| Step | Hyp | Ref
| Expression |
| 1 | | nmfnval 31857 |
. . . 4
⊢ (𝑇: ℋ⟶ℂ →
(normfn‘𝑇)
= sup({𝑦 ∣
∃𝑥 ∈ ℋ
((normℎ‘𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇‘𝑥)))}, ℝ*, <
)) |
| 2 | 1 | adantr 480 |
. . 3
⊢ ((𝑇: ℋ⟶ℂ ∧
𝐴 ∈
ℝ*) → (normfn‘𝑇) = sup({𝑦 ∣ ∃𝑥 ∈ ℋ
((normℎ‘𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇‘𝑥)))}, ℝ*, <
)) |
| 3 | 2 | breq1d 5129 |
. 2
⊢ ((𝑇: ℋ⟶ℂ ∧
𝐴 ∈
ℝ*) → ((normfn‘𝑇) ≤ 𝐴 ↔ sup({𝑦 ∣ ∃𝑥 ∈ ℋ
((normℎ‘𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇‘𝑥)))}, ℝ*, < ) ≤ 𝐴)) |
| 4 | | nmfnsetre 31858 |
. . . . 5
⊢ (𝑇: ℋ⟶ℂ →
{𝑦 ∣ ∃𝑥 ∈ ℋ
((normℎ‘𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇‘𝑥)))} ⊆ ℝ) |
| 5 | | ressxr 11279 |
. . . . 5
⊢ ℝ
⊆ ℝ* |
| 6 | 4, 5 | sstrdi 3971 |
. . . 4
⊢ (𝑇: ℋ⟶ℂ →
{𝑦 ∣ ∃𝑥 ∈ ℋ
((normℎ‘𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇‘𝑥)))} ⊆
ℝ*) |
| 7 | | supxrleub 13342 |
. . . 4
⊢ (({𝑦 ∣ ∃𝑥 ∈ ℋ
((normℎ‘𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇‘𝑥)))} ⊆ ℝ* ∧ 𝐴 ∈ ℝ*)
→ (sup({𝑦 ∣
∃𝑥 ∈ ℋ
((normℎ‘𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇‘𝑥)))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ ℋ
((normℎ‘𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇‘𝑥)))}𝑧 ≤ 𝐴)) |
| 8 | 6, 7 | sylan 580 |
. . 3
⊢ ((𝑇: ℋ⟶ℂ ∧
𝐴 ∈
ℝ*) → (sup({𝑦 ∣ ∃𝑥 ∈ ℋ
((normℎ‘𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇‘𝑥)))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ ℋ
((normℎ‘𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇‘𝑥)))}𝑧 ≤ 𝐴)) |
| 9 | | ancom 460 |
. . . . . . 7
⊢
(((normℎ‘𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇‘𝑥))) ↔ (𝑦 = (abs‘(𝑇‘𝑥)) ∧ (normℎ‘𝑥) ≤ 1)) |
| 10 | | eqeq1 2739 |
. . . . . . . 8
⊢ (𝑦 = 𝑧 → (𝑦 = (abs‘(𝑇‘𝑥)) ↔ 𝑧 = (abs‘(𝑇‘𝑥)))) |
| 11 | 10 | anbi1d 631 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → ((𝑦 = (abs‘(𝑇‘𝑥)) ∧ (normℎ‘𝑥) ≤ 1) ↔ (𝑧 = (abs‘(𝑇‘𝑥)) ∧ (normℎ‘𝑥) ≤ 1))) |
| 12 | 9, 11 | bitrid 283 |
. . . . . 6
⊢ (𝑦 = 𝑧 →
(((normℎ‘𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇‘𝑥))) ↔ (𝑧 = (abs‘(𝑇‘𝑥)) ∧ (normℎ‘𝑥) ≤ 1))) |
| 13 | 12 | rexbidv 3164 |
. . . . 5
⊢ (𝑦 = 𝑧 → (∃𝑥 ∈ ℋ
((normℎ‘𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇‘𝑥))) ↔ ∃𝑥 ∈ ℋ (𝑧 = (abs‘(𝑇‘𝑥)) ∧ (normℎ‘𝑥) ≤ 1))) |
| 14 | 13 | ralab 3676 |
. . . 4
⊢
(∀𝑧 ∈
{𝑦 ∣ ∃𝑥 ∈ ℋ
((normℎ‘𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇‘𝑥)))}𝑧 ≤ 𝐴 ↔ ∀𝑧(∃𝑥 ∈ ℋ (𝑧 = (abs‘(𝑇‘𝑥)) ∧ (normℎ‘𝑥) ≤ 1) → 𝑧 ≤ 𝐴)) |
| 15 | | ralcom4 3268 |
. . . . 5
⊢
(∀𝑥 ∈
ℋ ∀𝑧((𝑧 = (abs‘(𝑇‘𝑥)) ∧ (normℎ‘𝑥) ≤ 1) → 𝑧 ≤ 𝐴) ↔ ∀𝑧∀𝑥 ∈ ℋ ((𝑧 = (abs‘(𝑇‘𝑥)) ∧ (normℎ‘𝑥) ≤ 1) → 𝑧 ≤ 𝐴)) |
| 16 | | impexp 450 |
. . . . . . . 8
⊢ (((𝑧 = (abs‘(𝑇‘𝑥)) ∧ (normℎ‘𝑥) ≤ 1) → 𝑧 ≤ 𝐴) ↔ (𝑧 = (abs‘(𝑇‘𝑥)) →
((normℎ‘𝑥) ≤ 1 → 𝑧 ≤ 𝐴))) |
| 17 | 16 | albii 1819 |
. . . . . . 7
⊢
(∀𝑧((𝑧 = (abs‘(𝑇‘𝑥)) ∧ (normℎ‘𝑥) ≤ 1) → 𝑧 ≤ 𝐴) ↔ ∀𝑧(𝑧 = (abs‘(𝑇‘𝑥)) →
((normℎ‘𝑥) ≤ 1 → 𝑧 ≤ 𝐴))) |
| 18 | | fvex 6889 |
. . . . . . . 8
⊢
(abs‘(𝑇‘𝑥)) ∈ V |
| 19 | | breq1 5122 |
. . . . . . . . 9
⊢ (𝑧 = (abs‘(𝑇‘𝑥)) → (𝑧 ≤ 𝐴 ↔ (abs‘(𝑇‘𝑥)) ≤ 𝐴)) |
| 20 | 19 | imbi2d 340 |
. . . . . . . 8
⊢ (𝑧 = (abs‘(𝑇‘𝑥)) →
(((normℎ‘𝑥) ≤ 1 → 𝑧 ≤ 𝐴) ↔
((normℎ‘𝑥) ≤ 1 → (abs‘(𝑇‘𝑥)) ≤ 𝐴))) |
| 21 | 18, 20 | ceqsalv 3500 |
. . . . . . 7
⊢
(∀𝑧(𝑧 = (abs‘(𝑇‘𝑥)) →
((normℎ‘𝑥) ≤ 1 → 𝑧 ≤ 𝐴)) ↔
((normℎ‘𝑥) ≤ 1 → (abs‘(𝑇‘𝑥)) ≤ 𝐴)) |
| 22 | 17, 21 | bitri 275 |
. . . . . 6
⊢
(∀𝑧((𝑧 = (abs‘(𝑇‘𝑥)) ∧ (normℎ‘𝑥) ≤ 1) → 𝑧 ≤ 𝐴) ↔
((normℎ‘𝑥) ≤ 1 → (abs‘(𝑇‘𝑥)) ≤ 𝐴)) |
| 23 | 22 | ralbii 3082 |
. . . . 5
⊢
(∀𝑥 ∈
ℋ ∀𝑧((𝑧 = (abs‘(𝑇‘𝑥)) ∧ (normℎ‘𝑥) ≤ 1) → 𝑧 ≤ 𝐴) ↔ ∀𝑥 ∈ ℋ
((normℎ‘𝑥) ≤ 1 → (abs‘(𝑇‘𝑥)) ≤ 𝐴)) |
| 24 | | r19.23v 3168 |
. . . . . 6
⊢
(∀𝑥 ∈
ℋ ((𝑧 =
(abs‘(𝑇‘𝑥)) ∧
(normℎ‘𝑥) ≤ 1) → 𝑧 ≤ 𝐴) ↔ (∃𝑥 ∈ ℋ (𝑧 = (abs‘(𝑇‘𝑥)) ∧ (normℎ‘𝑥) ≤ 1) → 𝑧 ≤ 𝐴)) |
| 25 | 24 | albii 1819 |
. . . . 5
⊢
(∀𝑧∀𝑥 ∈ ℋ ((𝑧 = (abs‘(𝑇‘𝑥)) ∧ (normℎ‘𝑥) ≤ 1) → 𝑧 ≤ 𝐴) ↔ ∀𝑧(∃𝑥 ∈ ℋ (𝑧 = (abs‘(𝑇‘𝑥)) ∧ (normℎ‘𝑥) ≤ 1) → 𝑧 ≤ 𝐴)) |
| 26 | 15, 23, 25 | 3bitr3i 301 |
. . . 4
⊢
(∀𝑥 ∈
ℋ ((normℎ‘𝑥) ≤ 1 → (abs‘(𝑇‘𝑥)) ≤ 𝐴) ↔ ∀𝑧(∃𝑥 ∈ ℋ (𝑧 = (abs‘(𝑇‘𝑥)) ∧ (normℎ‘𝑥) ≤ 1) → 𝑧 ≤ 𝐴)) |
| 27 | 14, 26 | bitr4i 278 |
. . 3
⊢
(∀𝑧 ∈
{𝑦 ∣ ∃𝑥 ∈ ℋ
((normℎ‘𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇‘𝑥)))}𝑧 ≤ 𝐴 ↔ ∀𝑥 ∈ ℋ
((normℎ‘𝑥) ≤ 1 → (abs‘(𝑇‘𝑥)) ≤ 𝐴)) |
| 28 | 8, 27 | bitrdi 287 |
. 2
⊢ ((𝑇: ℋ⟶ℂ ∧
𝐴 ∈
ℝ*) → (sup({𝑦 ∣ ∃𝑥 ∈ ℋ
((normℎ‘𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇‘𝑥)))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑥 ∈ ℋ
((normℎ‘𝑥) ≤ 1 → (abs‘(𝑇‘𝑥)) ≤ 𝐴))) |
| 29 | 3, 28 | bitrd 279 |
1
⊢ ((𝑇: ℋ⟶ℂ ∧
𝐴 ∈
ℝ*) → ((normfn‘𝑇) ≤ 𝐴 ↔ ∀𝑥 ∈ ℋ
((normℎ‘𝑥) ≤ 1 → (abs‘(𝑇‘𝑥)) ≤ 𝐴))) |