MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcnp Structured version   Visualization version   GIF version

Theorem ptcnp 23507
Description: If every projection of a function is continuous at 𝐷, then the function itself is continuous at 𝐷 into the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
ptcnp.2 𝐾 = (∏t𝐹)
ptcnp.3 (𝜑𝐽 ∈ (TopOn‘𝑋))
ptcnp.4 (𝜑𝐼𝑉)
ptcnp.5 (𝜑𝐹:𝐼⟶Top)
ptcnp.6 (𝜑𝐷𝑋)
ptcnp.7 ((𝜑𝑘𝐼) → (𝑥𝑋𝐴) ∈ ((𝐽 CnP (𝐹𝑘))‘𝐷))
Assertion
Ref Expression
ptcnp (𝜑 → (𝑥𝑋 ↦ (𝑘𝐼𝐴)) ∈ ((𝐽 CnP 𝐾)‘𝐷))
Distinct variable groups:   𝑥,𝑘,𝐷   𝑘,𝐼,𝑥   𝑘,𝐽   𝜑,𝑘,𝑥   𝑘,𝐹,𝑥   𝑘,𝑉,𝑥   𝑘,𝑋,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐽(𝑥)   𝐾(𝑥,𝑘)

Proof of Theorem ptcnp
Dummy variables 𝑓 𝑔 𝑤 𝑧 𝑎 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptcnp.3 . . . . . . . . 9 (𝜑𝐽 ∈ (TopOn‘𝑋))
21adantr 480 . . . . . . . 8 ((𝜑𝑘𝐼) → 𝐽 ∈ (TopOn‘𝑋))
3 ptcnp.5 . . . . . . . . . 10 (𝜑𝐹:𝐼⟶Top)
43ffvelcdmda 7018 . . . . . . . . 9 ((𝜑𝑘𝐼) → (𝐹𝑘) ∈ Top)
5 toptopon2 22803 . . . . . . . . 9 ((𝐹𝑘) ∈ Top ↔ (𝐹𝑘) ∈ (TopOn‘ (𝐹𝑘)))
64, 5sylib 218 . . . . . . . 8 ((𝜑𝑘𝐼) → (𝐹𝑘) ∈ (TopOn‘ (𝐹𝑘)))
7 ptcnp.7 . . . . . . . 8 ((𝜑𝑘𝐼) → (𝑥𝑋𝐴) ∈ ((𝐽 CnP (𝐹𝑘))‘𝐷))
8 cnpf2 23135 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐹𝑘) ∈ (TopOn‘ (𝐹𝑘)) ∧ (𝑥𝑋𝐴) ∈ ((𝐽 CnP (𝐹𝑘))‘𝐷)) → (𝑥𝑋𝐴):𝑋 (𝐹𝑘))
92, 6, 7, 8syl3anc 1373 . . . . . . 7 ((𝜑𝑘𝐼) → (𝑥𝑋𝐴):𝑋 (𝐹𝑘))
109fvmptelcdm 7047 . . . . . 6 (((𝜑𝑘𝐼) ∧ 𝑥𝑋) → 𝐴 (𝐹𝑘))
1110an32s 652 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑘𝐼) → 𝐴 (𝐹𝑘))
1211ralrimiva 3121 . . . 4 ((𝜑𝑥𝑋) → ∀𝑘𝐼 𝐴 (𝐹𝑘))
13 ptcnp.4 . . . . . 6 (𝜑𝐼𝑉)
1413adantr 480 . . . . 5 ((𝜑𝑥𝑋) → 𝐼𝑉)
15 mptelixpg 8862 . . . . 5 (𝐼𝑉 → ((𝑘𝐼𝐴) ∈ X𝑘𝐼 (𝐹𝑘) ↔ ∀𝑘𝐼 𝐴 (𝐹𝑘)))
1614, 15syl 17 . . . 4 ((𝜑𝑥𝑋) → ((𝑘𝐼𝐴) ∈ X𝑘𝐼 (𝐹𝑘) ↔ ∀𝑘𝐼 𝐴 (𝐹𝑘)))
1712, 16mpbird 257 . . 3 ((𝜑𝑥𝑋) → (𝑘𝐼𝐴) ∈ X𝑘𝐼 (𝐹𝑘))
1817fmpttd 7049 . 2 (𝜑 → (𝑥𝑋 ↦ (𝑘𝐼𝐴)):𝑋X𝑘𝐼 (𝐹𝑘))
19 df-3an 1088 . . . . . . . 8 ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ↔ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)))
20 ptcnp.2 . . . . . . . . . . . . 13 𝐾 = (∏t𝐹)
21 ptcnp.6 . . . . . . . . . . . . 13 (𝜑𝐷𝑋)
22 nfv 1914 . . . . . . . . . . . . . 14 𝑘(𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛))
23 nfv 1914 . . . . . . . . . . . . . . 15 𝑘(𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛))
24 nfcv 2891 . . . . . . . . . . . . . . . . . 18 𝑘𝑋
25 nfmpt1 5191 . . . . . . . . . . . . . . . . . 18 𝑘(𝑘𝐼𝐴)
2624, 25nfmpt 5190 . . . . . . . . . . . . . . . . 17 𝑘(𝑥𝑋 ↦ (𝑘𝐼𝐴))
27 nfcv 2891 . . . . . . . . . . . . . . . . 17 𝑘𝐷
2826, 27nffv 6832 . . . . . . . . . . . . . . . 16 𝑘((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷)
2928nfel1 2908 . . . . . . . . . . . . . . 15 𝑘((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)
3023, 29nfan 1899 . . . . . . . . . . . . . 14 𝑘((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛))
3122, 30nfan 1899 . . . . . . . . . . . . 13 𝑘((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))
32 simprll 778 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))) → 𝑔 Fn 𝐼)
33 simprlr 779 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))) → ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛))
34 fveq2 6822 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 → (𝑔𝑛) = (𝑔𝑘))
35 fveq2 6822 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
3634, 35eleq12d 2822 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → ((𝑔𝑛) ∈ (𝐹𝑛) ↔ (𝑔𝑘) ∈ (𝐹𝑘)))
3736rspccva 3576 . . . . . . . . . . . . . 14 ((∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ 𝑘𝐼) → (𝑔𝑘) ∈ (𝐹𝑘))
3833, 37sylan 580 . . . . . . . . . . . . 13 (((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))) ∧ 𝑘𝐼) → (𝑔𝑘) ∈ (𝐹𝑘))
39 simprrl 780 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))) → (𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)))
4039simpld 494 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))) → 𝑤 ∈ Fin)
4139simprd 495 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))) → ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛))
4235unieqd 4871 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 (𝐹𝑛) = (𝐹𝑘))
4334, 42eqeq12d 2745 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → ((𝑔𝑛) = (𝐹𝑛) ↔ (𝑔𝑘) = (𝐹𝑘)))
4443rspccva 3576 . . . . . . . . . . . . . 14 ((∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛) ∧ 𝑘 ∈ (𝐼𝑤)) → (𝑔𝑘) = (𝐹𝑘))
4541, 44sylan 580 . . . . . . . . . . . . 13 (((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))) ∧ 𝑘 ∈ (𝐼𝑤)) → (𝑔𝑘) = (𝐹𝑘))
46 simprrr 781 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))) → ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛))
4734cbvixpv 8842 . . . . . . . . . . . . . 14 X𝑛𝐼 (𝑔𝑛) = X𝑘𝐼 (𝑔𝑘)
4846, 47eleqtrdi 2838 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))) → ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑘𝐼 (𝑔𝑘))
4920, 1, 13, 3, 21, 7, 31, 32, 38, 40, 45, 48ptcnplem 23506 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝑔𝑘)))
5049anassrs 467 . . . . . . . . . . 11 (((𝜑 ∧ (𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛))) ∧ ((𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛))) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝑔𝑘)))
5150expr 456 . . . . . . . . . 10 (((𝜑 ∧ (𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛))) ∧ (𝑤 ∈ Fin ∧ ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛))) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝑔𝑘))))
5251rexlimdvaa 3131 . . . . . . . . 9 ((𝜑 ∧ (𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛))) → (∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝑔𝑘)))))
5352impr 454 . . . . . . . 8 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛)) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛))) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝑔𝑘))))
5419, 53sylan2b 594 . . . . . . 7 ((𝜑 ∧ (𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛))) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝑔𝑘))))
55 eleq2 2817 . . . . . . . 8 (𝑓 = X𝑛𝐼 (𝑔𝑛) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ 𝑓 ↔ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛)))
5647eqeq2i 2742 . . . . . . . . . . . 12 (𝑓 = X𝑛𝐼 (𝑔𝑛) ↔ 𝑓 = X𝑘𝐼 (𝑔𝑘))
5756biimpi 216 . . . . . . . . . . 11 (𝑓 = X𝑛𝐼 (𝑔𝑛) → 𝑓 = X𝑘𝐼 (𝑔𝑘))
5857sseq2d 3968 . . . . . . . . . 10 (𝑓 = X𝑛𝐼 (𝑔𝑛) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓 ↔ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝑔𝑘)))
5958anbi2d 630 . . . . . . . . 9 (𝑓 = X𝑛𝐼 (𝑔𝑛) → ((𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓) ↔ (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝑔𝑘))))
6059rexbidv 3153 . . . . . . . 8 (𝑓 = X𝑛𝐼 (𝑔𝑛) → (∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓) ↔ ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝑔𝑘))))
6155, 60imbi12d 344 . . . . . . 7 (𝑓 = X𝑛𝐼 (𝑔𝑛) → ((((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓)) ↔ (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑛𝐼 (𝑔𝑛) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝑔𝑘)))))
6254, 61syl5ibrcom 247 . . . . . 6 ((𝜑 ∧ (𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛))) → (𝑓 = X𝑛𝐼 (𝑔𝑛) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓))))
6362expimpd 453 . . . . 5 (𝜑 → (((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑓 = X𝑛𝐼 (𝑔𝑛)) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓))))
6463exlimdv 1933 . . . 4 (𝜑 → (∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑓 = X𝑛𝐼 (𝑔𝑛)) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓))))
6564alrimiv 1927 . . 3 (𝜑 → ∀𝑓(∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑓 = X𝑛𝐼 (𝑔𝑛)) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓))))
66 eqeq1 2733 . . . . . 6 (𝑎 = 𝑓 → (𝑎 = X𝑛𝐼 (𝑔𝑛) ↔ 𝑓 = X𝑛𝐼 (𝑔𝑛)))
6766anbi2d 630 . . . . 5 (𝑎 = 𝑓 → (((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑎 = X𝑛𝐼 (𝑔𝑛)) ↔ ((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑓 = X𝑛𝐼 (𝑔𝑛))))
6867exbidv 1921 . . . 4 (𝑎 = 𝑓 → (∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑎 = X𝑛𝐼 (𝑔𝑛)) ↔ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑓 = X𝑛𝐼 (𝑔𝑛))))
6968ralab 3653 . . 3 (∀𝑓 ∈ {𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑎 = X𝑛𝐼 (𝑔𝑛))} (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓)) ↔ ∀𝑓(∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑓 = X𝑛𝐼 (𝑔𝑛)) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓))))
7065, 69sylibr 234 . 2 (𝜑 → ∀𝑓 ∈ {𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑎 = X𝑛𝐼 (𝑔𝑛))} (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓)))
713ffnd 6653 . . . . 5 (𝜑𝐹 Fn 𝐼)
72 eqid 2729 . . . . . 6 {𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑎 = X𝑛𝐼 (𝑔𝑛))} = {𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑎 = X𝑛𝐼 (𝑔𝑛))}
7372ptval 23455 . . . . 5 ((𝐼𝑉𝐹 Fn 𝐼) → (∏t𝐹) = (topGen‘{𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑎 = X𝑛𝐼 (𝑔𝑛))}))
7413, 71, 73syl2anc 584 . . . 4 (𝜑 → (∏t𝐹) = (topGen‘{𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑎 = X𝑛𝐼 (𝑔𝑛))}))
7520, 74eqtrid 2776 . . 3 (𝜑𝐾 = (topGen‘{𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑎 = X𝑛𝐼 (𝑔𝑛))}))
763feqmptd 6891 . . . . . 6 (𝜑𝐹 = (𝑘𝐼 ↦ (𝐹𝑘)))
7776fveq2d 6826 . . . . 5 (𝜑 → (∏t𝐹) = (∏t‘(𝑘𝐼 ↦ (𝐹𝑘))))
7820, 77eqtrid 2776 . . . 4 (𝜑𝐾 = (∏t‘(𝑘𝐼 ↦ (𝐹𝑘))))
796ralrimiva 3121 . . . . 5 (𝜑 → ∀𝑘𝐼 (𝐹𝑘) ∈ (TopOn‘ (𝐹𝑘)))
80 eqid 2729 . . . . . 6 (∏t‘(𝑘𝐼 ↦ (𝐹𝑘))) = (∏t‘(𝑘𝐼 ↦ (𝐹𝑘)))
8180pttopon 23481 . . . . 5 ((𝐼𝑉 ∧ ∀𝑘𝐼 (𝐹𝑘) ∈ (TopOn‘ (𝐹𝑘))) → (∏t‘(𝑘𝐼 ↦ (𝐹𝑘))) ∈ (TopOn‘X𝑘𝐼 (𝐹𝑘)))
8213, 79, 81syl2anc 584 . . . 4 (𝜑 → (∏t‘(𝑘𝐼 ↦ (𝐹𝑘))) ∈ (TopOn‘X𝑘𝐼 (𝐹𝑘)))
8378, 82eqeltrd 2828 . . 3 (𝜑𝐾 ∈ (TopOn‘X𝑘𝐼 (𝐹𝑘)))
841, 75, 83, 21tgcnp 23138 . 2 (𝜑 → ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) ∈ ((𝐽 CnP 𝐾)‘𝐷) ↔ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)):𝑋X𝑘𝐼 (𝐹𝑘) ∧ ∀𝑓 ∈ {𝑎 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑛𝐼 (𝑔𝑛) ∈ (𝐹𝑛) ∧ ∃𝑤 ∈ Fin ∀𝑛 ∈ (𝐼𝑤)(𝑔𝑛) = (𝐹𝑛)) ∧ 𝑎 = X𝑛𝐼 (𝑔𝑛))} (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ 𝑓 → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ 𝑓)))))
8518, 70, 84mpbir2and 713 1 (𝜑 → (𝑥𝑋 ↦ (𝑘𝐼𝐴)) ∈ ((𝐽 CnP 𝐾)‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wral 3044  wrex 3053  cdif 3900  wss 3903   cuni 4858  cmpt 5173  cima 5622   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  Xcixp 8824  Fincfn 8872  topGenctg 17341  tcpt 17342  Topctop 22778  TopOnctopon 22795   CnP ccnp 23110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-1o 8388  df-2o 8389  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-fin 8876  df-fi 9301  df-topgen 17347  df-pt 17348  df-top 22779  df-topon 22796  df-bases 22831  df-cnp 23113
This theorem is referenced by:  ptcn  23512
  Copyright terms: Public domain W3C validator