HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmfnleub Structured version   Visualization version   GIF version

Theorem nmfnleub 31734
Description: An upper bound for the norm of a functional. (Contributed by NM, 24-May-2006.) (Revised by Mario Carneiro, 7-Sep-2014.) (New usage is discouraged.)
Assertion
Ref Expression
nmfnleub ((𝑇: β„‹βŸΆβ„‚ ∧ 𝐴 ∈ ℝ*) β†’ ((normfnβ€˜π‘‡) ≀ 𝐴 ↔ βˆ€π‘₯ ∈ β„‹ ((normβ„Žβ€˜π‘₯) ≀ 1 β†’ (absβ€˜(π‘‡β€˜π‘₯)) ≀ 𝐴)))
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝑇

Proof of Theorem nmfnleub
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmfnval 31685 . . . 4 (𝑇: β„‹βŸΆβ„‚ β†’ (normfnβ€˜π‘‡) = sup({𝑦 ∣ βˆƒπ‘₯ ∈ β„‹ ((normβ„Žβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (absβ€˜(π‘‡β€˜π‘₯)))}, ℝ*, < ))
21adantr 480 . . 3 ((𝑇: β„‹βŸΆβ„‚ ∧ 𝐴 ∈ ℝ*) β†’ (normfnβ€˜π‘‡) = sup({𝑦 ∣ βˆƒπ‘₯ ∈ β„‹ ((normβ„Žβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (absβ€˜(π‘‡β€˜π‘₯)))}, ℝ*, < ))
32breq1d 5158 . 2 ((𝑇: β„‹βŸΆβ„‚ ∧ 𝐴 ∈ ℝ*) β†’ ((normfnβ€˜π‘‡) ≀ 𝐴 ↔ sup({𝑦 ∣ βˆƒπ‘₯ ∈ β„‹ ((normβ„Žβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (absβ€˜(π‘‡β€˜π‘₯)))}, ℝ*, < ) ≀ 𝐴))
4 nmfnsetre 31686 . . . . 5 (𝑇: β„‹βŸΆβ„‚ β†’ {𝑦 ∣ βˆƒπ‘₯ ∈ β„‹ ((normβ„Žβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (absβ€˜(π‘‡β€˜π‘₯)))} βŠ† ℝ)
5 ressxr 11288 . . . . 5 ℝ βŠ† ℝ*
64, 5sstrdi 3992 . . . 4 (𝑇: β„‹βŸΆβ„‚ β†’ {𝑦 ∣ βˆƒπ‘₯ ∈ β„‹ ((normβ„Žβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (absβ€˜(π‘‡β€˜π‘₯)))} βŠ† ℝ*)
7 supxrleub 13337 . . . 4 (({𝑦 ∣ βˆƒπ‘₯ ∈ β„‹ ((normβ„Žβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (absβ€˜(π‘‡β€˜π‘₯)))} βŠ† ℝ* ∧ 𝐴 ∈ ℝ*) β†’ (sup({𝑦 ∣ βˆƒπ‘₯ ∈ β„‹ ((normβ„Žβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (absβ€˜(π‘‡β€˜π‘₯)))}, ℝ*, < ) ≀ 𝐴 ↔ βˆ€π‘§ ∈ {𝑦 ∣ βˆƒπ‘₯ ∈ β„‹ ((normβ„Žβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (absβ€˜(π‘‡β€˜π‘₯)))}𝑧 ≀ 𝐴))
86, 7sylan 579 . . 3 ((𝑇: β„‹βŸΆβ„‚ ∧ 𝐴 ∈ ℝ*) β†’ (sup({𝑦 ∣ βˆƒπ‘₯ ∈ β„‹ ((normβ„Žβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (absβ€˜(π‘‡β€˜π‘₯)))}, ℝ*, < ) ≀ 𝐴 ↔ βˆ€π‘§ ∈ {𝑦 ∣ βˆƒπ‘₯ ∈ β„‹ ((normβ„Žβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (absβ€˜(π‘‡β€˜π‘₯)))}𝑧 ≀ 𝐴))
9 ancom 460 . . . . . . 7 (((normβ„Žβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (absβ€˜(π‘‡β€˜π‘₯))) ↔ (𝑦 = (absβ€˜(π‘‡β€˜π‘₯)) ∧ (normβ„Žβ€˜π‘₯) ≀ 1))
10 eqeq1 2732 . . . . . . . 8 (𝑦 = 𝑧 β†’ (𝑦 = (absβ€˜(π‘‡β€˜π‘₯)) ↔ 𝑧 = (absβ€˜(π‘‡β€˜π‘₯))))
1110anbi1d 630 . . . . . . 7 (𝑦 = 𝑧 β†’ ((𝑦 = (absβ€˜(π‘‡β€˜π‘₯)) ∧ (normβ„Žβ€˜π‘₯) ≀ 1) ↔ (𝑧 = (absβ€˜(π‘‡β€˜π‘₯)) ∧ (normβ„Žβ€˜π‘₯) ≀ 1)))
129, 11bitrid 283 . . . . . 6 (𝑦 = 𝑧 β†’ (((normβ„Žβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (absβ€˜(π‘‡β€˜π‘₯))) ↔ (𝑧 = (absβ€˜(π‘‡β€˜π‘₯)) ∧ (normβ„Žβ€˜π‘₯) ≀ 1)))
1312rexbidv 3175 . . . . 5 (𝑦 = 𝑧 β†’ (βˆƒπ‘₯ ∈ β„‹ ((normβ„Žβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (absβ€˜(π‘‡β€˜π‘₯))) ↔ βˆƒπ‘₯ ∈ β„‹ (𝑧 = (absβ€˜(π‘‡β€˜π‘₯)) ∧ (normβ„Žβ€˜π‘₯) ≀ 1)))
1413ralab 3686 . . . 4 (βˆ€π‘§ ∈ {𝑦 ∣ βˆƒπ‘₯ ∈ β„‹ ((normβ„Žβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (absβ€˜(π‘‡β€˜π‘₯)))}𝑧 ≀ 𝐴 ↔ βˆ€π‘§(βˆƒπ‘₯ ∈ β„‹ (𝑧 = (absβ€˜(π‘‡β€˜π‘₯)) ∧ (normβ„Žβ€˜π‘₯) ≀ 1) β†’ 𝑧 ≀ 𝐴))
15 ralcom4 3280 . . . . 5 (βˆ€π‘₯ ∈ β„‹ βˆ€π‘§((𝑧 = (absβ€˜(π‘‡β€˜π‘₯)) ∧ (normβ„Žβ€˜π‘₯) ≀ 1) β†’ 𝑧 ≀ 𝐴) ↔ βˆ€π‘§βˆ€π‘₯ ∈ β„‹ ((𝑧 = (absβ€˜(π‘‡β€˜π‘₯)) ∧ (normβ„Žβ€˜π‘₯) ≀ 1) β†’ 𝑧 ≀ 𝐴))
16 impexp 450 . . . . . . . 8 (((𝑧 = (absβ€˜(π‘‡β€˜π‘₯)) ∧ (normβ„Žβ€˜π‘₯) ≀ 1) β†’ 𝑧 ≀ 𝐴) ↔ (𝑧 = (absβ€˜(π‘‡β€˜π‘₯)) β†’ ((normβ„Žβ€˜π‘₯) ≀ 1 β†’ 𝑧 ≀ 𝐴)))
1716albii 1814 . . . . . . 7 (βˆ€π‘§((𝑧 = (absβ€˜(π‘‡β€˜π‘₯)) ∧ (normβ„Žβ€˜π‘₯) ≀ 1) β†’ 𝑧 ≀ 𝐴) ↔ βˆ€π‘§(𝑧 = (absβ€˜(π‘‡β€˜π‘₯)) β†’ ((normβ„Žβ€˜π‘₯) ≀ 1 β†’ 𝑧 ≀ 𝐴)))
18 fvex 6910 . . . . . . . 8 (absβ€˜(π‘‡β€˜π‘₯)) ∈ V
19 breq1 5151 . . . . . . . . 9 (𝑧 = (absβ€˜(π‘‡β€˜π‘₯)) β†’ (𝑧 ≀ 𝐴 ↔ (absβ€˜(π‘‡β€˜π‘₯)) ≀ 𝐴))
2019imbi2d 340 . . . . . . . 8 (𝑧 = (absβ€˜(π‘‡β€˜π‘₯)) β†’ (((normβ„Žβ€˜π‘₯) ≀ 1 β†’ 𝑧 ≀ 𝐴) ↔ ((normβ„Žβ€˜π‘₯) ≀ 1 β†’ (absβ€˜(π‘‡β€˜π‘₯)) ≀ 𝐴)))
2118, 20ceqsalv 3509 . . . . . . 7 (βˆ€π‘§(𝑧 = (absβ€˜(π‘‡β€˜π‘₯)) β†’ ((normβ„Žβ€˜π‘₯) ≀ 1 β†’ 𝑧 ≀ 𝐴)) ↔ ((normβ„Žβ€˜π‘₯) ≀ 1 β†’ (absβ€˜(π‘‡β€˜π‘₯)) ≀ 𝐴))
2217, 21bitri 275 . . . . . 6 (βˆ€π‘§((𝑧 = (absβ€˜(π‘‡β€˜π‘₯)) ∧ (normβ„Žβ€˜π‘₯) ≀ 1) β†’ 𝑧 ≀ 𝐴) ↔ ((normβ„Žβ€˜π‘₯) ≀ 1 β†’ (absβ€˜(π‘‡β€˜π‘₯)) ≀ 𝐴))
2322ralbii 3090 . . . . 5 (βˆ€π‘₯ ∈ β„‹ βˆ€π‘§((𝑧 = (absβ€˜(π‘‡β€˜π‘₯)) ∧ (normβ„Žβ€˜π‘₯) ≀ 1) β†’ 𝑧 ≀ 𝐴) ↔ βˆ€π‘₯ ∈ β„‹ ((normβ„Žβ€˜π‘₯) ≀ 1 β†’ (absβ€˜(π‘‡β€˜π‘₯)) ≀ 𝐴))
24 r19.23v 3179 . . . . . 6 (βˆ€π‘₯ ∈ β„‹ ((𝑧 = (absβ€˜(π‘‡β€˜π‘₯)) ∧ (normβ„Žβ€˜π‘₯) ≀ 1) β†’ 𝑧 ≀ 𝐴) ↔ (βˆƒπ‘₯ ∈ β„‹ (𝑧 = (absβ€˜(π‘‡β€˜π‘₯)) ∧ (normβ„Žβ€˜π‘₯) ≀ 1) β†’ 𝑧 ≀ 𝐴))
2524albii 1814 . . . . 5 (βˆ€π‘§βˆ€π‘₯ ∈ β„‹ ((𝑧 = (absβ€˜(π‘‡β€˜π‘₯)) ∧ (normβ„Žβ€˜π‘₯) ≀ 1) β†’ 𝑧 ≀ 𝐴) ↔ βˆ€π‘§(βˆƒπ‘₯ ∈ β„‹ (𝑧 = (absβ€˜(π‘‡β€˜π‘₯)) ∧ (normβ„Žβ€˜π‘₯) ≀ 1) β†’ 𝑧 ≀ 𝐴))
2615, 23, 253bitr3i 301 . . . 4 (βˆ€π‘₯ ∈ β„‹ ((normβ„Žβ€˜π‘₯) ≀ 1 β†’ (absβ€˜(π‘‡β€˜π‘₯)) ≀ 𝐴) ↔ βˆ€π‘§(βˆƒπ‘₯ ∈ β„‹ (𝑧 = (absβ€˜(π‘‡β€˜π‘₯)) ∧ (normβ„Žβ€˜π‘₯) ≀ 1) β†’ 𝑧 ≀ 𝐴))
2714, 26bitr4i 278 . . 3 (βˆ€π‘§ ∈ {𝑦 ∣ βˆƒπ‘₯ ∈ β„‹ ((normβ„Žβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (absβ€˜(π‘‡β€˜π‘₯)))}𝑧 ≀ 𝐴 ↔ βˆ€π‘₯ ∈ β„‹ ((normβ„Žβ€˜π‘₯) ≀ 1 β†’ (absβ€˜(π‘‡β€˜π‘₯)) ≀ 𝐴))
288, 27bitrdi 287 . 2 ((𝑇: β„‹βŸΆβ„‚ ∧ 𝐴 ∈ ℝ*) β†’ (sup({𝑦 ∣ βˆƒπ‘₯ ∈ β„‹ ((normβ„Žβ€˜π‘₯) ≀ 1 ∧ 𝑦 = (absβ€˜(π‘‡β€˜π‘₯)))}, ℝ*, < ) ≀ 𝐴 ↔ βˆ€π‘₯ ∈ β„‹ ((normβ„Žβ€˜π‘₯) ≀ 1 β†’ (absβ€˜(π‘‡β€˜π‘₯)) ≀ 𝐴)))
293, 28bitrd 279 1 ((𝑇: β„‹βŸΆβ„‚ ∧ 𝐴 ∈ ℝ*) β†’ ((normfnβ€˜π‘‡) ≀ 𝐴 ↔ βˆ€π‘₯ ∈ β„‹ ((normβ„Žβ€˜π‘₯) ≀ 1 β†’ (absβ€˜(π‘‡β€˜π‘₯)) ≀ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395  βˆ€wal 1532   = wceq 1534   ∈ wcel 2099  {cab 2705  βˆ€wral 3058  βˆƒwrex 3067   βŠ† wss 3947   class class class wbr 5148  βŸΆwf 6544  β€˜cfv 6548  supcsup 9463  β„‚cc 11136  β„cr 11137  1c1 11139  β„*cxr 11277   < clt 11278   ≀ cle 11279  abscabs 15213   β„‹chba 30728  normβ„Žcno 30732  normfncnmf 30760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216  ax-hilex 30808
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-er 8724  df-map 8846  df-en 8964  df-dom 8965  df-sdom 8966  df-sup 9465  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-3 12306  df-n0 12503  df-z 12589  df-uz 12853  df-rp 13007  df-seq 13999  df-exp 14059  df-cj 15078  df-re 15079  df-im 15080  df-sqrt 15214  df-abs 15215  df-nmfn 31654
This theorem is referenced by:  nmfnleub2  31735
  Copyright terms: Public domain W3C validator