HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmfnleub Structured version   Visualization version   GIF version

Theorem nmfnleub 31861
Description: An upper bound for the norm of a functional. (Contributed by NM, 24-May-2006.) (Revised by Mario Carneiro, 7-Sep-2014.) (New usage is discouraged.)
Assertion
Ref Expression
nmfnleub ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℝ*) → ((normfn𝑇) ≤ 𝐴 ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (abs‘(𝑇𝑥)) ≤ 𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑇

Proof of Theorem nmfnleub
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmfnval 31812 . . . 4 (𝑇: ℋ⟶ℂ → (normfn𝑇) = sup({𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇𝑥)))}, ℝ*, < ))
21adantr 480 . . 3 ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℝ*) → (normfn𝑇) = sup({𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇𝑥)))}, ℝ*, < ))
32breq1d 5120 . 2 ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℝ*) → ((normfn𝑇) ≤ 𝐴 ↔ sup({𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇𝑥)))}, ℝ*, < ) ≤ 𝐴))
4 nmfnsetre 31813 . . . . 5 (𝑇: ℋ⟶ℂ → {𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇𝑥)))} ⊆ ℝ)
5 ressxr 11225 . . . . 5 ℝ ⊆ ℝ*
64, 5sstrdi 3962 . . . 4 (𝑇: ℋ⟶ℂ → {𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇𝑥)))} ⊆ ℝ*)
7 supxrleub 13293 . . . 4 (({𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇𝑥)))} ⊆ ℝ*𝐴 ∈ ℝ*) → (sup({𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇𝑥)))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇𝑥)))}𝑧𝐴))
86, 7sylan 580 . . 3 ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℝ*) → (sup({𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇𝑥)))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇𝑥)))}𝑧𝐴))
9 ancom 460 . . . . . . 7 (((norm𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇𝑥))) ↔ (𝑦 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1))
10 eqeq1 2734 . . . . . . . 8 (𝑦 = 𝑧 → (𝑦 = (abs‘(𝑇𝑥)) ↔ 𝑧 = (abs‘(𝑇𝑥))))
1110anbi1d 631 . . . . . . 7 (𝑦 = 𝑧 → ((𝑦 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) ↔ (𝑧 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1)))
129, 11bitrid 283 . . . . . 6 (𝑦 = 𝑧 → (((norm𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇𝑥))) ↔ (𝑧 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1)))
1312rexbidv 3158 . . . . 5 (𝑦 = 𝑧 → (∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇𝑥))) ↔ ∃𝑥 ∈ ℋ (𝑧 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1)))
1413ralab 3667 . . . 4 (∀𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇𝑥)))}𝑧𝐴 ↔ ∀𝑧(∃𝑥 ∈ ℋ (𝑧 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴))
15 ralcom4 3264 . . . . 5 (∀𝑥 ∈ ℋ ∀𝑧((𝑧 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴) ↔ ∀𝑧𝑥 ∈ ℋ ((𝑧 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴))
16 impexp 450 . . . . . . . 8 (((𝑧 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴) ↔ (𝑧 = (abs‘(𝑇𝑥)) → ((norm𝑥) ≤ 1 → 𝑧𝐴)))
1716albii 1819 . . . . . . 7 (∀𝑧((𝑧 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴) ↔ ∀𝑧(𝑧 = (abs‘(𝑇𝑥)) → ((norm𝑥) ≤ 1 → 𝑧𝐴)))
18 fvex 6874 . . . . . . . 8 (abs‘(𝑇𝑥)) ∈ V
19 breq1 5113 . . . . . . . . 9 (𝑧 = (abs‘(𝑇𝑥)) → (𝑧𝐴 ↔ (abs‘(𝑇𝑥)) ≤ 𝐴))
2019imbi2d 340 . . . . . . . 8 (𝑧 = (abs‘(𝑇𝑥)) → (((norm𝑥) ≤ 1 → 𝑧𝐴) ↔ ((norm𝑥) ≤ 1 → (abs‘(𝑇𝑥)) ≤ 𝐴)))
2118, 20ceqsalv 3490 . . . . . . 7 (∀𝑧(𝑧 = (abs‘(𝑇𝑥)) → ((norm𝑥) ≤ 1 → 𝑧𝐴)) ↔ ((norm𝑥) ≤ 1 → (abs‘(𝑇𝑥)) ≤ 𝐴))
2217, 21bitri 275 . . . . . 6 (∀𝑧((𝑧 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴) ↔ ((norm𝑥) ≤ 1 → (abs‘(𝑇𝑥)) ≤ 𝐴))
2322ralbii 3076 . . . . 5 (∀𝑥 ∈ ℋ ∀𝑧((𝑧 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (abs‘(𝑇𝑥)) ≤ 𝐴))
24 r19.23v 3162 . . . . . 6 (∀𝑥 ∈ ℋ ((𝑧 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴) ↔ (∃𝑥 ∈ ℋ (𝑧 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴))
2524albii 1819 . . . . 5 (∀𝑧𝑥 ∈ ℋ ((𝑧 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴) ↔ ∀𝑧(∃𝑥 ∈ ℋ (𝑧 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴))
2615, 23, 253bitr3i 301 . . . 4 (∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (abs‘(𝑇𝑥)) ≤ 𝐴) ↔ ∀𝑧(∃𝑥 ∈ ℋ (𝑧 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴))
2714, 26bitr4i 278 . . 3 (∀𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇𝑥)))}𝑧𝐴 ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (abs‘(𝑇𝑥)) ≤ 𝐴))
288, 27bitrdi 287 . 2 ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℝ*) → (sup({𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇𝑥)))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (abs‘(𝑇𝑥)) ≤ 𝐴)))
293, 28bitrd 279 1 ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℝ*) → ((normfn𝑇) ≤ 𝐴 ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (abs‘(𝑇𝑥)) ≤ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  {cab 2708  wral 3045  wrex 3054  wss 3917   class class class wbr 5110  wf 6510  cfv 6514  supcsup 9398  cc 11073  cr 11074  1c1 11076  *cxr 11214   < clt 11215  cle 11216  abscabs 15207  chba 30855  normcno 30859  normfncnmf 30887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-hilex 30935
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-nmfn 31781
This theorem is referenced by:  nmfnleub2  31862
  Copyright terms: Public domain W3C validator