HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmfnleub Structured version   Visualization version   GIF version

Theorem nmfnleub 30287
Description: An upper bound for the norm of a functional. (Contributed by NM, 24-May-2006.) (Revised by Mario Carneiro, 7-Sep-2014.) (New usage is discouraged.)
Assertion
Ref Expression
nmfnleub ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℝ*) → ((normfn𝑇) ≤ 𝐴 ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (abs‘(𝑇𝑥)) ≤ 𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑇

Proof of Theorem nmfnleub
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmfnval 30238 . . . 4 (𝑇: ℋ⟶ℂ → (normfn𝑇) = sup({𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇𝑥)))}, ℝ*, < ))
21adantr 481 . . 3 ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℝ*) → (normfn𝑇) = sup({𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇𝑥)))}, ℝ*, < ))
32breq1d 5084 . 2 ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℝ*) → ((normfn𝑇) ≤ 𝐴 ↔ sup({𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇𝑥)))}, ℝ*, < ) ≤ 𝐴))
4 nmfnsetre 30239 . . . . 5 (𝑇: ℋ⟶ℂ → {𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇𝑥)))} ⊆ ℝ)
5 ressxr 11019 . . . . 5 ℝ ⊆ ℝ*
64, 5sstrdi 3933 . . . 4 (𝑇: ℋ⟶ℂ → {𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇𝑥)))} ⊆ ℝ*)
7 supxrleub 13060 . . . 4 (({𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇𝑥)))} ⊆ ℝ*𝐴 ∈ ℝ*) → (sup({𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇𝑥)))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇𝑥)))}𝑧𝐴))
86, 7sylan 580 . . 3 ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℝ*) → (sup({𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇𝑥)))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇𝑥)))}𝑧𝐴))
9 ancom 461 . . . . . . 7 (((norm𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇𝑥))) ↔ (𝑦 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1))
10 eqeq1 2742 . . . . . . . 8 (𝑦 = 𝑧 → (𝑦 = (abs‘(𝑇𝑥)) ↔ 𝑧 = (abs‘(𝑇𝑥))))
1110anbi1d 630 . . . . . . 7 (𝑦 = 𝑧 → ((𝑦 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) ↔ (𝑧 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1)))
129, 11syl5bb 283 . . . . . 6 (𝑦 = 𝑧 → (((norm𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇𝑥))) ↔ (𝑧 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1)))
1312rexbidv 3226 . . . . 5 (𝑦 = 𝑧 → (∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇𝑥))) ↔ ∃𝑥 ∈ ℋ (𝑧 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1)))
1413ralab 3628 . . . 4 (∀𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇𝑥)))}𝑧𝐴 ↔ ∀𝑧(∃𝑥 ∈ ℋ (𝑧 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴))
15 ralcom4 3164 . . . . 5 (∀𝑥 ∈ ℋ ∀𝑧((𝑧 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴) ↔ ∀𝑧𝑥 ∈ ℋ ((𝑧 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴))
16 impexp 451 . . . . . . . 8 (((𝑧 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴) ↔ (𝑧 = (abs‘(𝑇𝑥)) → ((norm𝑥) ≤ 1 → 𝑧𝐴)))
1716albii 1822 . . . . . . 7 (∀𝑧((𝑧 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴) ↔ ∀𝑧(𝑧 = (abs‘(𝑇𝑥)) → ((norm𝑥) ≤ 1 → 𝑧𝐴)))
18 fvex 6787 . . . . . . . 8 (abs‘(𝑇𝑥)) ∈ V
19 breq1 5077 . . . . . . . . 9 (𝑧 = (abs‘(𝑇𝑥)) → (𝑧𝐴 ↔ (abs‘(𝑇𝑥)) ≤ 𝐴))
2019imbi2d 341 . . . . . . . 8 (𝑧 = (abs‘(𝑇𝑥)) → (((norm𝑥) ≤ 1 → 𝑧𝐴) ↔ ((norm𝑥) ≤ 1 → (abs‘(𝑇𝑥)) ≤ 𝐴)))
2118, 20ceqsalv 3467 . . . . . . 7 (∀𝑧(𝑧 = (abs‘(𝑇𝑥)) → ((norm𝑥) ≤ 1 → 𝑧𝐴)) ↔ ((norm𝑥) ≤ 1 → (abs‘(𝑇𝑥)) ≤ 𝐴))
2217, 21bitri 274 . . . . . 6 (∀𝑧((𝑧 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴) ↔ ((norm𝑥) ≤ 1 → (abs‘(𝑇𝑥)) ≤ 𝐴))
2322ralbii 3092 . . . . 5 (∀𝑥 ∈ ℋ ∀𝑧((𝑧 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (abs‘(𝑇𝑥)) ≤ 𝐴))
24 r19.23v 3208 . . . . . 6 (∀𝑥 ∈ ℋ ((𝑧 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴) ↔ (∃𝑥 ∈ ℋ (𝑧 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴))
2524albii 1822 . . . . 5 (∀𝑧𝑥 ∈ ℋ ((𝑧 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴) ↔ ∀𝑧(∃𝑥 ∈ ℋ (𝑧 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴))
2615, 23, 253bitr3i 301 . . . 4 (∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (abs‘(𝑇𝑥)) ≤ 𝐴) ↔ ∀𝑧(∃𝑥 ∈ ℋ (𝑧 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴))
2714, 26bitr4i 277 . . 3 (∀𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇𝑥)))}𝑧𝐴 ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (abs‘(𝑇𝑥)) ≤ 𝐴))
288, 27bitrdi 287 . 2 ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℝ*) → (sup({𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇𝑥)))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (abs‘(𝑇𝑥)) ≤ 𝐴)))
293, 28bitrd 278 1 ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℝ*) → ((normfn𝑇) ≤ 𝐴 ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (abs‘(𝑇𝑥)) ≤ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537   = wceq 1539  wcel 2106  {cab 2715  wral 3064  wrex 3065  wss 3887   class class class wbr 5074  wf 6429  cfv 6433  supcsup 9199  cc 10869  cr 10870  1c1 10872  *cxr 11008   < clt 11009  cle 11010  abscabs 14945  chba 29281  normcno 29285  normfncnmf 29313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-hilex 29361
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-nmfn 30207
This theorem is referenced by:  nmfnleub2  30288
  Copyright terms: Public domain W3C validator