔‘𝑛) → (((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ 𝑓)))) |
63 | 62 | expimpd 453 |
. . . . 5
⊢ (𝜑 → (((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ 𝑓 = X𝑛 ∈ 𝐼 (𝑔‘𝑛)) → (((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ 𝑓)))) |
64 | 63 | exlimdv 1937 |
. . . 4
⊢ (𝜑 → (∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ 𝑓 = X𝑛 ∈ 𝐼 (𝑔‘𝑛)) → (((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ 𝑓)))) |
65 | 64 | alrimiv 1931 |
. . 3
⊢ (𝜑 → ∀𝑓(∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ 𝑓 = X𝑛 ∈ 𝐼 (𝑔‘𝑛)) → (((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ 𝑓)))) |
66 | | eqeq1 2742 |
. . . . . 6
⊢ (𝑎 = 𝑓 → (𝑎 = X𝑛 ∈ 𝐼 (𝑔‘𝑛) ↔ 𝑓 = X𝑛 ∈ 𝐼 (𝑔‘𝑛))) |
67 | 66 | anbi2d 628 |
. . . . 5
⊢ (𝑎 = 𝑓 → (((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ 𝑎 = X𝑛 ∈ 𝐼 (𝑔‘𝑛)) ↔ ((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ 𝑓 = X𝑛 ∈ 𝐼 (𝑔‘𝑛)))) |
68 | 67 | exbidv 1925 |
. . . 4
⊢ (𝑎 = 𝑓 → (∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ 𝑎 = X𝑛 ∈ 𝐼 (𝑔‘𝑛)) ↔ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ 𝑓 = X𝑛 ∈ 𝐼 (𝑔‘𝑛)))) |
69 | 68 | ralab 3621 |
. . 3
⊢
(∀𝑓 ∈
{𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ 𝑎 = X𝑛 ∈ 𝐼 (𝑔‘𝑛))} (((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ 𝑓)) ↔ ∀𝑓(∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ 𝑓 = X𝑛 ∈ 𝐼 (𝑔‘𝑛)) → (((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ 𝑓)))) |
70 | 65, 69 | sylibr 233 |
. 2
⊢ (𝜑 → ∀𝑓 ∈ {𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ 𝑎 = X𝑛 ∈ 𝐼 (𝑔‘𝑛))} (((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ 𝑓))) |
71 | 3 | ffnd 6585 |
. . . . 5
⊢ (𝜑 → 𝐹 Fn 𝐼) |
72 | | eqid 2738 |
. . . . . 6
⊢ {𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ 𝑎 = X𝑛 ∈ 𝐼 (𝑔‘𝑛))} = {𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ 𝑎 = X𝑛 ∈ 𝐼 (𝑔‘𝑛))} |
73 | 72 | ptval 22629 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹 Fn 𝐼) → (∏t‘𝐹) = (topGen‘{𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ 𝑎 = X𝑛 ∈ 𝐼 (𝑔‘𝑛))})) |
74 | 13, 71, 73 | syl2anc 583 |
. . . 4
⊢ (𝜑 →
(∏t‘𝐹) = (topGen‘{𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ 𝑎 = X𝑛 ∈ 𝐼 (𝑔‘𝑛))})) |
75 | 20, 74 | eqtrid 2790 |
. . 3
⊢ (𝜑 → 𝐾 = (topGen‘{𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ 𝑎 = X𝑛 ∈ 𝐼 (𝑔‘𝑛))})) |
76 | 3 | feqmptd 6819 |
. . . . . 6
⊢ (𝜑 → 𝐹 = (𝑘 ∈ 𝐼 ↦ (𝐹‘𝑘))) |
77 | 76 | fveq2d 6760 |
. . . . 5
⊢ (𝜑 →
(∏t‘𝐹) = (∏t‘(𝑘 ∈ 𝐼 ↦ (𝐹‘𝑘)))) |
78 | 20, 77 | eqtrid 2790 |
. . . 4
⊢ (𝜑 → 𝐾 = (∏t‘(𝑘 ∈ 𝐼 ↦ (𝐹‘𝑘)))) |
79 | 6 | ralrimiva 3107 |
. . . . 5
⊢ (𝜑 → ∀𝑘 ∈ 𝐼 (𝐹‘𝑘) ∈ (TopOn‘∪ (𝐹‘𝑘))) |
80 | | eqid 2738 |
. . . . . 6
⊢
(∏t‘(𝑘 ∈ 𝐼 ↦ (𝐹‘𝑘))) = (∏t‘(𝑘 ∈ 𝐼 ↦ (𝐹‘𝑘))) |
81 | 80 | pttopon 22655 |
. . . . 5
⊢ ((𝐼 ∈ 𝑉 ∧ ∀𝑘 ∈ 𝐼 (𝐹‘𝑘) ∈ (TopOn‘∪ (𝐹‘𝑘))) → (∏t‘(𝑘 ∈ 𝐼 ↦ (𝐹‘𝑘))) ∈ (TopOn‘X𝑘 ∈
𝐼 ∪ (𝐹‘𝑘))) |
82 | 13, 79, 81 | syl2anc 583 |
. . . 4
⊢ (𝜑 →
(∏t‘(𝑘 ∈ 𝐼 ↦ (𝐹‘𝑘))) ∈ (TopOn‘X𝑘 ∈
𝐼 ∪ (𝐹‘𝑘))) |
83 | 78, 82 | eqeltrd 2839 |
. . 3
⊢ (𝜑 → 𝐾 ∈ (TopOn‘X𝑘 ∈
𝐼 ∪ (𝐹‘𝑘))) |
84 | 1, 75, 83, 21 | tgcnp 22312 |
. 2
⊢ (𝜑 → ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) ∈ ((𝐽 CnP 𝐾)‘𝐷) ↔ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)):𝑋⟶X𝑘 ∈ 𝐼 ∪ (𝐹‘𝑘) ∧ ∀𝑓 ∈ {𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑔‘𝑛) ∈ (𝐹‘𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼 ∖ 𝑤)(𝑔‘𝑛) = ∪ (𝐹‘𝑛)) ∧ 𝑎 = X𝑛 ∈ 𝐼 (𝑔‘𝑛))} (((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ 𝑓))))) |
85 | 18, 70, 84 | mpbir2and 709 |
1
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) ∈ ((𝐽 CnP 𝐾)‘𝐷)) |