HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmfnleub Structured version   Visualization version   GIF version

Theorem nmfnleub 31173
Description: An upper bound for the norm of a functional. (Contributed by NM, 24-May-2006.) (Revised by Mario Carneiro, 7-Sep-2014.) (New usage is discouraged.)
Assertion
Ref Expression
nmfnleub ((𝑇: β„‹βŸΆβ„‚ ∧ 𝐴 ∈ ℝ*) β†’ ((normfnβ€˜π‘‡) ≀ 𝐴 ↔ βˆ€π‘₯ ∈ β„‹ ((normβ„Žβ€˜π‘₯) ≀ 1 β†’ (absβ€˜(π‘‡β€˜π‘₯)) ≀ 𝐴)))
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝑇

Proof of Theorem nmfnleub
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmfnval 31124 . . . 4 (𝑇: β„‹βŸΆβ„‚ β†’ (normfnβ€˜π‘‡) = sup({𝑦 ∣ βˆƒπ‘₯ ∈ β„‹ ((normβ„Žβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (absβ€˜(π‘‡β€˜π‘₯)))}, ℝ*, < ))
21adantr 481 . . 3 ((𝑇: β„‹βŸΆβ„‚ ∧ 𝐴 ∈ ℝ*) β†’ (normfnβ€˜π‘‡) = sup({𝑦 ∣ βˆƒπ‘₯ ∈ β„‹ ((normβ„Žβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (absβ€˜(π‘‡β€˜π‘₯)))}, ℝ*, < ))
32breq1d 5158 . 2 ((𝑇: β„‹βŸΆβ„‚ ∧ 𝐴 ∈ ℝ*) β†’ ((normfnβ€˜π‘‡) ≀ 𝐴 ↔ sup({𝑦 ∣ βˆƒπ‘₯ ∈ β„‹ ((normβ„Žβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (absβ€˜(π‘‡β€˜π‘₯)))}, ℝ*, < ) ≀ 𝐴))
4 nmfnsetre 31125 . . . . 5 (𝑇: β„‹βŸΆβ„‚ β†’ {𝑦 ∣ βˆƒπ‘₯ ∈ β„‹ ((normβ„Žβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (absβ€˜(π‘‡β€˜π‘₯)))} βŠ† ℝ)
5 ressxr 11257 . . . . 5 ℝ βŠ† ℝ*
64, 5sstrdi 3994 . . . 4 (𝑇: β„‹βŸΆβ„‚ β†’ {𝑦 ∣ βˆƒπ‘₯ ∈ β„‹ ((normβ„Žβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (absβ€˜(π‘‡β€˜π‘₯)))} βŠ† ℝ*)
7 supxrleub 13304 . . . 4 (({𝑦 ∣ βˆƒπ‘₯ ∈ β„‹ ((normβ„Žβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (absβ€˜(π‘‡β€˜π‘₯)))} βŠ† ℝ* ∧ 𝐴 ∈ ℝ*) β†’ (sup({𝑦 ∣ βˆƒπ‘₯ ∈ β„‹ ((normβ„Žβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (absβ€˜(π‘‡β€˜π‘₯)))}, ℝ*, < ) ≀ 𝐴 ↔ βˆ€π‘§ ∈ {𝑦 ∣ βˆƒπ‘₯ ∈ β„‹ ((normβ„Žβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (absβ€˜(π‘‡β€˜π‘₯)))}𝑧 ≀ 𝐴))
86, 7sylan 580 . . 3 ((𝑇: β„‹βŸΆβ„‚ ∧ 𝐴 ∈ ℝ*) β†’ (sup({𝑦 ∣ βˆƒπ‘₯ ∈ β„‹ ((normβ„Žβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (absβ€˜(π‘‡β€˜π‘₯)))}, ℝ*, < ) ≀ 𝐴 ↔ βˆ€π‘§ ∈ {𝑦 ∣ βˆƒπ‘₯ ∈ β„‹ ((normβ„Žβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (absβ€˜(π‘‡β€˜π‘₯)))}𝑧 ≀ 𝐴))
9 ancom 461 . . . . . . 7 (((normβ„Žβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (absβ€˜(π‘‡β€˜π‘₯))) ↔ (𝑦 = (absβ€˜(π‘‡β€˜π‘₯)) ∧ (normβ„Žβ€˜π‘₯) ≀ 1))
10 eqeq1 2736 . . . . . . . 8 (𝑦 = 𝑧 β†’ (𝑦 = (absβ€˜(π‘‡β€˜π‘₯)) ↔ 𝑧 = (absβ€˜(π‘‡β€˜π‘₯))))
1110anbi1d 630 . . . . . . 7 (𝑦 = 𝑧 β†’ ((𝑦 = (absβ€˜(π‘‡β€˜π‘₯)) ∧ (normβ„Žβ€˜π‘₯) ≀ 1) ↔ (𝑧 = (absβ€˜(π‘‡β€˜π‘₯)) ∧ (normβ„Žβ€˜π‘₯) ≀ 1)))
129, 11bitrid 282 . . . . . 6 (𝑦 = 𝑧 β†’ (((normβ„Žβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (absβ€˜(π‘‡β€˜π‘₯))) ↔ (𝑧 = (absβ€˜(π‘‡β€˜π‘₯)) ∧ (normβ„Žβ€˜π‘₯) ≀ 1)))
1312rexbidv 3178 . . . . 5 (𝑦 = 𝑧 β†’ (βˆƒπ‘₯ ∈ β„‹ ((normβ„Žβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (absβ€˜(π‘‡β€˜π‘₯))) ↔ βˆƒπ‘₯ ∈ β„‹ (𝑧 = (absβ€˜(π‘‡β€˜π‘₯)) ∧ (normβ„Žβ€˜π‘₯) ≀ 1)))
1413ralab 3687 . . . 4 (βˆ€π‘§ ∈ {𝑦 ∣ βˆƒπ‘₯ ∈ β„‹ ((normβ„Žβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (absβ€˜(π‘‡β€˜π‘₯)))}𝑧 ≀ 𝐴 ↔ βˆ€π‘§(βˆƒπ‘₯ ∈ β„‹ (𝑧 = (absβ€˜(π‘‡β€˜π‘₯)) ∧ (normβ„Žβ€˜π‘₯) ≀ 1) β†’ 𝑧 ≀ 𝐴))
15 ralcom4 3283 . . . . 5 (βˆ€π‘₯ ∈ β„‹ βˆ€π‘§((𝑧 = (absβ€˜(π‘‡β€˜π‘₯)) ∧ (normβ„Žβ€˜π‘₯) ≀ 1) β†’ 𝑧 ≀ 𝐴) ↔ βˆ€π‘§βˆ€π‘₯ ∈ β„‹ ((𝑧 = (absβ€˜(π‘‡β€˜π‘₯)) ∧ (normβ„Žβ€˜π‘₯) ≀ 1) β†’ 𝑧 ≀ 𝐴))
16 impexp 451 . . . . . . . 8 (((𝑧 = (absβ€˜(π‘‡β€˜π‘₯)) ∧ (normβ„Žβ€˜π‘₯) ≀ 1) β†’ 𝑧 ≀ 𝐴) ↔ (𝑧 = (absβ€˜(π‘‡β€˜π‘₯)) β†’ ((normβ„Žβ€˜π‘₯) ≀ 1 β†’ 𝑧 ≀ 𝐴)))
1716albii 1821 . . . . . . 7 (βˆ€π‘§((𝑧 = (absβ€˜(π‘‡β€˜π‘₯)) ∧ (normβ„Žβ€˜π‘₯) ≀ 1) β†’ 𝑧 ≀ 𝐴) ↔ βˆ€π‘§(𝑧 = (absβ€˜(π‘‡β€˜π‘₯)) β†’ ((normβ„Žβ€˜π‘₯) ≀ 1 β†’ 𝑧 ≀ 𝐴)))
18 fvex 6904 . . . . . . . 8 (absβ€˜(π‘‡β€˜π‘₯)) ∈ V
19 breq1 5151 . . . . . . . . 9 (𝑧 = (absβ€˜(π‘‡β€˜π‘₯)) β†’ (𝑧 ≀ 𝐴 ↔ (absβ€˜(π‘‡β€˜π‘₯)) ≀ 𝐴))
2019imbi2d 340 . . . . . . . 8 (𝑧 = (absβ€˜(π‘‡β€˜π‘₯)) β†’ (((normβ„Žβ€˜π‘₯) ≀ 1 β†’ 𝑧 ≀ 𝐴) ↔ ((normβ„Žβ€˜π‘₯) ≀ 1 β†’ (absβ€˜(π‘‡β€˜π‘₯)) ≀ 𝐴)))
2118, 20ceqsalv 3511 . . . . . . 7 (βˆ€π‘§(𝑧 = (absβ€˜(π‘‡β€˜π‘₯)) β†’ ((normβ„Žβ€˜π‘₯) ≀ 1 β†’ 𝑧 ≀ 𝐴)) ↔ ((normβ„Žβ€˜π‘₯) ≀ 1 β†’ (absβ€˜(π‘‡β€˜π‘₯)) ≀ 𝐴))
2217, 21bitri 274 . . . . . 6 (βˆ€π‘§((𝑧 = (absβ€˜(π‘‡β€˜π‘₯)) ∧ (normβ„Žβ€˜π‘₯) ≀ 1) β†’ 𝑧 ≀ 𝐴) ↔ ((normβ„Žβ€˜π‘₯) ≀ 1 β†’ (absβ€˜(π‘‡β€˜π‘₯)) ≀ 𝐴))
2322ralbii 3093 . . . . 5 (βˆ€π‘₯ ∈ β„‹ βˆ€π‘§((𝑧 = (absβ€˜(π‘‡β€˜π‘₯)) ∧ (normβ„Žβ€˜π‘₯) ≀ 1) β†’ 𝑧 ≀ 𝐴) ↔ βˆ€π‘₯ ∈ β„‹ ((normβ„Žβ€˜π‘₯) ≀ 1 β†’ (absβ€˜(π‘‡β€˜π‘₯)) ≀ 𝐴))
24 r19.23v 3182 . . . . . 6 (βˆ€π‘₯ ∈ β„‹ ((𝑧 = (absβ€˜(π‘‡β€˜π‘₯)) ∧ (normβ„Žβ€˜π‘₯) ≀ 1) β†’ 𝑧 ≀ 𝐴) ↔ (βˆƒπ‘₯ ∈ β„‹ (𝑧 = (absβ€˜(π‘‡β€˜π‘₯)) ∧ (normβ„Žβ€˜π‘₯) ≀ 1) β†’ 𝑧 ≀ 𝐴))
2524albii 1821 . . . . 5 (βˆ€π‘§βˆ€π‘₯ ∈ β„‹ ((𝑧 = (absβ€˜(π‘‡β€˜π‘₯)) ∧ (normβ„Žβ€˜π‘₯) ≀ 1) β†’ 𝑧 ≀ 𝐴) ↔ βˆ€π‘§(βˆƒπ‘₯ ∈ β„‹ (𝑧 = (absβ€˜(π‘‡β€˜π‘₯)) ∧ (normβ„Žβ€˜π‘₯) ≀ 1) β†’ 𝑧 ≀ 𝐴))
2615, 23, 253bitr3i 300 . . . 4 (βˆ€π‘₯ ∈ β„‹ ((normβ„Žβ€˜π‘₯) ≀ 1 β†’ (absβ€˜(π‘‡β€˜π‘₯)) ≀ 𝐴) ↔ βˆ€π‘§(βˆƒπ‘₯ ∈ β„‹ (𝑧 = (absβ€˜(π‘‡β€˜π‘₯)) ∧ (normβ„Žβ€˜π‘₯) ≀ 1) β†’ 𝑧 ≀ 𝐴))
2714, 26bitr4i 277 . . 3 (βˆ€π‘§ ∈ {𝑦 ∣ βˆƒπ‘₯ ∈ β„‹ ((normβ„Žβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (absβ€˜(π‘‡β€˜π‘₯)))}𝑧 ≀ 𝐴 ↔ βˆ€π‘₯ ∈ β„‹ ((normβ„Žβ€˜π‘₯) ≀ 1 β†’ (absβ€˜(π‘‡β€˜π‘₯)) ≀ 𝐴))
288, 27bitrdi 286 . 2 ((𝑇: β„‹βŸΆβ„‚ ∧ 𝐴 ∈ ℝ*) β†’ (sup({𝑦 ∣ βˆƒπ‘₯ ∈ β„‹ ((normβ„Žβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (absβ€˜(π‘‡β€˜π‘₯)))}, ℝ*, < ) ≀ 𝐴 ↔ βˆ€π‘₯ ∈ β„‹ ((normβ„Žβ€˜π‘₯) ≀ 1 β†’ (absβ€˜(π‘‡β€˜π‘₯)) ≀ 𝐴)))
293, 28bitrd 278 1 ((𝑇: β„‹βŸΆβ„‚ ∧ 𝐴 ∈ ℝ*) β†’ ((normfnβ€˜π‘‡) ≀ 𝐴 ↔ βˆ€π‘₯ ∈ β„‹ ((normβ„Žβ€˜π‘₯) ≀ 1 β†’ (absβ€˜(π‘‡β€˜π‘₯)) ≀ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396  βˆ€wal 1539   = wceq 1541   ∈ wcel 2106  {cab 2709  βˆ€wral 3061  βˆƒwrex 3070   βŠ† wss 3948   class class class wbr 5148  βŸΆwf 6539  β€˜cfv 6543  supcsup 9434  β„‚cc 11107  β„cr 11108  1c1 11110  β„*cxr 11246   < clt 11247   ≀ cle 11248  abscabs 15180   β„‹chba 30167  normβ„Žcno 30171  normfncnmf 30199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187  ax-hilex 30247
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-sup 9436  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-3 12275  df-n0 12472  df-z 12558  df-uz 12822  df-rp 12974  df-seq 13966  df-exp 14027  df-cj 15045  df-re 15046  df-im 15047  df-sqrt 15181  df-abs 15182  df-nmfn 31093
This theorem is referenced by:  nmfnleub2  31174
  Copyright terms: Public domain W3C validator